PUBLIC

Code Assessment

of the Node Management Module

Smart Contracts

August 29, 2023

hopr

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Informational

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG

10
11
12
21

https://chainsecurity.com

1 Executive Summary

Dear Hoprnet Team,

Thank you for trusting us to help HOPRNet with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Node Management Module
according to Scope to support you in forming an opinion on their security risks.

HOPRNet implements a module for Safe multisignature contract that allows management and separation
of the different keys that are needed for HOPR network functionality. Scope includes updated
HoprChannels that can use such Safes and factory to deploy and configure them.

The most critical subjects covered in our audit are asset solvency, functional correctness and signature
handling. Asset solvency and Signature handling are good. Functional correctness is high.

The general subjects covered are specification, front-running and integration with 3rd party systems.
Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EED-Severity Findings 2

N Code Corrected 2
CIZ)-Severity Findings 0
(Medium)-Severity Findings 1

j Code Corrected) 1
(Low)-Severity Findings 13

N Code Corrected 13
@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Node Management Module
htt ps://github. cont hoprnet/ hoprnet repository based on the documentation files. Following
files in the packages/ et hereum contracts/src directory of the repository were considered in
scope:

Channel s. sol

Mul ti Sig. sol

i nterfaces/| Avat ar. sol

i nterfaces/ | Networ kRegi stryRequi renent . sol

i nt erfaces/ | NodeManagenent Modul e. sol

i nterfaces/| NodeSaf eRegi stry. sol

node- st ake/ NodeSaf eRegi stry. sol

node- st ake/ NodeSt akeFact ory. sol

node- st ake/ per m ssi oned- nodul e/ Capabi | i t yPer m ssi ons. sol
node- st ake/ per m ssi oned- nodul e/ NodeManagenent Modul e. sol
node- st ake/ per m ssi oned- nodul e/ Si npl i fi edModul e. sol

util s/ Enumerabl eStringSet. sol

util s/ Enumer abl eTar get Set . sol

utils/ TargetUtils. sol

The table below indicates the code versions relevant to this report and when they were received.

V | Date Commit Hash Note

1 | 06 August 2023 | 41fa52c9c50b0029¢d8329f04409b05d31eb063b Initial Version

2 | 22 August 2023 | e6ac2da904672da5¢932b3e95babecbc37934643d Version with fixes
3 | 27 August 2023 274b59e409e6bf48c6d7d675de2d9905dcf1f813 Version with fixes

For the solidity smart contracts, the compiler version 0. 8. 19 was chosen.

2.1.1 Excluded from scope

Any other files not explicity mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope. In particular, the src/ Crypt 0. sol
library is out-of-scope.

2.1.2 Assumptions

All imported files, contracts and libraries are assumed to function according to their high level
specification. The libraries in vendor / sol i di t y folder of the repository are assumed to be unmodified.
The src/ Crypto. sol library is assumed to be correct. In addition, the mechanism of deciding a
winning ticket is out of scope. It is assumed to be fair to both parties of a channel, and no parties shall be
able to predict a winning ticket in advance.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

HOPRNet is building a privacy focused network featuring a build-in incentive model. The provided
Hopr Channel s (or Channel s) contract allows nodes to create payment channels between each other
and allow the transfer of wxHOPR tokens between them. The transfers are done via tickets, that have a
certain predefined probability to win. HOPRNet also implements a NodeStakeFactory, that one can use
to deploy a Safe multisignature wallet to hold the funds. Factory deployed Safe is deployed with
configured NMM (Node Management Module) to manage the access of several HOPR chain nodes. The
NMM implements default and granular access control towards the callable targets from the Safe.

2.2.1 Channels

Node can use the Channels contract to open, close, and keep track of unidirectional payment channels to
other nodes. A channel is uniquely identifiable by the tuple (address source, address target),
which holds the funds that target address may claim for the work of relaying source's messages.

A ticket is issued by source with each message to target, which leads to probabilistic payments for the
relaying work. To keep the winning probability fair, the success of redeeming a ticket is dependent on
both the packet creator entropy as well as the ticket claimer entropy, which are unknown to each other in
advance. Target has a commitment that is unknown to source. If source is not a packet creator, it has no
control over the winning probability and thus cannot influence the win chance probability. And target does
not know the proof of relay in advance and has to relay message to the next node to reveal it.

