PUBLIC

Code Assessment

of the Hoprnet Token

Smart Contracts

June 29, 2021

hopr

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG

o N o 0o b~ W

14

https://chainsecurity.com

1 Executive Summary

Dear Sebastian,

First and foremost we would like to thank Hoprnet for giving us the opportunity to assess the current state
of their Hoprnet Token system. This document outlines the findings, limitations, and methodology of our
assessment.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

the ChainSecurity team

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EXED-Severity Findings 0
(C)-Severity Findings 2
¥ Code Corrected 2
(Medium)-Severity Findings 1
Y Code Corrected 1
(Low)-Severity Findings 6
: 5
: 1

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview

In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The general scope of the assessment is set out in our engagement letter with Hoprnet dated January 18,
2020. The assessment was performed on the source code files inside the Hoprnet Token repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V | Dat | Commit Hash Note
e
1 | Feb | 663ed4292cabe218923322133d3058d8cdae86a9 Initial Version
Feb | 08a82abaf4478d4ec7b42e8a10bdf38ch28d8d8e Second Version
3 | Mar | b89f84e74f314h90d26d615799a27f785f3eba86 Third Version

For the solidity smart contracts, the compiler version 0. 6. 6 was chosen.

2.1.1 Excluded from scope

All files except for the Hopr Token and the Hopr Di st ri but or and their dependencies are out of scope
of this audit.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

Hoprnet's token implementation extend the ERC777 with a snapshot ability. Due to the chosen data
types at most 3.4 * 10**20 tokens (with 18 decimals) can exist. An additional distribution contract
manages different vesting schemes. The Token is mintable by a minter role. The distribution contract
calls the mint function to distribute the token and, hence, needs to have the minter role. Additionally, a
default admin role exists to grant permissions to the minter role. The token distribution is flexible and one
account can be part of different distribution schemes.

All implicit and explicitly defined roles are:
* The user
* The default admin
* The minter
* An operator (ERC 777)
« Allowed spenders (ERC 20)

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
ty g

« Effects of Snapshotting at Every Block

5.1 Effects of Snapshotting at Every Block
7D (Low) (Version 1) AT

The Hopr Token performs a state snapshot at every block. That has the following effects:

1. Significant extra gas costs for a token transfer compared to regular token implementations. Even if
none of the callbacks are executed, there is an expected overhead of 69,400 gas compared to a
regular ERC-20 token and 62,600 compared to a regular ERC-777 token.

Some addresses, e.g. Hopr Di st ri but or or exchange addresses will amass a considerable number of
shapshots. This has two additional effects:

2. The overall contracts state size will be rather big. In case that ETHZ2.0 transitions to stateless clients,
state proofs will be relatively large for all Hopr balances.

3. The gas cost of calling bal anceOf At for these contracts with many snapshots will continue to
grow. However, as it only grows logarithmically it will foreseeably not reach a critical level. The
impact of this is also determined by whether bal anceOf At is primarily intended for on-chain or
off-chain use.

Risk accepted:

Hoprnet replied:

Due to our approach with our upcom ng DAO contract, we require a snapshot on every bl ock.

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

» Burn Function of HoprToken Can Cause Inconsistent Snapshot
» Wrong Check in the HoprDistributor claim Function

(Medium)-Severity Findings 1
+ Miners Can Claim With Schedule Violation
(Low)-Severity Findings 5

* Multiple Storage Writes
+ Redundant Condition Check in _valueAt

* Snapshot Inefficiency (Sl SiEa T
* Superfluous Call to _beforeTokenTransfer (Lol
 Timestamp Conversion Has Redundant Operation (SR SiEa

6.1 Burn Function of Hopr Token Can Cause
Inconsistent Snapshot

(Correctness HE T Code Corrected)

