PUBLIC

Code Assessment

of the MangroveOrder

Smart Contracts

December 13, 2022

Produced for

MANGROVE

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG

© 0 01 W

10
11
17

https://chainsecurity.com

1 Executive Summary

Dear Jean,

Thank you for trusting us to help Giry SAS with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of MangroveOrder according to
Scope to support you in forming an opinion on their security risks.

Giry SAS implements a peripheral contract for the Mangrove core system which allows users to submit
Good-till-cancelled orders and Fill-or-kill orders.

The most critical subjects covered in our audit are functional correctness, absence of reentrancy
possibilities, access control, handling of funds, and accounting. We have uncovered some important
bugs. Regarding functional correctness, we uncovered a bug where the gas price for an updated order is
calculated and submitted incorrectly. Regarding accounting, we have uncovered a vulnerability affecting
the order updates which can allow an attacker to steal funds from Mangrove core system. However, the
impact of the vulnerability is not big since it is not expected that an attacker can steal a significant
amount. Moreover, as far as internal accounting is concerned, if an updated order requires less provision
than before, the provision is not refunded to the end users. All the aforementioned issues were
addressed in the second iteration.

The general subjects covered are code complexity, use of uncommon language features, unit testing,
documentation, specification, gas efficiency, trustworthiness and error handling. Security regarding all the
aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

Code Corrected

¥ Specification Changed

(Low)-Severity Findings

¥ Code Corrected

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the MangroveOrder repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note
1 | 18 October 2022 16f97b3dbd6a8c86ab67bc8be9008c1877c7fd58 Initial Version
2 | 5 December 2022 ab596cd1afbdd828eb4d02bc680b6825ca68172e Fixes

3 | 12 December 2022 c55978eecd5c74be8567b6759945727d66b6cd05 Updated Fixes

For the solidity smart contracts, the compiler version 0. 8. 13 was chosen.
In scope is the MangroveOr der contract and all the contracts and library this contract uses. More
specifically:

e peri phery/ Mangr oveOr der. sol

* MgvLi b. sol

estrategi es/utils/AccessControll ed. sol

*strategies/routers/ Abstract Rout er St or age. sol

estrategi es/routers/Abstract Rout er. sol

estrategi es/routers/Si npl eRout er. sol

e strategi es/ MangroveO f er St or age. sol

e strategi es/ MangroveO fer. sol

estrategi es/of fer_forwarder/abstract/ Forwarder. sol

2.1.1 Excluded from scope

Everything not included in scope. Part of the code in scope was automatically generated. The
correctness of the generation process as well as the end result of that process is considered
out-of-scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Giry SAS offers a periphery contract (Mangr oveOr der) for the Mangrove-core system. The contract
stands as an intermediate component between the end-users and the core system meaning that users

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

should only interact with the Mangr oveOr der , while the contract itself is seen as a maker for the core
system. The contract can act both as a taker and as a maker. As a taker, it creates an order that will try to
match with some of the orders in the orderbook. As a maker, it posts an order to the orderbook and
implements the appropriate logic for the hooks made by the core system to provide the liquidity needed
by the posted order.

The orders implemented by the contract are:

» Good till canceled (GTC): An order which is originally a market order i.e., a buy or a take order,
which is then posted to the order book (if not completely filled). For a GTC order which wants an
amount a_goal and price p_goal , if the order is partially filled for an amount a_now for which
a_now < a_goal and price p_now for which p_now < p, then the order posted will be with
price p_l ater o] that
a_nowp now + (a_goal - a_now) *p_later = p_goal *a_goal . Intuitively, if a user
was able to buy an amount a_now for a cheaper price than expected, they can afford to pay a
greater price for the remaining amount. Note that we ignore the fees for simplicity.

* Fill or kill (FOK): An order that is either fully filled right away or is ignored in its entirety by the
system.

* Partially filled: An order which can be patrtially filled but never posted.