Channels expose interfaces that support both the nodes that use Safe with NMM and the nodes that do
not use Safe. The former can use the f undChannel Saf e and r edeenili cket Saf e entrypoints, while
the latter can use the f undChannel () and r edeenTi cket () entrypoints.

2.2.1.1 Fund a channel

A channel can be funded by calling f undChannel Saf e() or f undChannel () directly, which enforces
the funding token amount is within a range and the two parties of the channel are different. Channel can
be funded only if it is not in the PENDI NG_TO_CLCSE state. The balance of the channel will be increased
by the transferred amount. In case the channel is CLOSED, the channel will be reopened with an epoch
increased by 1 and ti cket | ndex setto 0.

One can also directly use wxHOPR. send() function to send the tokens directly to the Channel contract.
This will triggers the | ERC777Reci pi ent.tokensReceived() callback and funds a single
unidirectional channel or two (A to B and B to A) unidirectional channels depending on the user Dat a.

2.2.1.2 Close achannel

To close the channel, the source needs to call initiateQutgoi ngChannel G osure() or
i ni tiateQutgoi ngChannel Cl osur eSaf e() to initiate the channel closure. The
not i cePeri odChannel Cl osur e time period allows target node on the other side of the channel to
redeem the remaining tickets. After the noti cePeri odChannel Cl osur e, source can eventually call
finalizeQut goi ngChannel d osureSaf e or fi nal i zeQut goi ngChannel d osur e to finalize the
closure, which transfers the tokens left in the channel to channel src. Channel target can also close an
incoming payment channel immediately by cl osel ncomi ngChannel or
cl osel ncom ngChannel Saf e.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.1.3 Redeem aticket

A node can redeem a ticket through r edeendli cket Saf e or r edeenTi cket with the issuer-signed
ticket, the proof of relay, and the verifiable random function data. The following steps will be taken to
validate a ticket:

1. The channel status must be OPEN or PENDI NG_TO_CLCSE, and the channel current epoch must
match the ticket's epoch.

. The ticket's index is larger than the channel's index, and channel's balance is sufficient.
. The ticket falls within the winning area given the winning probability.

. The random function verification succeeds.

a A WO DN

. The signature of the redeemable ticket is valid from the issuer, and the ticket is indeed for the
redeemer.

The reward token amount will be transferred to the ticker redeemer, in case the channel from it to source
is CLOSED. Otherwise, the reward tokens will be used to top up the redeemer's payment channel (from
redeemer to issuer)

2.2.2 Safe and Management Module

To isolate the nodes operations and funds management, a Safe and a NMM (Node Management
Module) is implemented. One can leverage the NodeStakeFactory to set up a new Safe and NMM, where
multiple chainkeys could be added to the NMM, which enforces access control towards members and
targets and triggers Safe to conduct certain calls or delegatecalls. Different components of the system
can be found in the following figure.

' exec X (Node Management
' Module
ChainKey (Node)
exechFromModulel T manage
)
manage | I call -
Admin —}l Node Safe ’—> Send ‘
delegatecall i Channal ‘
4 .
g : call)
‘ Multisend }—b | Teken ‘

Upon deployment, an array of admins are passed to the Safe, which has the ultimate privilege of
co-signing to manage the modules and funds.

The NMM stores the access control information into a Rol e struct, which consists of a Tar get Set, a
mapping of role members, and a mapping of granular capabilities. Each target is a ui nt 256 which
encodes the 20-byte target address and 12 one-byte flags. The first 3 flags are clearance, target type,
and default permission. The rest are capability permission flags. Only the members of the Role can
perform the operations to targets specified by the permission flags and the granular capabilities.

The NMM provides the main entrypoints for the registered nodes (chainkeys), which need to pass the
access control to trigger specific actions on the Safe. The possible actions are limited to:

« call HoprChannels.fundChannelSafe

« call HoprChannels.redeemTicketSafe

« call HoprChannels.closelncomingChannelSafe

« call HoprChannels.initiateOutgoingChannelClosureSafe

« call HoprChannels.finalizeOutgoingChannelClosureSafe

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

« call HoprToken.approve(address,uint256)
« call HoprToken.send(address,uint256,bytes)
* send native tokens

« delegatecall multisend

Granular access control is achieved by limiting the allowed parameters passed to the functions above. In
case of a multisend operation, the individual transactions inside the data will be loaded and inspected.
Afterwards, the node module will call the Safe with the data, and the Safe will eventually execute the calls
or delegatecalls.

