

PUBLIC

Code Assessment

of the Hoprnet Token

Smart Contracts

June 29, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 5

4 Terminology 6

5 Findings 7

6 Resolved Findings 8

7 Notes 14

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Sebastian,

First and foremost we would like to thank Hoprnet for giving us the opportunity to assess the current state
of their Hoprnet Token system. This document outlines the findings, limitations, and methodology of our
assessment.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

the ChainSecurity team

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 6

• Code Corrected 5

• Risk Accepted 1

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The general scope of the assessment is set out in our engagement letter with Hoprnet dated January 18,
2020. The assessment was performed on the source code files inside the Hoprnet Token repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Dat
e

Commit Hash Note

1 Feb 663ed4292cabe218923322133d3058d8cdae86a9 Initial Version

2 Feb 08a82abaf4478d4ec7b42e8a10bdf38cb28d8d8e Second Version

3 Mar b89f84e74f314b90d26d615799a27f785f3eba86 Third Version

For the solidity smart contracts, the compiler version 0.6.6 was chosen.

2.1.1 Excluded from scope
All files except for the HoprToken and the HoprDistributor and their dependencies are out of scope
of this audit.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

Hoprnet's token implementation extend the ERC777 with a snapshot ability. Due to the chosen data
types at most 3.4 * 10**20 tokens (with 18 decimals) can exist. An additional distribution contract
manages different vesting schemes. The Token is mintable by a minter role. The distribution contract
calls the mint function to distribute the token and, hence, needs to have the minter role. Additionally, a
default admin role exists to grant permissions to the minter role. The token distribution is flexible and one
account can be part of different distribution schemes.

All implicit and explicitly defined roles are:

• The user

• The default admin

• The minter

• An operator (ERC 777)

• Allowed spenders (ERC 20)

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedEffects of Snapshotting at Every Block

5.1 Effects of Snapshotting at Every Block
Design Low Version 1 Risk Accepted

The HoprToken performs a state snapshot at every block. That has the following effects:

1. Significant extra gas costs for a token transfer compared to regular token implementations. Even if
none of the callbacks are executed, there is an expected overhead of 69,400 gas compared to a
regular ERC-20 token and 62,600 compared to a regular ERC-777 token.

Some addresses, e.g. HoprDistributor or exchange addresses will amass a considerable number of
snapshots. This has two additional effects:

2. The overall contracts state size will be rather big. In case that ETH2.0 transitions to stateless clients,
state proofs will be relatively large for all Hopr balances.

3. The gas cost of calling balanceOfAt for these contracts with many snapshots will continue to
grow. However, as it only grows logarithmically it will foreseeably not reach a critical level. The
impact of this is also determined by whether balanceOfAt is primarily intended for on-chain or
off-chain use.

Risk accepted:

Hoprnet replied:

Due to our approach with our upcoming DAO contract, we require a snapshot on every block.

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedBurn Function of HoprToken Can Cause Inconsistent Snapshot

• Code CorrectedWrong Check in the HoprDistributor claim Function

Medium -Severity Findings 1

• Code CorrectedMiners Can Claim With Schedule Violation

Low -Severity Findings 5

• Code CorrectedMultiple Storage Writes

• Code CorrectedRedundant Condition Check in _valueAt

• Code CorrectedSnapshot Inefficiency

• Code CorrectedSuperfluous Call to _beforeTokenTransfer

• Code CorrectedTimestamp Conversion Has Redundant Operation

6.1 Burn Function of HoprToken Can Cause
Inconsistent Snapshot
Correctness High Version 1 Code Corrected

The ERC777 has a _beforeTokenTransfer hook that is called in the burn, transfer and mint
functions. Also it introduced _callTokensToSend and _callTokensReceived functions that can call
the interface implementations registered in ERC1820 registry. ERC777Snapshot utilizes
_beforeTokenTransfer to track the snapshots after each balance change. Due to the order of
_beforeTokenTransfer and _callTokensReceived functions in the _burn function, there is a
possibility of reentrancy, that can cause the snapshots to be in an inconsistent state.

function _burn(
 address from,
 uint256 amount,
 bytes memory data,
 bytes memory operatorData
)
 internal virtual
{
 require(from != address(0), "ERC777: burn from the zero address");

 address operator = _msgSender();

 _beforeTokenTransfer(operator, from, address(0), amount);

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

 _callTokensToSend(operator, from, address(0), amount, data, operatorData);