The ERC777 has a _beforeTokenTransfer hook that is called in the burn, transfer and mint
functions. Also it introduced _cal | TokensToSend and _cal | TokensRecei ved functions that can call
the interface implementations registered in ERC1820 registry. ERC777Snapshot utilizes
_bef oreTokenTransf er to track the snapshots after each balance change. Due to the order of
_bef oreTokenTransfer and _cal | TokensRecei ved functions in the _bur n function, there is a
possibility of reentrancy, that can cause the snapshots to be in an inconsistent state.

function _burn(
address from
ui nt 256 anount ,
byt es nenory dat a,
byt es nenory operat or Dat a
i nternal virtual
require(from address(0), "ERC777: burn fromthe zero address");

addr ess oper at or _megSender () ;

_beforeTokenTransfer (operator, from address(0), anount);

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

_cal | TokensToSend(operator, from address(0), amount, data, operatorData);

_bal ances[fron _bal ances[froni.sub(anmpbunt, "ERC777: burn anount exceeds bal ance");
_total Supply _total Suppl y. sub(anmount) ;

emt Burned(operator, from anount, data, operatorData);
emit Transfer(from address(0), anount);

function _beforeTokenTransfer (address operator, address from address to, uint256 anpunt) internal virtual override {
super . _bef oreTokenTransfer(operator, from to, anount);

if (from address(0)) {

updat eVal ueAt Now(account Snapshots[to], bal anceCf (to).add(anount));
updat eVal ueAt Now(t ot al Suppl ySnapshots, total Supply().add(anmount));
} elseif (to address(0)) {

updat eVal ueAt Now(account Snapshot s fronj, bal anceC (from . sub(anount));
updat eVal ueAt Now(t ot al Suppl ySnapshots, total Supply().sub(amount));
} else if (from to) {

updat eVal ueAt Now(account Snapshot s[fronl, bal anceO (from . sub(anount));
updat eVal ueAt Now(account Snapshots[to], bal anceCf (to).add(amount));

6.1.1 Attack scenario

Attacker can register a IERC777Sender smart contract in the ERC1820 registry that will transfer Hopr
Tokens to the attacker. When this transfer happens in the _cal | TokensToSend from ERC1820
registered implementation, the snapshot will be overwritten again, using bal anceO value, that has not

been yet updated.

ERCT777Snapshot .burn
L ERC777.burn
L ERC777. burn
—— ERC777Snapshot. beforeTokenTransfer
l: ERCT777Snapshot .updateValusAtNow
ERCT777Snapshot .updateValusAtNow
—— ERC777. callTokensToSend
L Hack.tockensToSend [CALL]
L ERC7778napshot . transfer [CALL]
ERCT77. callTockensToSend
ERCTTT.:vae
ERC777S8napshot. beforeTokenTransfer
i: ERC777Snapshot .updateValusAtNow
ERCT777Snapshot .updateValushtNow

ERC777. callTokensReceived

In a trace example above, with green color marked balance updates and with yellow - snapshot updates.
Due to dependency of snapshot updates depend on balance updates, the reentrancy issue arise. In the
other ERC777 functions, such as the transfer function, where the cal | TokensToSend goes before
any state updates, such a problem does not arise. To avoid the issue, the newly released OpenZeppelin

contracts should be used.

Code corrected:

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The HoprToken now uses an OpenZeppelin ERC777 implementation that does not have a reentrancy
vulnerability in its bur n function. The snapshot is now updated after the external call.

6.2 Wrong Check in the HoprDi stri butor claim
Function

(Sccurity | High \CZEEBY Code Corrected

The cl ai mfunction of the Hopr Di stri but or calls internal _cl ai mfunction that contains following
code:

ui nt 128 newd ai ned _addUi nt 128(al | ocati on. cl ai med, cl ai nabl e);
assert(cl ai nabl e newCl ai med) ;

This assertion can only be violated if the _addU nt 128 operation overflows. But check of overflow is
already present in the _addU nt128. In addition, there are no checks for the
newCl ai mred <= allocation.anobunt. The comment above the assertion also describes the
intention.