2.2.3 Roles and Trust Model

The admin key owners are privileged roles that are fully trusted to not misbehave. A compromised admin
key will allow attacker to get full control of the Safe and NMM and thus the funds, chainkeys in NMM. The
owners of individual chainkeys are considered trusted and must not perform malicious actions.
Compromised chainkey will allow attacker to open and close channels. Other consequences in both
cases are also possible.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

e0:2l)-Severity Findings 2
y g
« HoprChannels ERC777 Reentrancy
* Winning Ticker Can Be Redeemed Multiple Times

(C)-Severity Findings 0

(Medium)-Severity Findings 1
» EIP-712 Incompliant Signed Message

(Low)-Severity Findings 13

» Incorrect indexEvent Input

- Dependencies Between Source File Folders

« DomainSeparator Is Not Recomputed After a Change of Chain ID
+ HoprNodeSafeRegistry Is Not an INodeSafeRegistry

» HoprNodeStakeFactory Can Clones Any Module

« IHoprNodeSafeRegistry Is a Contract and Not an Interface

* Incorrect Flag Position Upper Bound

« Incorrect Specifications and Comments

« Missing Input Checks at tokensReceived

» Signatures Can Be Replayed

« TargetUtils Incorrect Iterator Bound

» Timestamp Is Not Updated With Snapshot

« isNodeSafeRegistered Returns True for Unregistered Pairs if safeAddress==0

6.1 HoprChannels ERC777 Reentrancy

An attacker can leverage the ERC777 capability of the wxHOPR token to drain the funds of
HoprChannels contract.

CS-HPRNMM23-001

Attack vector:
Assume the attacker deploys the following pair of contracts at ALl CE and BOB addresses respectively.

contract Bob {

function close() public {
Hopr Channel s channel s Hopr Channel s(0x. . .);

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

channel s. cl osel ncom ngChannel (ALI CE) ;

}

}
contract Alice is | ERC7T77Reci pi ent {

bool once fal se;

function tokensReceived(...) public {
I f (once) {
return,;
}

once true;

Hopr Channel s channel s Hopr Channel s(Ox. ..);
channel s. f undChannel (BOB, 1);

Bob(BOB) . cl ose();

}

function hack() public {

_ERC1820_REQJ STRY. set I nterfacel npl enent er (address(this),
TOKENS_REC! PlI ENT_I NTERFACE_HASH, address(this));

Hopr Channel s channel s Hopr Channel s(Ox. . .);
channel s. f undChannel (BOB, 10);
Bob(BOB) . cl ose();

}

Exploit scenario:

When Al i ce. hack() is called, the following happens:
1. Alice's contract registers itself as its own ERC777TokensRecipient.
2. Alice funds outgoing channel to Bob with 10 wxHOPR.
3. Bob closes the incoming channel with Alice.

4. During the execution of cl osel ncom ngChannel () the 10 wxHOPR tokens are transferred to
Alice.

5. The t okensRecei ved() function of Alice is called. During this call:
1. Alice funds outgoing channel to Bob with 1 wxHOPR. Balance of the channel becomes
11 wxHOPR.

2. Bob closes the incoming channel with Alice and 11 wxHOPR tokens are transferred to
Alice.

3. This time the t okensRecei ved() function of Alice does nothing. The balance of the
channel is set to 0.

6. The cl osel ncom ngChannel () that started on step 4. sets the balance of channel to O.

As a result, attacker using 10+1 token can withdraw 10+11 wxHOPR tokens from the channel. The
attacker can loop the reentrancy even more time for more profit.

Cause:

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The change of channel balance to 0 happens after the reentrant call to t oken. transfer () in the
_cl osel ncom ngChannel I nternal () function. Thus, checks-effects-interactions pattern is
effectively violated. Similar violations happen in other functions of the Hopr Channel s contract:

» _finalizeQutgoi ngChannel C osurelnternal () sets the channel balance to 0 after the
reentrant call to t oken. transfer ().

