

PUBLIC

Code Assessment

of the Node Management Module

Smart Contracts

August 29, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Informational 21

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Hoprnet Team,

Thank you for trusting us to help HOPRNet with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Node Management Module
according to Scope to support you in forming an opinion on their security risks.

HOPRNet implements a module for Safe multisignature contract that allows management and separation
of the different keys that are needed for HOPR network functionality. Scope includes updated
HoprChannels that can use such Safes and factory to deploy and configure them.

The most critical subjects covered in our audit are asset solvency, functional correctness and signature
handling. Asset solvency and Signature handling are good. Functional correctness is high.

The general subjects covered are specification, front-running and integration with 3rd party systems.
Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 2

• Code Corrected 2

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 13

• Code Corrected 13

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Node Management Module
https://github.com/hoprnet/hoprnet repository based on the documentation files. Following
files in the packages/ethereum/contracts/src directory of the repository were considered in
scope:

Channels.sol
MultiSig.sol
interfaces/IAvatar.sol
interfaces/INetworkRegistryRequirement.sol
interfaces/INodeManagementModule.sol
interfaces/INodeSafeRegistry.sol
node-stake/NodeSafeRegistry.sol
node-stake/NodeStakeFactory.sol
node-stake/permissioned-module/CapabilityPermissions.sol
node-stake/permissioned-module/NodeManagementModule.sol
node-stake/permissioned-module/SimplifiedModule.sol
utils/EnumerableStringSet.sol
utils/EnumerableTargetSet.sol
utils/TargetUtils.sol

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 06 August 2023 41fa52c9c50b0029cd8329f04409b05d31eb063b Initial Version

2 22 August 2023 e6ac2da904672da5c932b3e95ba6cbc37934643d Version with fixes

3 27 August 2023 274b59e409e6bf48c6d7d675de2d9905dcf1f813 Version with fixes

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

2.1.1 Excluded from scope
Any other files not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope. In particular, the src/Crypto.sol
library is out-of-scope.

2.1.2 Assumptions
All imported files, contracts and libraries are assumed to function according to their high level
specification. The libraries in vendor/solidity folder of the repository are assumed to be unmodified.
The src/Crypto.sol library is assumed to be correct. In addition, the mechanism of deciding a
winning ticket is out of scope. It is assumed to be fair to both parties of a channel, and no parties shall be
able to predict a winning ticket in advance.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

HOPRNet is building a privacy focused network featuring a build-in incentive model. The provided
HoprChannels (or Channels) contract allows nodes to create payment channels between each other
and allow the transfer of wxHOPR tokens between them. The transfers are done via tickets, that have a
certain predefined probability to win. HOPRNet also implements a NodeStakeFactory, that one can use
to deploy a Safe multisignature wallet to hold the funds. Factory deployed Safe is deployed with
configured NMM (Node Management Module) to manage the access of several HOPR chain nodes. The
NMM implements default and granular access control towards the callable targets from the Safe.

2.2.1 Channels
Node can use the Channels contract to open, close, and keep track of unidirectional payment channels to
other nodes. A channel is uniquely identifiable by the tuple (address source,address target),
which holds the funds that target address may claim for the work of relaying source's messages.

A ticket is issued by source with each message to target, which leads to probabilistic payments for the
relaying work. To keep the winning probability fair, the success of redeeming a ticket is dependent on
both the packet creator entropy as well as the ticket claimer entropy, which are unknown to each other in
advance. Target has a commitment that is unknown to source. If source is not a packet creator, it has no
control over the winning probability and thus cannot influence the win chance probability. And target does
not know the proof of relay in advance and has to relay message to the next node to reveal it.

Channels expose interfaces that support both the nodes that use Safe with NMM and the nodes that do
not use Safe. The former can use the fundChannelSafe and redeemTicketSafe entrypoints, while
the latter can use the fundChannel() and redeemTicket() entrypoints.