Code corrected:

The assertion was rewritten. The new assertion checks that the value of newCl ai nmed does not exceed
the total allocated amount.

assert (newd ai ned al | ocati on. anount) ;

6.3 Miners Can Claim With Schedule Violation
(Security [(ZTITIWCEITBY] Code Corrected

The cl ai m function calls the _get Cl ai nabl e function to determine the amount users can claim
depending on the elapsed periods.

for (uint256 i 0; i schedul e. durations.length; i++) {
ui nt 128 schedul eDeadl i ne = _addUi nt 128(startTi me, schedul e. durations[i]);
i f (schedul eDeadl i ne _current Bl ockTi mestanp()) break;

if (allocation.lastd aim> schedul eDeadl i ne) continue;

clai mabl e = _addUi nt 128(cl ai mabl e, _di vUi nt 128(_nul Ui nt 128(al | ocati on. amount, schedul e. percents[i]), MJILTIPLIER));
}

At the end of cl ai mexecution, the al | ocati on. | ast O ai mis reassigned, to disable repetitive claims
for the same period of the schedule.

all ocation.lastd aim= _currentBl ockTi mestanp() ;

But if multiple claims will be send with bl ock. ti mest anp equal to schedul eDeadl i ne of some
schedule period, multiple repetitive claims of this blocks will be possible. This will effectively allow the
hackers to ignore the schedule. While this operation is hard to time right using regular transaction, miners
can craft such transactions.

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Combined with nonexistent al | ocat i on. anobunt <= newd ai med check in ¢l ai mfunction, this bug
also allows to claim more than the allocated amount.

Code corrected:
The condition in the loop was rewritten. Now the equality case will be skipped and repetitive claims for
the same periods of the schedule are not possible.

if (allocation.lastC aim schedul eDeadl i ne) conti nue;

6.4 Multiple Storage Writes
7D (Low) (Version 1) CXSIZET)

The addAl | ocat i ons function repeatedly writes to and reads from the t ot al ToBeM nt ed storage
variable. This incurs additional gas costs. Note, however, that the additional gas costs will be significantly
lowered by the upcoming EIP-2929.

Code corrected:

A new variable _t ot al ToBeM nt ed was introduced. All repetitive operations are performed on it. Thus,
gas is saved.

6.5 Redundant Condition Check in _val ueAt
D) (Low) (Version 1) CRINSTRD)

The functions bal anceOf At and t ot al Suppl yAt of the Hopr Token have following branching
conditions:

if (
(account Snapshots| _owner] .| ength 0) ||
(account Snapshots| _owner][0].fronBl ock > bl ockNunber)

) A
if (
(t ot al Suppl ySnapshots. | ength 0) ||
(total Suppl ySnapshot s[0] . fronmBl ock > _bl ockNunber)

) |

In addition, both of these public functions rely on internal _val ueAt function. Meanwhile the _val ueAt
has following branching conditions:

I T (snapshots. | ength 0) return O;
it (_block snhapshot s[0] . fronBl ock) {

Those conditions are redundant and will never be triggered.

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected:

The checks are now performed only inside the _val ueAt function.

6.6 Snapshot Inefficiency
D) (Low) (Version 1) (XTI

Hoprnet implemented the following binary search:

uint256 mn 0;
ui nt 256 nax snapshots. | engt h 1;
whi l e (max mn) {

uint256 md (max m n 1) 2;

i f (snapshots|[md].fromBl ock _block) {
m n m d;
} else {

max m d 1;
}
}

return snapshots[mn].val ue;

In case the _bl ock number matches the block number of one of the snapshots, the implementation
could be optimized. The equality case:

snapshot s[m d] . fronBl ock _bl ock

is not handled explicitly. Given that in this case, the result has already been found, there is no need for
further unnecessary iterations.