» _redeenTi cket | nternal () callsi ndexEvent and emits events after t oken. tranfer () call
in case when the earning channel is closed. This effectively can lead do the wrong order of events in
the event log or a different snapshot root.

Code corrected:

The code has been corrected by moving the token transfer to the end of the function in all relevant
functions.

6.2 Winning Ticker Can Be Redeemed Multiple
Times

Code Corrected

Assume Alice has outgoing channel to Bob with 1 as ti cket | ndex. Following scenario is possible:

CS-HPRNMM23-002

1. Alice provides Bob 4 non-winning tickets with ti cket | ndex 2, 3, 4, 5 and a winning ticket with
ti cket | ndex 6. All of those tickets are non-aggregated and thus their i ndexXf f set is 1.

2. Bob redeems the winning ticket. In the _r edeenTi cket | nt er nal function, the ti cket | ndex of
the spending channel is updated as: spendi ngChannel . ti cket | ndex += i ndexOf fset. The
ti cket | ndex of the spending channel is now 2.

3. Bob can redeem the ticket again, because the only requirement on ti cket | ndex is that it is
greater than the ti cket | ndex of the spending channel.

Thus, same winning ticket can be redeemed multiple times. The ti cket Hash signature from Alice does
not prevent this, because it does not contain any nonce or other replay protection mechanism.

Code corrected:

The ti cket | ndex of the spending channel has been updated as:
spendi ngChannel . ti cketl ndex = Ticketl ndex.w ap(basel ndex + basel ndexOf f set).

And the check of ticket validity has been adjusted to require:
(basel ndexOrf set >= 1) && (basel ndex >= currentlndex).

6.3 EIP-712 Incompliant Signhed Message
D (Viedium) (Version 1) (XS

The EIP-712 compliant message should start with a two-byte prefix "0x1901" followed by the
domainSeparator and the message hash struct. Whereas two 32-bytes are used in the following cases
for the prefix because of abi . encode. Consequently the signatures generated by the mainstream
EIP-712 compliant libraries cannot be verified in these smart contracts:

CS-HPRNMM23-003

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

1.regqi st er Saf eW t hNodeSi g() in NodeSafeRegistry.
2. _get Ti cket Hash() in Channels.

Code corrected:
The abi . encodePacked has been used instead of abi . encode to generate the message hash struct.

6.4 Incorrect indexEvent Input

(Coreectness ORI Code Corrected)

The channel will call i ndexEvent () when emitting a new event. In the following case, i ndexEvent ()
is incorrectly invoked with an extra channel . bal ance field compared to the emitted event. As a result,
the snapshot will contain an incorrect event.

CS-HPRNMM23-021

i ndexEvent (abi . encodePacked(Channel Opened. sel ector, self, account,
channel . bal ance)) ;
em t Channel Opened(sel f, account);

Code corrected:

The redundant field channel . bal ance has been removed from the i ndexEvent input.

6.5 Dependencies Between Source File Folders

(D (Cow) (Version 1) XTI

The packages/ et her eunt cont r act s foundry project have following problems

CS-HPRNMM23-004

« Some of the files in sr ¢ folder depend on smart contracts from t est folder.

« Some of the files in sr ¢ folder depend on smart contracts from scri pt folder.

Such dependencies are considered as bad practice and should be avoided. Potential risks are:
 Separation of concerns is not respected. Testing and setup code should not impact production code.
* Risk of deploying test code to production is increased.

* Maintenance of the project is more difficult. Changes in test or script folders may impact
production code.

Code corrected:
HOPRNet responded:

The placement of specific library files and contracts have been reorganized to align with improved
structuring and imports.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.6 DomainSeparator Is Not Recomputed After a
Change of Chain ID
D) (Low) (Version 1) (XTI

In contracts Channels and NodeSafeRegistry, the domai nSepar at or is defined as an immutable in the
constructor and used in the signature verification. In case there is a fork, the contracts will still verify a
signature based on the old domai nSepar at or , whereas the forked chain is associated with a different
chain ID. Besides, the signature targeted to the original chain can be replayed to the forked chain. In
order to support the potential forked chains and avoid signature replay, the domai nSepar at or needs to
be recomputed based on on-chain chain ID.