2.2.1.1 Fund a channel
A channel can be funded by calling fundChannelSafe() or fundChannel() directly, which enforces
the funding token amount is within a range and the two parties of the channel are different. Channel can
be funded only if it is not in the PENDING_TO_CLOSE state. The balance of the channel will be increased
by the transferred amount. In case the channel is CLOSED, the channel will be reopened with an epoch
increased by 1 and ticketIndex set to 0.

One can also directly use wxHOPR.send() function to send the tokens directly to the Channel contract.
This will triggers the IERC777Recipient.tokensReceived() callback and funds a single
unidirectional channel or two (A to B and B to A) unidirectional channels depending on the userData.

2.2.1.2 Close a channel
To close the channel, the source needs to call initiateOutgoingChannelClosure() or
initiateOutgoingChannelClosureSafe() to initiate the channel closure. The
noticePeriodChannelClosure time period allows target node on the other side of the channel to
redeem the remaining tickets. After the noticePeriodChannelClosure, source can eventually call
finalizeOutgoingChannelClosureSafe or finalizeOutgoingChannelClosure to finalize the
closure, which transfers the tokens left in the channel to channel src. Channel target can also close an
incoming payment channel immediately by closeIncomingChannel or
closeIncomingChannelSafe.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.1.3 Redeem a ticket
A node can redeem a ticket through redeemTicketSafe or redeemTicket with the issuer-signed
ticket, the proof of relay, and the verifiable random function data. The following steps will be taken to
validate a ticket:

1. The channel status must be OPEN or PENDING_TO_CLOSE, and the channel current epoch must
match the ticket's epoch.

2. The ticket's index is larger than the channel's index, and channel's balance is sufficient.

3. The ticket falls within the winning area given the winning probability.

4. The random function verification succeeds.

5. The signature of the redeemable ticket is valid from the issuer, and the ticket is indeed for the
redeemer.

The reward token amount will be transferred to the ticker redeemer, in case the channel from it to source
is CLOSED. Otherwise, the reward tokens will be used to top up the redeemer's payment channel (from
redeemer to issuer)

2.2.2 Safe and Management Module
To isolate the nodes operations and funds management, a Safe and a NMM (Node Management
Module) is implemented. One can leverage the NodeStakeFactory to set up a new Safe and NMM, where
multiple chainkeys could be added to the NMM, which enforces access control towards members and
targets and triggers Safe to conduct certain calls or delegatecalls. Different components of the system
can be found in the following figure.

Upon deployment, an array of admins are passed to the Safe, which has the ultimate privilege of
co-signing to manage the modules and funds.

The NMM stores the access control information into a Role struct, which consists of a TargetSet, a
mapping of role members, and a mapping of granular capabilities. Each target is a uint256 which
encodes the 20-byte target address and 12 one-byte flags. The first 3 flags are clearance, target type,
and default permission. The rest are capability permission flags. Only the members of the Role can
perform the operations to targets specified by the permission flags and the granular capabilities.

The NMM provides the main entrypoints for the registered nodes (chainkeys), which need to pass the
access control to trigger specific actions on the Safe. The possible actions are limited to:

• call HoprChannels.fundChannelSafe

• call HoprChannels.redeemTicketSafe

• call HoprChannels.closeIncomingChannelSafe

• call HoprChannels.initiateOutgoingChannelClosureSafe

• call HoprChannels.finalizeOutgoingChannelClosureSafe

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• call HoprToken.approve(address,uint256)

• call HoprToken.send(address,uint256,bytes)

• send native tokens

• delegatecall multisend

Granular access control is achieved by limiting the allowed parameters passed to the functions above. In
case of a multisend operation, the individual transactions inside the data will be loaded and inspected.
Afterwards, the node module will call the Safe with the data, and the Safe will eventually execute the calls
or delegatecalls.

