PUBLIC

Code Assessment

of the Payment Channel

Smart Contracts

Sep 29, 2021

Produced for
by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG

o N O b~ W

10
13

https://chainsecurity.com

1 Executive Summary

Dear Sir or Madam,

First and foremost we would like to thank HOPRNet for giving us the opportunity to assess the current
state of their Payment Channel system. This document outlines the findings, limitations, and
methodology of our assessment.

The smart contract code was clear and well documented. The HOPRNet team was professional and
responsive. During the audit we found a critical security that was fixed after disclosure. All other issues
were acknowledged or the code corrected accordingly. We still want to note, since the smart contract is
meant to be used by HOPR nodes, issues related to interactions between systems may arise.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EITZD-Severity Findings 1
: 1
(C)-Severity Findings 0
(Medium)-Severity Findings 1
: 1
(Low)-Severity Findings 8
: 4
¥ Acknowiedged! 4

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the packages/ et hereuni contract s/ Hopr Channel s. sol
source code file inside the Payment Channel repository based on the yellow paper and documentation
provided by client. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note
1 | 30 July 2021 06eb3b0898c49ab2eb3f69b9eb4f3e51f82bb637 Initial Version
2 | 17 September 2021 792803f785cbh6939818a3066a0b107652d86f0f0 Second Version

For the solidity smart contracts, the compiler version 0. 8. 3 was chosen.

2.1.1 Excluded from scope

Excluded from scope are any cryptographic properties and operation regarding the objects passed into
the functions like the proof of relay. We treat all these objects as valid and correct objects. We did not
check the protocol or incentive structure.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

HOPR is building a privacy focused network featuring a build-in incentive model. The reviewed
Hopr Channel s contract allows nodes to create a payment channels between each other and allow
transfer of HoprTokens between them. The transfers are done via tickets, that have a certain predefined
probability to win. Winning tickets cause a transfer of tokens between the channels participants. On a
code level the channels are unidirectional, meaning channel A->B not equal to B->A.

To keep the winning probability fair, the channel tickets depend on variables that are unknown in
advance. For ticket emitted by A for A->B channel, B has a commitment that is unknown to A. And B does
not know the proof of relay in advance and has to transfer the message on a network to know it.

Each unidirectional channel has channel Epoch, ticket Epoch, and ticketl ndex associated
variables, that the ticket emitter is assumed to take in account, during the generation.

The contract has seven functions to manage the payment channels and related tasks.

2.2.1 Announce

The first and simplest function is to announce the existence of a node via an event.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2.2.2 fundChannelMulti

The function is the initial function to set up a payment channels. The logic transfers tokens into the
Hopr Channel s smart contract. Not closed balance can top up the balance of channel and closed once
in addition can open themselves. For a given addresses A and B, this function can be used to create two
unidirectional channels A->B and B->A. Opening a closed unidirectional channel increases its
channelEpoch by one and resets t i cket Epoch and ti cket | ndex to zero.

2.2.3 redeemTicket

This is the central function to receive the rewards for a ticket from the source's payment channel. The
tickets needs to have the right channel Epoch, ti cket Epoch. The ti cket | ndex must be greater
than the index of previously redeemed ticket. The old commitment needs to be the hash of the new
commitment (hash chain in reverse order). Tickets need to be signed by the issuer (source) and the
function enforces the correct ticket signature. In the end, the function checks if the ticket is a win (reward
payout), increases the ticket index, sets the new commitment and updates the payment channel
balances. If earning channel is closed, the tokens are transferred directly to recipient.

2.2.4 initiateChannelClosure

The function will start to close the channel by setting the status to PENDI NG _TO_CLOSE and the closure
time counter. The receiver has now the closure time (around two minutes) to claim open winning tickets.

2.2.5 finalizeChannelClosure

After setting a channel into the pending state and the closure period has passed, the function can be
called to close the channel. All remaining funds are transferred back to the channel's source. Two events
are emitted. The channel's balance and closure time is set to zero. The channel's status is set to
CLOSED.

2.2.6 bumpChannel

The function can be called by the destination to set a commitment used similar to a commit reveal
scheme to determine if a ticket is winning tickets or not. The ti cket Epoch is increased by one when
this function is called.

2.2.7 tokensReceived

Alternative way to fund a channel. Similar to f undChannel Mul ti but as a hook for the ERC777 HOPR
token.