The contract exposes the following functions to the users:

e take: It implements the market order part of an order for the GTC orders and the other two
orders. The Mangr oveOr der contract withdraws the amount the taker wants to give and calls
Mangr ove. mar ket Or der . After the order has been matched with as many orders from the
orderbook as possible, its completeness is checked and the leftover amount to be given is
returned to the taker's reserve as well as the received amount. Then, for GTC orders, the
remaining order is posted. For FOK orders, if the order hasn't been fully filled the transaction is
reverted. Finally, for all types of orders that haven't been already reverted, any remaining native
ETH is sent back to the caller.

» updateOffer: The owner of an order can update all its parameters.

 retractOffer: The owner of an order can retract their offer. The native ETH which is sent to
Mangr oveOr der is then sent to the caller.

» withdrawToken: It transfers the specified token from the msg.sender's reserve to an arbitrary
receiver.

Users can define a different address/contract in which they can store the funds to be used by the
MangroveOrder. For the reserve management:

» setRouter: The maker sets an arbitrary address as its reserve.

» approvePooledMaker: The reserve approves the maker to use its address as a reserve.

* revokePooledMaker: The reserve revokes the approval from the maker to use its address as a
reserve.

Since Mangr oveOr der can act as a maker it implements the | Maker interface required by Mangrove:

» makerExecute: The hook called by the Mangrove core system with which the maker provides
liquidity promised by their order. It checks to make sure the order hasn't expired. It transfers the
inbound tokens to the user's reserve and sends the required amount to the Mangr oveOr der
contract to be withdrawn by Mangrove.

» makerPosthook: The hook executed after the order has been executed. It gives a chance for
the order to update its state. If the order was executed successfully and it was not fully filled, the
order is reposted with updated amounts. If the order reverted at any point, then it tries to
estimate how much penalty was deducted by the provision and credits the rest to the user. It is

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

important to note that in case the gas provided is not sufficient, the remainder of the provisioned
amount will not be credited.

Finally, Mangr oveOr der exposes some admin functions:
» withdrawFromMangrove: It withdraws all the available ETH for the Mangr oveOr der contract
stored in Mangrove core.
e activate: It approves Mangrove-core and the router to transfer money from Mangr oveOr der .

» setAdditionalGasreq: Sets the minimum additional gas requirement for the orders created by
Mangr oveOr der .

An important component of Mangr oveOr der is the router (Si npl eRout er). The router is responsible
for transferring funds from the end-user's reserves to the Mangr oveOr der and vice versa.

2.2.1 Trust Model and Roles

The system defines the following roles:
» The admin: they have a privileged role in the system and they are fully trusted to not take
actions that can harm the system or the users.

» Mangrove core: The Mangrove core contract can make specific calls (see | Maker) to the
contract. It is assumed that Mangrove is safe and will not pass malicious data to the hooks.

* Normal users: They create orders and update or remove their orders.

2.3 \Version 2

In the second iteration of the codebase the specification of Mangr oveOr der has been updated. In
particular:

1. The orders submitted through Mangr oveOr der are now added to the order book using the
price the user specified as a taker.
2. Users can no longer arbitrarily set the gas requirements for the orders they update.

3. Orders can specify an absolute expiration date and not a time-to-live for the order.

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

 Locked Refunded Provision (Sl
* Wrong Calculation of Locked Provision (Sl)

(Medium)-Severity Findings 3
« Expiration Date Cannot Be Updated

» Underflow in postRestingOrder @Sl NS ENF-Cl
* Users Can Steal Funds From MangroveOrder (Sl Ji=Za T

(Low)-Severity Findings 5
ty g

* Inaccurate Comment (R
 Missing Natspec (NI
» Redundant pragma abicoder v2 (LR EEE

* Setting Expiration Date (LRSS
« Forwarder.provisionOf Calculation Is Wrong (SR

6.1 Locked Refunded Provision
(Correctness | High WZZTTB)] Code Corrected)

When a maker submits an order to the Mangrove orderbook, they need to provide some ETH, also
known as the provision, to compensate the takers in case the maker Execut e hook reverts. A maker can
update their offer by calling For war der . updat e f er . Note that at this point a maker can update most
of the parameters of the order including gasr eq, i.e. the gas required for the maker Execut e hook to
execute. A maker could reduce the gas requirements meaning that some provision will be refunded to
them. For war der . updat ef f er does not handle this refunding (the owner Dat a. wei Bal ance is not
updated) and Mangrove system only sees Mangr oveOr der as a maker. This means that the refunded
amount is essentially lost for the end-user of the Mangr oveOr der . Note that if the provision needs to be
increased again, the end-user must provide extra ETH.