2.2.3 Roles and Trust Model
The admin key owners are privileged roles that are fully trusted to not misbehave. A compromised admin
key will allow attacker to get full control of the Safe and NMM and thus the funds, chainkeys in NMM. The
owners of individual chainkeys are considered trusted and must not perform malicious actions.
Compromised chainkey will allow attacker to open and close channels. Other consequences in both
cases are also possible.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 2

• Code CorrectedHoprChannels ERC777 Reentrancy

• Code CorrectedWinning Ticker Can Be Redeemed Multiple Times

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedEIP-712 Incompliant Signed Message

Low -Severity Findings 13

• Code CorrectedIncorrect indexEvent Input

• Code CorrectedDependencies Between Source File Folders

• Code CorrectedDomainSeparator Is Not Recomputed After a Change of Chain ID

• Code CorrectedHoprNodeSafeRegistry Is Not an INodeSafeRegistry

• Code CorrectedHoprNodeStakeFactory Can Clones Any Module

• Code CorrectedIHoprNodeSafeRegistry Is a Contract and Not an Interface

• Code CorrectedIncorrect Flag Position Upper Bound

• Code CorrectedIncorrect Specifications and Comments

• Code CorrectedMissing Input Checks at tokensReceived

• Code CorrectedSignatures Can Be Replayed

• Code CorrectedTargetUtils Incorrect Iterator Bound

• Code CorrectedTimestamp Is Not Updated With Snapshot

• Code CorrectedisNodeSafeRegistered Returns True for Unregistered Pairs if safeAddress==0

6.1 HoprChannels ERC777 Reentrancy
Security Critical Version 1 Code Corrected

CS-HPRNMM23-001

An attacker can leverage the ERC777 capability of the wxHOPR token to drain the funds of
HoprChannels contract.

Attack vector:

Assume the attacker deploys the following pair of contracts at ALICE and BOB addresses respectively.

contract Bob {

 function close() public {
 HoprChannels channels = HoprChannels(0x...);

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

 channels.closeIncomingChannel(ALICE);

 }
}
contract Alice is IERC777Recipient {

 bool once = false;

 function tokensReceived(...) public {
 if (once) {
 return;
 }
 once = true;
 HoprChannels channels = HoprChannels(0x...);
 channels.fundChannel(BOB, 1);
 Bob(BOB).close();
 }

 function hack() public {

 _ERC1820_REGISTRY.setInterfaceImplementer(address(this),
 TOKENS_RECIPIENT_INTERFACE_HASH, address(this));

 HoprChannels channels = HoprChannels(0x...);
 channels.fundChannel(BOB, 10);
 Bob(BOB).close();
 }

}

Exploit scenario:

When Alice.hack() is called, the following happens:

1. Alice's contract registers itself as its own ERC777TokensRecipient.

2. Alice funds outgoing channel to Bob with 10 wxHOPR.

3. Bob closes the incoming channel with Alice.

4. During the execution of closeIncomingChannel() the 10 wxHOPR tokens are transferred to
Alice.

5. The tokensReceived() function of Alice is called. During this call:

1. Alice funds outgoing channel to Bob with 1 wxHOPR. Balance of the channel becomes
11 wxHOPR.

2. Bob closes the incoming channel with Alice and 11 wxHOPR tokens are transferred to
Alice.

3. This time the tokensReceived() function of Alice does nothing. The balance of the
channel is set to 0.

6. The closeIncomingChannel() that started on step 4. sets the balance of channel to 0.

As a result, attacker using 10+1 token can withdraw 10+11 wxHOPR tokens from the channel. The
attacker can loop the reentrancy even more time for more profit.

Cause:

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The change of channel balance to 0 happens after the reentrant call to token.transfer() in the
_closeIncomingChannelInternal() function. Thus, checks-effects-interactions pattern is
effectively violated. Similar violations happen in other functions of the HoprChannels contract:

• _finalizeOutgoingChannelClosureInternal() sets the channel balance to 0 after the
reentrant call to token.transfer().

• _redeemTicketInternal() calls indexEvent and emits events after token.tranfer() call
in case when the earning channel is closed. This effectively can lead do the wrong order of events in
the event log or a different snapshot root.