 // Update state variables
 _balances[from] = _balances[from].sub(amount, "ERC777: burn amount exceeds balance");
 _totalSupply = _totalSupply.sub(amount);

 emit Burned(operator, from, amount, data, operatorData);
 emit Transfer(from, address(0), amount);
}

function _beforeTokenTransfer(address operator, address from, address to, uint256 amount) internal virtual override {
 super._beforeTokenTransfer(operator, from, to, amount);

 if (from == address(0)) {
 // mint
 updateValueAtNow(accountSnapshots[to], balanceOf(to).add(amount));
 updateValueAtNow(totalSupplySnapshots, totalSupply().add(amount));
 } else if (to == address(0)) {
 // burn
 updateValueAtNow(accountSnapshots[from], balanceOf(from).sub(amount));
 updateValueAtNow(totalSupplySnapshots, totalSupply().sub(amount));
 } else if (from != to) {
 // transfer
 updateValueAtNow(accountSnapshots[from], balanceOf(from).sub(amount));
 updateValueAtNow(accountSnapshots[to], balanceOf(to).add(amount));
 }
}

6.1.1 Attack scenario
Attacker can register a IERC777Sender smart contract in the ERC1820 registry that will transfer Hopr
Tokens to the attacker. When this transfer happens in the _callTokensToSend from ERC1820
registered implementation, the snapshot will be overwritten again, using balanceOf value, that has not
been yet updated.

In a trace example above, with green color marked balance updates and with yellow - snapshot updates.
Due to dependency of snapshot updates depend on balance updates, the reentrancy issue arise. In the
other ERC777 functions, such as the transfer function, where the _callTokensToSend goes before
any state updates, such a problem does not arise. To avoid the issue, the newly released OpenZeppelin
contracts should be used.

Code corrected:

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The HoprToken now uses an OpenZeppelin ERC777 implementation that does not have a reentrancy
vulnerability in its burn function. The snapshot is now updated after the external call.

6.2 Wrong Check in the HoprDistributor claim
Function
Security High Version 1 Code Corrected

The claim function of the HoprDistributor calls internal _claim function that contains following
code:

uint128 newClaimed = _addUint128(allocation.claimed, claimable);
// Trying to claim more than allocated
assert(claimable <= newClaimed);

This assertion can only be violated if the _addUint128 operation overflows. But check of overflow is
already present in the _addUint128. In addition, there are no checks for the
newClaimed <= allocation.amount. The comment above the assertion also describes the
intention.

Code corrected:

The assertion was rewritten. The new assertion checks that the value of newClaimed does not exceed
the total allocated amount.

assert(newClaimed <= allocation.amount);

6.3 Miners Can Claim With Schedule Violation
Security Medium Version 1 Code Corrected

The claim function calls the _getClaimable function to determine the amount users can claim
depending on the elapsed periods.

for (uint256 i = 0; i < schedule.durations.length; i++) {
 uint128 scheduleDeadline = _addUint128(startTime, schedule.durations[i]);

 // schedule deadline not passed, exiting
 if (scheduleDeadline > _currentBlockTimestamp()) break;
 // already claimed during this period, skipping
 if (allocation.lastClaim > scheduleDeadline) continue;

 claimable = _addUint128(claimable, _divUint128(_mulUint128(allocation.amount, schedule.percents[i]), MULTIPLIER));
}

At the end of claim execution, the allocation.lastClaim is reassigned, to disable repetitive claims
for the same period of the schedule.

allocation.lastClaim = _currentBlockTimestamp();

But if multiple claims will be send with block.timestamp equal to scheduleDeadline of some
schedule period, multiple repetitive claims of this blocks will be possible. This will effectively allow the
hackers to ignore the schedule. While this operation is hard to time right using regular transaction, miners
can craft such transactions.

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Combined with nonexistent allocation.amount <= newClaimed check in claim function, this bug
also allows to claim more than the allocated amount.

Code corrected:

The condition in the loop was rewritten. Now the equality case will be skipped and repetitive claims for
the same periods of the schedule are not possible.

if (allocation.lastClaim >= scheduleDeadline) continue;

6.4 Multiple Storage Writes
Design Low Version 1 Code Corrected

The addAllocations function repeatedly writes to and reads from the totalToBeMinted storage
variable. This incurs additional gas costs. Note, however, that the additional gas costs will be significantly
lowered by the upcoming EIP-2929.

Code corrected:

A new variable _totalToBeMinted was introduced. All repetitive operations are performed on it. Thus,
gas is saved.

6.5 Redundant Condition Check in _valueAt
Design Low Version 1 Code Corrected

The functions balanceOfAt and totalSupplyAt of the HoprToken have following branching
conditions:

if (
 (accountSnapshots[_owner].length == 0) ||
 (accountSnapshots[_owner][0].fromBlock > _blockNumber)
) {

if (
 (totalSupplySnapshots.length == 0) ||
 (totalSupplySnapshots[0].fromBlock > _blockNumber)
) {

In addition, both of these public functions rely on internal _valueAt function. Meanwhile the _valueAt
has following branching conditions:

if (snapshots.length == 0) return 0;

if (_block < snapshots[0].fromBlock) {

Those conditions are redundant and will never be triggered.