CS-HPRNMM23-005

Code corrected:

Function updat eDomai nSepar at or has been introduced in contracts Channels and NodeSafeRegistry
to update the dormai nSepar at or based on the on-chain chain ID.

6.7 HoprNodeSafeRegistry Is Not an

INodeSafeRegistry
D) (Low) (Version 1) (XL

The contract does not inherit from INodeSafeRegistry, which means the compiler will not check that the
contract implements all functions correctly.

CS-HPRNMM23-006

Code corrected:

The INodeSafeRegistry contract has been removed.

6.8 HoprNodeStakeFactory Can Clones Any
Module
T (Low) (Version 1) YD)

The cl one() function of the HoprNodeStakeFactory receives nodul eSi ngl et onAddress as a
parameter. However, no checks are performed to ensure that the address is a valid module. While this is
not immediately a problem, since it concerns only the msg.sender itself. However, the event
NewHopr NodeSt akeMbdul e does not mention the address of the module. This complicates the process
of verifying that the module is indeed a valid module.

CS-HPRNMM23-007

Code corrected:

Description of Changes:

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

HOPRNet has adjusted the NewHoprNodeStakeModule event to include an indexed parameter,
improving event clarity. And events have been separated from "HoprNodeStakeFactory" into an
abstract contract named "HoprNodeStakeFactoryEvents."

Said changes allow inspection of the module address, and thus, verification of the module's validity.

6.9 IHoprNodeSafeRegistry Is a Contract and Not
an Interface

(Desig {(E TR Code Corrected

The | prefix is usually used for interfaces, not contracts. | Hopr NodeSaf eRegi stry lies inside of
i nt er f aces folder whereas it is actually a contract.

CS-HPRNMM23-008

Code corrected:
The INodeSafeRegistry contract has been removed.

6.10 Incorrect Flag Position Upper Bound
D (Low) (Version 1) (CIIITIED)

A customized type Tar get is an alias of ui nt 256, which is used to store a target address associated
with 12 one-byte flags (3 general flags with 9 capability permission flags). In contract
util/Target Uil s.sol, getDefaultCapabilityPermn ssionAt() wil return the capability
permission flag at a certain index: posi ti on. However, the upper bound of position is 9 instead of 8. As
a result, the function will not revert upon reading the out-of-bound 9th permission flag and will always
return O due to 256 left shifts.

CS-HPRNMM23-009

Code corrected:

The code has been corrected: a proper upper bound of 8 is checked before reading the permission flag.

6.11 Incorrect Specifications and Comments

(Correctness JICTEERTBY Code Corrected)

Several incorrect specifications and comments are identified:

CS-HPRNMM23-010

1.checkMul ti sendTransaction() will disassemble the data into individual transactions for
access checks. Each transaction consists of 1 byte operation, 20 bytes target address, 32 bytes
value, and the actual transaction data. The inspected actual transaction data locates at an offset of
53 bytes instead of 85 bytes in the comments.

2. The input encoded data of decodeFuncti onSi gsAndPer mi ssions() encodes function
signature in a right-padded way and permissions in a left-padded way. The index of permissions
grows from right to left, while the specifications incorrectly state the other direction.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:
Both specifications and comments have been corrected.

6.12 Missing Input Checks at tokensReceived
D) (Low) (Version 1) (XX

Besides funding a channel by f undChannel Saf e() or f undChannel (), a node can also directly send
tokens to the Channel contract, which triggers the t okensRecei ved() callback and funds one channel
or a bidirectional channel depending on the user Dat a. f undChannel Saf e() and f undChannel ()
enforce the balance and channel parties validations, nevertheless, t okensRecei ved() does not. As a
result, a node can fund a channel with a balance out of restrictions or with same parties on both sides of
a channel.

CS-HPRNMM23-011

Code corrected:
Description of Changes:
* Moved validateBalance and validateChannelParties from external functions (fundChannelSafe

and fundChannel) to the internal function _fundChannelinternal. This allows tokensReceived to
perform checks on balance and channel parties.