Code corrected:

The code has been corrected by moving the token transfer to the end of the function in all relevant
functions.

6.2 Winning Ticker Can Be Redeemed Multiple
Times
Security Critical Version 1 Code Corrected

CS-HPRNMM23-002

Assume Alice has outgoing channel to Bob with 1 as ticketIndex. Following scenario is possible:

1. Alice provides Bob 4 non-winning tickets with ticketIndex 2, 3, 4, 5 and a winning ticket with
ticketIndex 6. All of those tickets are non-aggregated and thus their indexOffset is 1.

2. Bob redeems the winning ticket. In the _redeemTicketInternal function, the ticketIndex of
the spending channel is updated as: spendingChannel.ticketIndex += indexOffset. The
ticketIndex of the spending channel is now 2.

3. Bob can redeem the ticket again, because the only requirement on ticketIndex is that it is
greater than the ticketIndex of the spending channel.

Thus, same winning ticket can be redeemed multiple times. The ticketHash signature from Alice does
not prevent this, because it does not contain any nonce or other replay protection mechanism.

Code corrected:

The ticketIndex of the spending channel has been updated as:
spendingChannel.ticketIndex = TicketIndex.wrap(baseIndex + baseIndexOffset).

And the check of ticket validity has been adjusted to require:
(baseIndexOffset >= 1) && (baseIndex >= currentIndex).

6.3 EIP-712 Incompliant Signed Message
Correctness Medium Version 1 Code Corrected

CS-HPRNMM23-003

The EIP-712 compliant message should start with a two-byte prefix "0x1901" followed by the
domainSeparator and the message hash struct. Whereas two 32-bytes are used in the following cases
for the prefix because of abi.encode. Consequently the signatures generated by the mainstream
EIP-712 compliant libraries cannot be verified in these smart contracts:

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

1. registerSafeWithNodeSig() in NodeSafeRegistry.

2. _getTicketHash() in Channels.

Code corrected:

The abi.encodePacked has been used instead of abi.encode to generate the message hash struct.

6.4 Incorrect indexEvent Input
Correctness Low Version 2 Code Corrected

CS-HPRNMM23-021

The channel will call indexEvent() when emitting a new event. In the following case, indexEvent()
is incorrectly invoked with an extra channel.balance field compared to the emitted event. As a result,
the snapshot will contain an incorrect event.

indexEvent(abi.encodePacked(ChannelOpened.selector, self, account,
 channel.balance));
emit ChannelOpened(self, account);

Code corrected:

The redundant field channel.balance has been removed from the indexEvent input.

6.5 Dependencies Between Source File Folders
Design Low Version 1 Code Corrected

CS-HPRNMM23-004

The packages/ethereum/contracts foundry project have following problems

• Some of the files in src folder depend on smart contracts from test folder.

• Some of the files in src folder depend on smart contracts from script folder.

Such dependencies are considered as bad practice and should be avoided. Potential risks are:

• Separation of concerns is not respected. Testing and setup code should not impact production code.

• Risk of deploying test code to production is increased.

• Maintenance of the project is more difficult. Changes in test or script folders may impact
production code.

Code corrected:

HOPRNet responded:

The placement of specific library files and contracts have been reorganized to align with improved
structuring and imports.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.6 DomainSeparator Is Not Recomputed After a
Change of Chain ID
Design Low Version 1 Code Corrected

CS-HPRNMM23-005

In contracts Channels and NodeSafeRegistry, the domainSeparator is defined as an immutable in the
constructor and used in the signature verification. In case there is a fork, the contracts will still verify a
signature based on the old domainSeparator, whereas the forked chain is associated with a different
chain ID. Besides, the signature targeted to the original chain can be replayed to the forked chain. In
order to support the potential forked chains and avoid signature replay, the domainSeparator needs to
be recomputed based on on-chain chain ID.

Code corrected:

Function updateDomainSeparator has been introduced in contracts Channels and NodeSafeRegistry
to update the domainSeparator based on the on-chain chain ID.