Code Corrected:

In the current implementation, the provision can only be increased therefore no funds are locked.

6.2 Wrong Calculation of Locked Provision

(Correctness B \WEZZTIY] Code Corrected

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

When a user updates their offer through For war der . updat eOf f er, Mangr oveOr der tries to calculate
the new gas price by calling deri veGaspri ce. The gas price depends on the total provision available
for this order. That is the sum of the extra provision attached which is stored in ar gs. f und and the
already locked provision. Currently, the locked amount is calculated with the following snippet:

vars. of ferDetail . gasprice() 10 9 ar gs. gasreq vars. | ocal . of fer _gasbase()

This formula is wrong for two reasons:
1. It depends on ar gs. gasr eq which is the updated gas requirement of the order as passed by
the user.

2. There are parentheses missing around ar gs. gasreq + vars. |l ocal . of fer_gasbase(),
as this entire term should be multiplied by the gas price.

This miscalculation can have multiple consequences:

1. Can allow users to steal funds (see relevant issue).

2. An order can be submitted with smaller gasprice since the calculated total provision is too
small.

Code Corrected:

For war der . updat ef f er has been updated. Currently, users can only increase the provision for an
order. Users cannot determine ar gs. gasreq as it is set to be equal to the of ferGasreq(). It is
important to notice that of f er Gasreq() is not constant but depends on the configuration of the
Mangr oveOr der and in particular the gas requirements of the router.

6.3 Expiration Date Cannot Be Updated
CIETD) (Miedium) (Version 1) (CXIESIEED)

A user can update most of the offer details by calling Forwar der. updat eOf f er. However, the
expiration date cannot be changed. In order to change the expiration date of an order, one must retract it
and submit a new one.

Code Corrected:

Mangr oveOr der . set Expi ry has been added to allow users to update the expiration date of the order.

6.4 Underflow in postRestingOrder
(Correctness IR T\ETSY Specification Changed)

Once the market order part of GTC order has been filled as much as possible, the remaining amount the
user wants to trade is put into a resting order. Note that if fi | | Wants == true, then the Mangrove
engine will have stopped matching the order either when it is fully filled, there are no more orders on the
books, or when the total average price of the order would fall below the threshold of the ratio between the
order's initial wants and gives. Hence, if the matching stops before the order's wants are fully filled, we
are guaranteed not to have given away more than the order initially had (else the total average price
would be below what we initially wanted).

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

However, if fill Wants == fal se, this condition no longer holds. The order can receive arbitrarily
many tokens before giving away all the tokens it has to give away. As the price of a trade is defined by
the maker, there could be orders on the books which give away arbitrarily many tokens for a very low
price. Hence, the user can receive more tokens in the market order part of the trade than they were
expecting to. As such, res. t aker Got + res. fee can exceedt ko.t aker WaAnt s despite only having
partially filled the order.

When we go to post a resting order, the following code is executed:

res.offerld _newf fer(
OferArgs({
out bound_t kn: out bound_t kn,
inbound_t kn: i nbound_tkn,
wants: tko. maker Want s (res.taker Got res. fee),
gi ves: tko.nakerG ves res. t aker Gave,
gasreq: offerGasreq() addi ti onal Gasreq,
gasprice: O,
pivotld: tko.pivotld,
fund: fund,
noRevert: true,
owner: nsg. sender
})
DE

When the want s for the resting order are calculated, an underflow can occur in the case described
above, as the market order part of the GTC order could have received arbitrarily many tokens. As Solidity
0.8.10 is used, this will simply revert the transaction, but will unnecessarily prevent the user from
completing their trade.