Code Corrected:

The code was adjusted and now explicitly checks for equality:

ui nt 256 m dSnapshot From = snapshot s[ni d] . fronBl ock;
i f (m dSnapshot From bl ock) {
return snapshot s[nid]. val ue;

Hence, the inefficiency is gone.

6.7 Superfluous Call to _bef oreTokenTr ansf er

(D (Cow) (Version 1) ISR

When overriding the empty parent function _bef or eTokenTransfer from the ERC777 template,
super . _bef or eTokenTr ansf er gets called. This call has no effect as the parent is empty. Due to
current state of Solidity compiler, this call will create unnecessary operations with no effects. Small
amount of gas (+-30) will be wasted.

Code corrected:

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

The superfluous call to the super class was removed.

6.8 Timestamp Conversion Has Redundant
Operation

(D (Cow) (Version 1) XIS

Function _current Bl ockTi nest anp has a modulo operation that can be dropped. The default
behavior of solidity ui nt 128(X) conversion achieves the same result and uses less gas.

function _currentBl ockTi mestanp() internal viewreturns (uintl128) {
/1 sol hint-di sabl e-next-1ine
return uint128(bl ock.tinestanp %2 ** 128);

Code corrected:

The superfluous modulo operation was removed.

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes

We leverage this section to highlight potential pitfalls which are fairly common when working Distributed
Ledger Technologies. As such technologies are still rather novel not all developers might yet be aware of
these pitfalls. Hence, the mentioned topics serve to clarify or support the report, but do not require a
modification inside the project. Instead, they should raise awareness in order to improve the overall
understanding for users and developers.

7.1 ERC-20 Approve Race Condition

The ERC-20 standard has a well-known race condition for the appr ove function if both the new and the
old approval are non-zero. Hence, a lot implementations add increaseApproval and
decr easeApproval functions which do not have this issue. The Hopr Token does not have such
functions. Hence, it is up to users and using smart contracts to avoid the issue.

7.2 Floating Pragma

The solc version is fixed in the hardhat configuration to version 0. 6. 6. However, the files have a floating
pragma.

Furthermore, please note the chosen compiler version 0. 6. 6 has five known bugs.

7.3 Ownership Cannot Be Atomically Transferred

The specification says:
allow admin to transfer or revoke their ownership

There is no classical role transfer function inside the contract. The admin can add a new admin and later
revoke itself, but not perform an atomic role transfer.

7.4 Schedules Are Specified Using UTF-8 Strings

The distribution schedules are addressed using UTF-8 strings. UTF-8 strings have well-known security
implications, such as characters that look identical to humans, but have a different byte representation or
inverse character order. Hence, calls like addAl | ocat i ons could theoretically be referencing a different
schedule than expected.

However, as all of the functions setting up allocations can only be executed by the administrators, there
is fairly low risk.

7.5 Theoretical Overflow in Binary Search

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

In theory the binary search can overflow. This would affect the following computation:
uint md (max mn 1) 2;
This could occur as soon as snapshots. | engt h would be larger than 2**255. As this implies that

2** 255 snapshots have been taken, which implies that 2** 255 blocks have passed, it is irrelevant in
practice.

@ Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Effects of Snapshotting at Every Block

	6 Resolved Findings
	6.1 Burn Function of HoprToken Can Cause Inconsistent Snapshot
	6.1.1 Attack scenario

	6.2 Wrong Check in the HoprDistributor claim Function
	6.3 Miners Can Claim With Schedule Violation
	6.4 Multiple Storage Writes
	6.5 Redundant Condition Check in _valueAt
	6.6 Snapshot Inefficiency
	6.7 Superfluous Call to _beforeTokenTransfer
	6.8 Timestamp Conversion Has Redundant Operation

	7 Notes
	7.1 ERC-20 Approve Race Condition
	7.2 Floating Pragma
	7.3 Ownership Cannot Be Atomically Transferred
	7.4 Schedules Are Specified Using UTF-8 Strings
	7.5 Theoretical Overflow in Binary Search