6.7 HoprNodeSafeRegistry Is Not an
INodeSafeRegistry
Design Low Version 1 Code Corrected

CS-HPRNMM23-006

The contract does not inherit from INodeSafeRegistry, which means the compiler will not check that the
contract implements all functions correctly.

Code corrected:

The INodeSafeRegistry contract has been removed.

6.8 HoprNodeStakeFactory Can Clones Any
Module
Design Low Version 1 Code Corrected

CS-HPRNMM23-007

The clone() function of the HoprNodeStakeFactory receives moduleSingletonAddress as a
parameter. However, no checks are performed to ensure that the address is a valid module. While this is
not immediately a problem, since it concerns only the msg.sender itself. However, the event
NewHoprNodeStakeModule does not mention the address of the module. This complicates the process
of verifying that the module is indeed a valid module.

Code corrected:

Description of Changes:

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

HOPRNet has adjusted the NewHoprNodeStakeModule event to include an indexed parameter,
improving event clarity. And events have been separated from "HoprNodeStakeFactory" into an
abstract contract named "HoprNodeStakeFactoryEvents."

Said changes allow inspection of the module address, and thus, verification of the module's validity.

6.9 IHoprNodeSafeRegistry Is a Contract and Not
an Interface
Design Low Version 1 Code Corrected

CS-HPRNMM23-008

The I prefix is usually used for interfaces, not contracts. IHoprNodeSafeRegistry lies inside of
interfaces folder whereas it is actually a contract.

Code corrected:

The INodeSafeRegistry contract has been removed.

6.10 Incorrect Flag Position Upper Bound
Correctness Low Version 1 Code Corrected

CS-HPRNMM23-009

A customized type Target is an alias of uint256, which is used to store a target address associated
with 12 one-byte flags (3 general flags with 9 capability permission flags). In contract
util/TargetUtils.sol, getDefaultCapabilityPermissionAt() will return the capability
permission flag at a certain index: position. However, the upper bound of position is 9 instead of 8. As
a result, the function will not revert upon reading the out-of-bound 9th permission flag and will always
return 0 due to 256 left shifts.

Code corrected:

The code has been corrected: a proper upper bound of 8 is checked before reading the permission flag.

6.11 Incorrect Specifications and Comments
Correctness Low Version 1 Code Corrected

CS-HPRNMM23-010

Several incorrect specifications and comments are identified:

1. checkMultisendTransaction() will disassemble the data into individual transactions for
access checks. Each transaction consists of 1 byte operation, 20 bytes target address, 32 bytes
value, and the actual transaction data. The inspected actual transaction data locates at an offset of
53 bytes instead of 85 bytes in the comments.

2. The input encoded data of decodeFunctionSigsAndPermissions() encodes function
signature in a right-padded way and permissions in a left-padded way. The index of permissions
grows from right to left, while the specifications incorrectly state the other direction.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:

Both specifications and comments have been corrected.

6.12 Missing Input Checks at tokensReceived
Design Low Version 1 Code Corrected

CS-HPRNMM23-011

Besides funding a channel by fundChannelSafe() or fundChannel(), a node can also directly send
tokens to the Channel contract, which triggers the tokensReceived() callback and funds one channel
or a bidirectional channel depending on the userData. fundChannelSafe() and fundChannel()
enforce the balance and channel parties validations, nevertheless, tokensReceived() does not. As a
result, a node can fund a channel with a balance out of restrictions or with same parties on both sides of
a channel.

Code corrected:

Description of Changes:

• Moved validateBalance and validateChannelParties from external functions (fundChannelSafe
and fundChannel) to the internal function _fundChannelInternal. This allows tokensReceived to
perform checks on balance and channel parties.

• Moved _fundChannelInternal before token.transferFrom in fundChannelSafe and fundChannel
functions

6.13 Signatures Can Be Replayed
Design Low Version 1 Code Corrected

CS-HPRNMM23-012

The signature used in HoprNodeSafeRegistry.registerSafeWithNodeSig() doesn't have a
nonce, so it can be replayed.