2.2.8 changes

Announce function in version 2 of the contract requires message sender to submit a public key for its
address. The public key is stored on chain. Opening of the channels is only possible when both channel
participants have announced their public keys.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
ty g
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 4
ty g
 Compression of Epochs in Struct(_)
 Gas Optimizaton(_~)

+ Node Can Set Ticket Index to Arbitrary High Values(_)

 Redundant Sanity Checks (.~)

5.1 Compression of Epochs in Struct
[Low][Version 1][]

It is unlikely that the channel struct values for ti cket Epoch or channel Epoch will ever reach the
maximum number of uint256. HOPRNet should re-evaluate if these values can be bounded e.g. by
uint128 and share a storage slot and thus lower the gas consumption of the contract.

Acknowledged

Gas efficiency issues are considered out of scope.

5.2 Gas Optimization
[Low] [Version 1][]

The contract includes a struct that stores in storage a mapping with all channels and the respective state
for each channel as following:

struct Channel {
ui nt 256 bal ance;
byt es32 conmi t ment;
ui nt 256 ticket Epoch;
ui nt 256 ticketl ndex;
Channel St at us st at us;

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

ui nt 256 channel Epoch;

ui nt 32 cl osur eTi ne;

}

The Channel struct includes an attribute st at us which is of type enum Channel St at us and has only
4 values, therefore occupies only 8 bits in the storage. Given that there is another attribute
ui nt 32 cl osur eTi ne that occupies another 32 bits, these two attribute st at us and cl osur eTi ne
should be reordered and placed together to optimize the overall storage used by the contract.

Acknowledged
Gas efficiency issues are considered out of scope.

5.3 Node Can Set Ticket Index to Arbitrary High
Values

[Low] [Version 1] []

The ticket issuing node can set the ticket index at will. If this index is set to a value close or equal to max
uint, the tickets would be unusable (not redeemable) quickly and the channel would need to be reset.

Acknowledged
The issue has been discussed and it was decided to check the ticket index off-chain.

5.4 Redundant Sanity Checks
[Low] [Version 1)[]

The function f undChannel Mul ti checks if the two amounts are greater than zero, which are checked
later again in the function _f undChannel .

The modifier val i dat eSour ceAndDest is executed twice for each call of _fundChannel from
f undChannel Mul ti if one would fund both channels directions.

Acknowledged

Hopr provided the reasoning why it is done this way and that efficiency issues are out of scope.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.
EIED-severity Findings 1
+ Reentrancy Can Drain Money

(C)-Severity Findings 0

(Medium)-Severity Findings 1
« Inconsistent States and Events

(Low)-Severity Findings 4
+ Channel Transition Model

* Redundant Imports (SRS
* Token Transfers Inconsistent (LERSIIE

» Variables Could Be Labeled Immutable

6.1 Reentrancy Can Drain Money

Code Corrected

The HoprChannels smart contract uses the ERC777 HoprToken to settle payments. The ERC777 token
allows reentrancies during the transfer via sender and receiver hooks. An attacker can utilize this
reentrancy to drain the balance of HoprChannels contract. One of the places where this can happen is in
the fi nal i zeChannel d osur e function.

We describe a more elaborate attack and a straightforward attack.

Attack setup: Alice and Bob cooperate. They have created channels between them, Alice has called
i ni tiateChannel d osure for her channel with Bob, that holds 100 tokens. Bob has valid and yet
unclaimed ticket for 75 tokens. Closure time has passed for the Alice owned channel. Alice has a smart
contract registered for ERC777 hook. Bob is smart contracts that is registered in the ERC1820 registry
for the ERC777 hooks.

« Alice calls fi nal i zeChannel C osur e with Bob as destination.
« During the call t oken. transfer (Al i ce, 100); in this function, Alice contract gets called.

« Alice contract calls to Bob contract.

* Bob contract calls the r edeenili cket with valid unclaimed ticket.
« Channel (Alice, Bob) is spending and (Bob, Alice) is earning.

« Balance of (Alice, Bob) is decreased by 75. Since the balance of the channel is
still 100, the new value will be 25.

 Balance of (Bob, Alice) is increased by 75.

* Function r edeendli cket returns.

* The Bob contract execution returns to Alice

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

 Alice contract returns f i nal i zeChannel d osur e call.

» The execution continues after the call t oken. transfer (Alice, 100);

» The balance (25 tokens) of Alice owned channel is nullified with del et e and the status is set to the
CLOSED.

As a result of above described schema, the initial 100 tokens of (Alice, Bob) channel will be payed out to
Alice, and in addition Bob will get 75 tokens from his ticket claim. Thus instead of 100 tokens 175 tokens
were withdrawn.

The straightforward attack would be to reenter multiple time into the f i nal i zeChannel Cl osur e as the
state variables are changed after the reentrancy possibility. As a general rule, all state dependent
operations should be done before the possible reentrancy. Additionally, reentrancies could be completely
blocked if not needed.

Code corrected:

In functions that perform transfers of HOPRToken the transfer operations are moved to the end of the
functions.