* Moved _fundChannelinternal before token.transferFrom in fundChannelSafe and fundChannel
functions

6.13 Signatures Can Be Replayed
(Design [(CIVEETTB] Code Corrected

The signature used in Hopr NodeSaf eRegi stry. regi st er Saf eWt hNodeSi g() doesn't have a
nonce, so it can be replayed.

CS-HPRNMM23-012

Thus, any arbitrary nsg. sender can register a node again using the same signature, even if the Safe
has deregistered it. Effectively, only the node chain address that used r egi st er Saf eByNode() can be
deregistered.

In addition, for deregistration the node should be a member of a Safe. Otherwise, the node cannot
deregister itself from the registry.

The correct deregister way is assumed to be:
1. Deregister at the registry.

2. Remove the node from the Safe NodeManagementModule.

If these actions are not performed in a single transaction, a malicious party can register the node again
after step 1 and break this flow.

Code corrected:

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

A nonce has been added as a parameter in signed data. The nonce of the given chain address will be
incremented on each registration.

6.14 TargetUtils Incorrect Iterator Bound

(Correctness JICTEERTRY Code Corrected)

A customized type Tar get is an alias of ui nt 256 to store a 20-byte target address associated with 12
one-byte flags (3 general flags and 9 capability permission flags). In contractuti | / Target Uti |l s. sol ,
decodeDef aul t Per mi ssi ons() will retrieve the address and individual flags from the packed target
input. When decoding the capability permission flags, the iterator falsely starts from O and ends at 8 (176
+ 8 * i, for i in [0,8]). As a result, the last general flag with the first 8 capability permission flags are
returned as the 9 capability permission flags.

CS-HPRNMM23-013

Code corrected:
The starting index has been fixed and is 184 now.

6.15 Timestamp Is Not Updated With Snapshot
D) (Low) (Version 1) (XL

In an out-of-scope contract Ledger, i ndexEvent () will update the | ast est Root . r oot Hash when it
is called, and it will also push the | astestRoot to the I astestSnhapshotRoot if a
snapshot I nt erval has elapsed. However, the | at est Root . ti nest anp is not updated together
with the | at est Snapshot Root . Consequently the | ast est Snapshot Root will be updated every
time.

CS-HPRNMM23-014

Code corrected:

The | at est Root . ti mest anp is updated together with the | at est Snapshot Root .

6.16 isNodeSafeRegistered Returns True for
Unregistered Pairs if safeAddress==0

D (Low) (Version 1) CIXTTTD)

In NodeSafeRegistry, i sNodeSaf eRegi st er ed() returns if the input chainkey address is registered
with the input safe address. In case a chainkey is not registered and the input safeAddress is 0, this
function will return true. This may be unexpected for the external systems.

CS-HPRNMM23-015

Code corrected:

If node is not registered to any safe, i sNodeSaf eRegi st er ed() will return false. Thus, the 0 address
of safe will not be considered as a registered safe.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.17 ERC777 Reentrancy in fundChannel
[Informational] [Version 1]

fundChannel Saf e() and fundChannel () will call t oken. transferFron() to pull tokens, which
will trigger the callback to the token spender's registered hook. What happens before the transfer is:

CS-HPRNMM23-016

1. Validation of the safe.
2. Validation of the input balance.

3. Validation of the parties addresses.

The only thing that the token spender can do is to register or deregister at the SafeRegistry which tricks
the first modifier. For example, assume a hode A without registering a safe at the beginning:

1. Afirst calls f undChannel () .
2. In the callback, A calls r egi st er Saf eByNode() .

As a result, A successfully funds a channel through f undChannel () while it is already registered with a
safe. This reentrancy does not have an explicit influence to the contracts though it could break the
assumptions.

Code corrected:

The code has been corrected to avoid reentrancy. The token transfer is now done at the end of the
function, after all the state changes have been done.

6.18 Order of Evaluation Can Be Enforced
[Informational] [Version 1]

The Solidity documentation states:

CS-HPRNMM23-020

https://docs.soliditylang.org/en/latest/ir-breaking-changes.html#semantic-only-changes

For the old code generator, the evaluation order of expressions is unspecified. For the new code
generator, we try to evaluate in source order (left to right), but do not guarantee it. This can lead to
semantic differences.