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected:

The checks are now performed only inside the _valueAt function.

6.6 Snapshot Inefficiency
Design Low Version 1 Code Corrected

Hoprnet implemented the following binary search:

// Binary search of the value in the array
 uint256 min = 0;
 uint256 max = snapshots.length - 1;
 while (max > min) {
 uint256 mid = (max + min + 1) / 2;
 if (snapshots[mid].fromBlock <= _block) {
 min = mid;
 } else {
 max = mid - 1;
 }
 }
 return snapshots[min].value;

In case the _block number matches the block number of one of the snapshots, the implementation
could be optimized. The equality case:

snapshots[mid].fromBlock == _block

is not handled explicitly. Given that in this case, the result has already been found, there is no need for
further unnecessary iterations.

Code Corrected:

The code was adjusted and now explicitly checks for equality:

uint256 midSnapshotFrom = snapshots[mid].fromBlock;
if (midSnapshotFrom == _block) {
 return snapshots[mid].value;

Hence, the inefficiency is gone.

6.7 Superfluous Call to _beforeTokenTransfer
Design Low Version 1 Code Corrected

When overriding the empty parent function _beforeTokenTransfer from the ERC777 template,
super._beforeTokenTransfer gets called. This call has no effect as the parent is empty. Due to
current state of Solidity compiler, this call will create unnecessary operations with no effects. Small
amount of gas (+-30) will be wasted.

Code corrected:

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

The superfluous call to the super class was removed.

6.8 Timestamp Conversion Has Redundant
Operation
Design Low Version 1 Code Corrected

Function _currentBlockTimestamp has a modulo operation that can be dropped. The default
behavior of solidity uint128(X) conversion achieves the same result and uses less gas.

function _currentBlockTimestamp() internal view returns (uint128) {
 // solhint-disable-next-line
 return uint128(block.timestamp % 2 ** 128);
}

Code corrected:

The superfluous modulo operation was removed.

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight potential pitfalls which are fairly common when working Distributed
Ledger Technologies. As such technologies are still rather novel not all developers might yet be aware of
these pitfalls. Hence, the mentioned topics serve to clarify or support the report, but do not require a
modification inside the project. Instead, they should raise awareness in order to improve the overall
understanding for users and developers.

7.1 ERC-20 Approve Race Condition
Note Version 1

The ERC-20 standard has a well-known race condition for the approve function if both the new and the
old approval are non-zero. Hence, a lot implementations add increaseApproval and
decreaseApproval functions which do not have this issue. The Hopr Token does not have such
functions. Hence, it is up to users and using smart contracts to avoid the issue.

7.2 Floating Pragma
Note Version 1

The solc version is fixed in the hardhat configuration to version 0.6.6. However, the files have a floating
pragma.

Furthermore, please note the chosen compiler version 0.6.6 has five known bugs.

7.3 Ownership Cannot Be Atomically Transferred
Note Version 1

The specification says:

allow admin to transfer or revoke their ownership

There is no classical role transfer function inside the contract. The admin can add a new admin and later
revoke itself, but not perform an atomic role transfer.

7.4 Schedules Are Specified Using UTF-8 Strings
Note Version 1

The distribution schedules are addressed using UTF-8 strings. UTF-8 strings have well-known security
implications, such as characters that look identical to humans, but have a different byte representation or
inverse character order. Hence, calls like addAllocations could theoretically be referencing a different
schedule than expected.

However, as all of the functions setting up allocations can only be executed by the administrators, there
is fairly low risk.

7.5 Theoretical Overflow in Binary Search
Note Version 1

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

In theory the binary search can overflow. This would affect the following computation:

uint mid = (max + min + 1) / 2;

This could occur as soon as snapshots.length would be larger than 2**255. As this implies that
2**255 snapshots have been taken, which implies that 2**255 blocks have passed, it is irrelevant in
practice.

Hoprnet - Hoprnet Token - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Effects of Snapshotting at Every Block

	6 Resolved Findings
	6.1 Burn Function of HoprToken Can Cause Inconsistent Snapshot
	6.1.1 Attack scenario

	6.2 Wrong Check in the HoprDistributor claim Function
	6.3 Miners Can Claim With Schedule Violation
	6.4 Multiple Storage Writes
	6.5 Redundant Condition Check in _valueAt
	6.6 Snapshot Inefficiency
	6.7 Superfluous Call to _beforeTokenTransfer
	6.8 Timestamp Conversion Has Redundant Operation

	7 Notes
	7.1 ERC-20 Approve Race Condition
	7.2 Floating Pragma
	7.3 Ownership Cannot Be Atomically Transferred
	7.4 Schedules Are Specified Using UTF-8 Strings
	7.5 Theoretical Overflow in Binary Search