6.2 Inconsistent States and Events

(D (Wiedium) (Version 1) (TSR

Functions using ERC777 transfers can be reentered (a reentrancy does not necessarily need to happen
in the same function but in another relevant function in the system.). Some of these functions have a
code after the possible reentrancy point. This might become problematic if the logic relies on state
variables like in fi nal i zeChannel O osure, redeenili cket. Besides the more critical reentrancy
issue we mentioned, these function's events might be inconsistent or misleading.

For example, in redeeniicket event Channel Update is emitted. This event uses
spendi ngChannel storage variable. Given the r edeenili cket is called and the ERC777 hook is used
to change any storage variable used in these events, the events can emit inconsistent information. This
can be done if during the transfer, the hook calls the bunrpChannel in between.

The same applies to the other places where logic after the reentrancy possibility relies on state variables.
We do not know if the client's or third party software will rely on these events. If so, the severity of the
issue would be affected.

Code corrected:

In functions that perform transfers of HOPRToken the transfer operations are moved to the end of the
functions.

6.3 Channel Transition Model

(Correctness JITIEETTRY Code Corrected)

According to the channels states transition model, the channel in Vai ting for conm tnent state
cannot be taken into Pendi ng To d ose. In the smart contract code, such behavior is allowed in the
i ni tiateChannel d osure function. In addition, the specification provided by HOPRNet also allows
such behavior.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 11

https://github.com/hoprnet/hopr-audits/blob/main/audits/hopr-channels/spec.md
https://chainsecurity.com

Code corrected:
The transition model for channel states has been updated accordingly.

6.4 Redundant Imports
D) (Low) (Version 1) (XL

The Saf eERC20. sol library is imported twice in line 10 and 11.

Code corrected

The redundant import is removed.

6.5 Token Transfers Inconsistent

(D (Cow) (Version 1) ISR

The Hopr Channel s contract has inconsistent use of Saf eERC20 functions. Since the token is known
Hopr Token contract that cannot be changed after the deployment, the use of Saf eERC20 functions is
redundant and introduces the unnecessary gas expenses.

token.transfer (nsg. sender, channel . bal ance) ;
t oken. saf eTransfer (nsg. sender, anount);
t oken. saf eTransf er From nsg. sender, address(this), anopuntl anmount 2) ;

Code corrected

t ransf er is now used consistently.

6.6 Variables Could Be Labeled Immutable
D) (Low) (Version 1) (XTI

The keyword immutable and constant can be used to save gas because the compiler does not reserve a
storage slot for these variables, and every occurrence is replaced by the respective value. Immutable
variables are evaluated once at construction time and their value is copied to all the places in the code
where they are accessed.

token and secsC osure variable can not be changed and can be set to immutable.
FUND_CHANNEL_MJLTI _SI ZE could be set to constant (if calculated beforehand) or else immutable as
the value is known when compiling the contract and cannot be changed later.

Code corrected
The variables were labeled immutable.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Automated Security Tools

While performing the audit we found a simple but severe issue which would have been flagged by basic
smart contract security tools. Using linters, static analyzers and other tools could prevent these mistakes
and increase the overall code quality.

7.2 Compiler Version

The used compiler version 0. 8. 3 is six version behind the current version 0. 8. 9 (including bug fixes).

7.3 Events Emit Complete Channel Struct

HOPRNet might evaluate if it is necessary to emit the whole channel struct in events. We are not aware
of the needs but if not the whole struct it needed, it would be more efficient to only include the relevant
parts in the event.

7.4 Pre- and Post Condition Checks

If gas efficiency is not a priority, checking pre- and post conditions after important operations might be
valuable. Consider for example that the contract balance could be queried before and after a transfer and
it could be checked if the balance reduced or increased exactly to the expected amount.

@ HOPRNet - Payment Channel - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Announce
	2.2.2 fundChannelMulti
	2.2.3 redeemTicket
	2.2.4 initiateChannelClosure
	2.2.5 finalizeChannelClosure
	2.2.6 bumpChannel
	2.2.7 tokensReceived
	2.2.8 changes

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Compression of Epochs in Struct
	5.2 Gas Optimization
	5.3 Node Can Set Ticket Index to Arbitrary High Values
	5.4 Redundant Sanity Checks

	6 Resolved Findings
	6.1 Reentrancy Can Drain Money
	6.2 Inconsistent States and Events
	6.3 Channel Transition Model
	6.4 Redundant Imports
	6.5 Token Transfers Inconsistent
	6.6 Variables Could Be Labeled Immutable

	7 Notes
	7.1 Automated Security Tools
	7.2 Compiler Version
	7.3 Events Emit Complete Channel Struct
	7.4 Pre- and Post Condition Checks