The new code generator is not yet the default. This means that the order of evaluation of expressions is
not guaranteed. Explicit brackets can be used to enforce the order of evaluation in e.g.
decodeDef aul t Per mi ssi ons()

t ar get Per ni ssi on Tar get Permi ssi on(ui nt 8(Target . unwr ap(target) 176 248)) ;

ui nt 8(Target . unw ap(target) (184 8 i) 248)

Code corrected:

HOPRNet has added explicit brackets to enforce the evaluation order.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 20

https://docs.soliditylang.org/en/latest/ir-breaking-changes.html#semantic-only-changes
https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 DomainSeparator Requires Manual

Recompute After a Fork
[Informational] [Version 2]

CS-HPRNMM23-017

updat eDonai nSepar at or () is a public function that recompute and update the domainSeparator in
case of a fork. It requires manual invocation upon a fork. Signatures on the forked chain are still
replayable before the call to updat eDonai nSepar at or () . In case of supporting a forked chain, we
assume this function will be invoked immediately.

7.2 Users Can Flash Loan by Fund Channel

Reentrancy
[Informational] [Version 2]

CS-HPRNMM23-018

f undChannel Saf e() and fundChannel () will update the internal balance in
_fundChannel I nt er nal () before calling t oken. transf er Fron() to pull wxHOPR tokens. A user
can implement and register a token sender callback, which will be invoked before the token transfer. In
this callback, it can flashloan any amount of wxHOPR within the current liquidity of the channel contract
by calling cl osel ncom ngChannel (). At the end of the callback, the flashloan will be repaid by the
real transfer of the tokens. Here is an example:

contract Bob {
function close() public {

Hopr Channel s channel s Hopr Channel s(0x. . .);
channel s. cl osel ncom ngChannel (ALI CE) ;

}

contract Alice is IERCI77Sender {

function tokensToSend(...) public {
Bob(BOB) . cl ose() ;
}

function flashl oan(ui nt 256 desiredAmount) public {
_ERC1820_REG STRY. set I nterfacel npl ement er (address(this),
TOKENS_SENDER | NTERFACE_HASH, address(this));

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

Hopr Channel s channel s Hopr Channel s(0x. . .);
channel s. f undChannel (BOB, desiredAnount) ;

7.3 isContract Check Can Be Bypassed

[Informational] [Version 2]

CS-HPRNMM23-019

addNodeSaf e() has a check nodeChai nKeyAddr ess. i sContract (). However, if this node is a
contract, and it calls the registry during its construction, the check will fail. Thus, node that is a contract

can still be added to the registry.

@ HOPRNet - Node Management Module - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Assumptions

	2.2 System Overview
	2.2.1 Channels
	2.2.1.1 Fund a channel
	2.2.1.2 Close a channel
	2.2.1.3 Redeem a ticket

	2.2.2 Safe and Management Module
	2.2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 HoprChannels ERC777 Reentrancy
	6.2 Winning Ticker Can Be Redeemed Multiple Times
	6.3 EIP-712 Incompliant Signed Message
	6.4 Incorrect indexEvent Input
	6.5 Dependencies Between Source File Folders
	6.6 DomainSeparator Is Not Recomputed After a Change of Chain ID
	6.7 HoprNodeSafeRegistry Is Not an INodeSafeRegistry
	6.8 HoprNodeStakeFactory Can Clones Any Module
	6.9 IHoprNodeSafeRegistry Is a Contract and Not an Interface
	6.10 Incorrect Flag Position Upper Bound
	6.11 Incorrect Specifications and Comments
	6.12 Missing Input Checks at tokensReceived
	6.13 Signatures Can Be Replayed
	6.14 TargetUtils Incorrect Iterator Bound
	6.15 Timestamp Is Not Updated With Snapshot
	6.16 isNodeSafeRegistered Returns True for Unregistered Pairs if safeAddress==0
	6.17 ERC777 Reentrancy in fundChannel
	6.18 Order of Evaluation Can Be Enforced

	7 Informational
	7.1 DomainSeparator Requires Manual Recompute After a Fork
	7.2 Users Can Flash Loan by Fund Channel Reentrancy
	7.3 isContract Check Can Be Bypassed