Specification Changed:

Currently, the order is posted with the same price as the taker originally wanted. Thus, the issue has
been mitigated.

Giry SAS replied:

this problem made use reevaluate our specification: requiring the (instant) market order and the
(asynchronous) maker order to respect a limit average price is not well defined. In some cases this
would lead the maker order to be posted for a 0 price. We decided to change the specification and
post the maker order at the price initially set by the taker for the market order (irrespectively of the
obtained price).

6.5 Users Can Steal Funds From Mangr oveOr der
D) (Viedium) (Version 1) (XTI

The core Mangrove system maintains the bal anceO mapping which stores how much ETH is available
for each maker to be used as a provision for their orders. Importantly, the Mangr oveOr der contract is
seen as one single maker by the system, even though there might be many end users creating their
orders through it. Let us assume that at some point the balance of Mangr oveOr der is positive and an
attacker has already submitted an order. It is possible as we show in another issue that there might be
some non-claimable balance since updat eOr der does not handle refunds. An attacker can steal money
from mangrove by employing any of the following two vectors:

1. Updating an order without sending funds:
» The attacker calls For war der . updat eOr der for their order with nsg. val ue == 0 and
they increase the gas requirement of their order.

» This means that ar gs. f und == 0 so gas price will remain the same, however, the total
provision needed has been increased as the gas requirements have been increased!

« At this point MGV. updat eX f er is called with nsg. val ue ==

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

* Mangrove core does not perform any check if there are enough funds attached to the call
since it relies on the bal anceO mapping by calling debi t Wi .

* Mangrove core uses the amount stored in bal anceOF for the extra provision.

* The attacker now retracts the order and withdraws the provision of the order which
includes the stolen amount.

2. Updating an order by attaching funds:

» The attacker calls For war der . updat eOr der for their order with nsg. val ue !'= 0 and
they increase the gas requirement of their order.

« Since funds have been attached to the transaction, the gas price will be recalculated.

» The new provision at this point is calculated wrongly since the provi si on parameter
passed to deri vePri ce depends on ar gs. gasr eq which represents the updated gas
requirements of the offer and not vars.offerDetail.gasreq(). Note that
ar gs. gasr eq can be freely set by the users so arbitrarily large value could be passed. As
a result, the new gas price is greater than it should be but the extra funds passed are not
enough to cover for the extra provision needed by the offer.

« Mangrove core uses the amount stored in bal anceOf for the extra provision.

» The attacker now retracts the order and withdraws the provision of the order which
includes the stolen amount.

A similar attack can be performed when some of the global parameters change, which could result in
inaccurate accounting of provisions. If the gasbase of the token pair related to an order changes in the
core mangrove system, calling updat eOf f er can result in an increased (or decreased) provision
without providing any additional funds. This will credit (or debit) funds to the MangroveOrder contract
which aren't attributed to any user. In particular, if the global gas price is increased, calling
updat e f er of Mangrove core with an unchanged gasprice which is lower than the new global gas
price, the mangrove core system will set the gas price higher without receiving any funds. This again
changes the balance of the MangroveOrder contract, without attributing it to any individual user. While
_newf fer and _updat e f er in Forwarder have checks to make sure the offer's gas price is higher
than the global gas price, __post hookSuccess___ in MangroveOffer does not. Hence, if the global gas
price changes, then an order is partially filled and attempts to repost, its provision will be increased with
no additional submitted funds. While the amounts of funds are small, it is conceivable that a malicious
user could be able to exploit a change in the global gas price or the gasbase in order to steal funds.

It is important to note that this issue cannot result in users losing funds since the excessive provision
which can be stolen cannot be claimed by any specific user. In the normal case, no excessive provision
should be available. Therefore, it is expected the amount that can be stolen to be low. Hence, we
consider the issue as medium severity.

Code partially corrected:

The issue has been addressed in multiple different ways:

1. In the current implementation there shouldn't be unallocated users' funds in Mangrove core.

2. Users can only increase the provision of an order using Mangr oveOr der . updat eOr der, not
decrease it. Hence, they must provide additional provision and can not submit orders which
could make use of funds that are already stored in the Mangrove core.