Thus, any arbitrary msg.sender can register a node again using the same signature, even if the Safe
has deregistered it. Effectively, only the node chain address that used registerSafeByNode() can be
deregistered.

In addition, for deregistration the node should be a member of a Safe. Otherwise, the node cannot
deregister itself from the registry.

The correct deregister way is assumed to be:

1. Deregister at the registry.

2. Remove the node from the Safe NodeManagementModule.

If these actions are not performed in a single transaction, a malicious party can register the node again
after step 1 and break this flow.

Code corrected:

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

A nonce has been added as a parameter in signed data. The nonce of the given chain address will be
incremented on each registration.

6.14 TargetUtils Incorrect Iterator Bound
Correctness Low Version 1 Code Corrected

CS-HPRNMM23-013

A customized type Target is an alias of uint256 to store a 20-byte target address associated with 12
one-byte flags (3 general flags and 9 capability permission flags). In contract util/TargetUtils.sol,
decodeDefaultPermissions() will retrieve the address and individual flags from the packed target
input. When decoding the capability permission flags, the iterator falsely starts from 0 and ends at 8 (176
+ 8 * i, for i in [0,8]). As a result, the last general flag with the first 8 capability permission flags are
returned as the 9 capability permission flags.

Code corrected:

The starting index has been fixed and is 184 now.

6.15 Timestamp Is Not Updated With Snapshot
Design Low Version 1 Code Corrected

CS-HPRNMM23-014

In an out-of-scope contract Ledger, indexEvent() will update the lastestRoot.rootHash when it
is called, and it will also push the lastestRoot to the lastestSnapshotRoot if a
snapshotInterval has elapsed. However, the latestRoot.timestamp is not updated together
with the latestSnapshotRoot. Consequently the lastestSnapshotRoot will be updated every
time.

Code corrected:

The latestRoot.timestamp is updated together with the latestSnapshotRoot.

6.16 isNodeSafeRegistered Returns True for
Unregistered Pairs if safeAddress==0
Correctness Low Version 1 Code Corrected

CS-HPRNMM23-015

In NodeSafeRegistry, isNodeSafeRegistered() returns if the input chainkey address is registered
with the input safe address. In case a chainkey is not registered and the input safeAddress is 0, this
function will return true. This may be unexpected for the external systems.

Code corrected:

If node is not registered to any safe, isNodeSafeRegistered() will return false. Thus, the 0 address
of safe will not be considered as a registered safe.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.17 ERC777 Reentrancy in fundChannel
Informational Version 1 Code Corrected

CS-HPRNMM23-016

fundChannelSafe() and fundChannel() will call token.transferFrom() to pull tokens, which
will trigger the callback to the token spender's registered hook. What happens before the transfer is:

1. Validation of the safe.

2. Validation of the input balance.

3. Validation of the parties addresses.

The only thing that the token spender can do is to register or deregister at the SafeRegistry which tricks
the first modifier. For example, assume a node A without registering a safe at the beginning:

1. A first calls fundChannel().

2. In the callback, A calls registerSafeByNode().

As a result, A successfully funds a channel through fundChannel() while it is already registered with a
safe. This reentrancy does not have an explicit influence to the contracts though it could break the
assumptions.

Code corrected:

The code has been corrected to avoid reentrancy. The token transfer is now done at the end of the
function, after all the state changes have been done.

6.18 Order of Evaluation Can Be Enforced
Informational Version 1 Code Corrected

CS-HPRNMM23-020

The Solidity documentation states:

https://docs.soliditylang.org/en/latest/ir-breaking-changes.html#semantic-only-changes

For the old code generator, the evaluation order of expressions is unspecified. For the new code
generator, we try to evaluate in source order (left to right), but do not guarantee it. This can lead to
semantic differences.

The new code generator is not yet the default. This means that the order of evaluation of expressions is
not guaranteed. Explicit brackets can be used to enforce the order of evaluation in e.g.
decodeDefaultPermissions()

targetPermission = TargetPermission(uint8(Target.unwrap(target) << 176 >> 248));

uint8(Target.unwrap(target) << (184 + 8 * i) >> 248)

Code corrected:

HOPRNet has added explicit brackets to enforce the evaluation order.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 20

https://docs.soliditylang.org/en/latest/ir-breaking-changes.html#semantic-only-changes
https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 DomainSeparator Requires Manual
Recompute After a Fork
Informational Version 2

CS-HPRNMM23-017

updateDomainSeparator() is a public function that recompute and update the domainSeparator in
case of a fork. It requires manual invocation upon a fork. Signatures on the forked chain are still
replayable before the call to updateDomainSeparator(). In case of supporting a forked chain, we
assume this function will be invoked immediately.

7.2 Users Can Flash Loan by Fund Channel
Reentrancy
Informational Version 2

CS-HPRNMM23-018

fundChannelSafe() and fundChannel() will update the internal balance in
_fundChannelInternal() before calling token.transferFrom() to pull wxHOPR tokens. A user
can implement and register a token sender callback, which will be invoked before the token transfer. In
this callback, it can flashloan any amount of wxHOPR within the current liquidity of the channel contract
by calling closeIncomingChannel(). At the end of the callback, the flashloan will be repaid by the
real transfer of the tokens. Here is an example:

contract Bob {

 function close() public {
 // close the channel to get desiredAmount
 HoprChannels channels = HoprChannels(0x...);
 channels.closeIncomingChannel(ALICE);

 // customized logic here
 }
}

contract Alice is IERC777Sender {

 function tokensToSend(...) public {
 Bob(BOB).close();
 }

 function flashloan(uint256 desiredAmount) public {
 _ERC1820_REGISTRY.setInterfaceImplementer(address(this),
 TOKENS_SENDER_INTERFACE_HASH, address(this));

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

 HoprChannels channels = HoprChannels(0x...);
 channels.fundChannel(BOB, desiredAmount);
 }
}

7.3 isContract Check Can Be Bypassed
Informational Version 2

CS-HPRNMM23-019

addNodeSafe() has a check nodeChainKeyAddress.isContract(). However, if this node is a
contract, and it calls the registry during its construction, the check will fail. Thus, node that is a contract
can still be added to the registry.

HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Assumptions

	2.2 System Overview
	2.2.1 Channels
	2.2.1.1 Fund a channel
	2.2.1.2 Close a channel
	2.2.1.3 Redeem a ticket

	2.2.2 Safe and Management Module
	2.2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 HoprChannels ERC777 Reentrancy
	6.2 Winning Ticker Can Be Redeemed Multiple Times
	6.3 EIP-712 Incompliant Signed Message
	6.4 Incorrect indexEvent Input
	6.5 Dependencies Between Source File Folders
	6.6 DomainSeparator Is Not Recomputed After a Change of Chain ID
	6.7 HoprNodeSafeRegistry Is Not an INodeSafeRegistry
	6.8 HoprNodeStakeFactory Can Clones Any Module
	6.9 IHoprNodeSafeRegistry Is a Contract and Not an Interface
	6.10 Incorrect Flag Position Upper Bound
	6.11 Incorrect Specifications and Comments
	6.12 Missing Input Checks at tokensReceived
	6.13 Signatures Can Be Replayed
	6.14 TargetUtils Incorrect Iterator Bound
	6.15 Timestamp Is Not Updated With Snapshot
	6.16 isNodeSafeRegistered Returns True for Unregistered Pairs if safeAddress==0
	6.17 ERC777 Reentrancy in fundChannel
	6.18 Order of Evaluation Can Be Enforced

	7 Informational
	7.1 DomainSeparator Requires Manual Recompute After a Fork
	7.2 Users Can Flash Loan by Fund Channel Reentrancy
	7.3 isContract Check Can Be Bypassed