3. The __post hookSuccess__ uses Forwarder. updateCfer.

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.6 Inaccurate Comment

(D (Low) (Version 1) ST

In Mangr oveOr der . checkConpl et eness, the following is mentioned:

/I when fillWants is true, the market order stops when takerWants units of outbound_tkn have been
obtained,

However, this comment is inaccurate since part of the t aker Want s goes to cover the fees, so not the
full t aker Want s amount can be obtained.

In Abst r act Rout er . push, the return value is described as follows:
/ll@return pushed fraction of amount that was successfully pushed to reserve.

However, for tokens with fees, provided the Tr ansf erLi b is used, the whole amount will always be
reported.

Code Corrected:
The comments have been updated.

6.7 Missing Natspec
7D (Low) (Version 1) (Y SIT)

The Natspec is missing in the following cases:

» For Abst r act Rout er . bi nd, the maker parameter.

» For Abst r act Rout er. unbi nd, the maker parameter.
e For Si nmpl eRouter. __pull __,thestrict parameter.
*Forl O ferLogic. OferArgs, the gaspri ce field.

Code Corrected:

The Natspec has been added to the respective functions.

6.8 Redundant pragnma abi coder v2

(Design {(EVZEERY] Code Corrected

Many contracts include the pragma abi coder v2 directive. However, for solidity 0.8 the abicode v2 is
the default one, so the pragma is redundant.

Code Corrected:

The pr agna has been removed from most of the contracts.

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 15

mailto:///@return
https://chainsecurity.com

6.9 Setting Expiration Date
(Design [(EDIELITB| Code Corrected)

A user can define the time-to-live of a resting order submitted through Mangr oveOr der by specifying the
TakeOrder.timeToLi veFor Resti ngOrder. It is important to note that an order can remain in the
mempool for a long time before it's executed. Specifying an explicit expiration date instead of the
time-to-live might be more convenient for users since it's independent of the time it takes for a transaction
to be included in a block.

Code Corrected:

The expiration date is now absolute and no longer relative to the time the transaction is added to the
blockchain.

6.10 Forwar der. provi si onO Calculation Is
Wrong

(D (Low) (Version 1) ST

As its natspec suggests For war der . provi si onOf computes the amount of native tokens that can be
redeemed when deprovisioning a given offer. However, this is not true. In
MyvOF f er Maki ng. ret ract O f er, the provision is calculated as follows:

provi si on 10 9 of ferDetail.gasprice()
(of ferDetail .gasreq() of ferDetail . of fer_gasbase());

The important part to notice is that provision depends on of f er Det ai | . of f er _gasbase().
This is not the same for For war der . pr ovi si onOf where the provision is calculated as follows:

provi sion of ferDetail.gasprice() 10 9 (1 ocal . of fer _gasbase() of ferDetail.gasreq());

Here, the provision depends on | ocal . of f er _gasbase() instead of
of ferDetail . of fer_gasbase().

Code Corrected:

The provision is now calculated using the of f er Det ai | . of f er _gasbase().

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Updating Approvals on Order Update

A user can update their orders by using Forwar der. updat e f er. It is important for users to
remember that, in case the naker Execut e hook to their order fails, they will have to reimburse the
taker. A reason for an order to fail is that there is not enough allowance given to the router to transfer
funds from the maker's reserve to Mangr oveOr der contract. This is highly likely to happen after a user
updates their offer by having it give more funds to the taker.

@ Giry SAS - MangroveOrder - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model and Roles

	2.3 Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Locked Refunded Provision
	6.2 Wrong Calculation of Locked Provision
	6.3 Expiration Date Cannot Be Updated
	6.4 Underflow in postRestingOrder
	6.5 Users Can Steal Funds From MangroveOrder
	6.6 Inaccurate Comment
	6.7 Missing Natspec
	6.8 Redundant pragma abicoder v2
	6.9 Setting Expiration Date
	6.10 Forwarder.provisionOf Calculation Is Wrong

	7 Notes
	7.1 Updating Approvals on Order Update

