PUBLIC

Code Assessment

of the dss-vest

Smart Contracts

December 08, 2022

Produced for

by

Py

@EHNNSEEURITY

Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

N o o B~ WN P

Resolved Findings

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG

© 0 N 01 01 W

12

https://chainsecurity.com

1 Executive Summary

Dear Jean,

Thank you for trusting us to help Giry with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of dss-vest according to Scope
to support you in forming an opinion on their security risks.

Giry implements a vesting plan for the participants of DAOs. The project is a fork of another well-audited
project with a small number of additional features.

The most critical subjects covered in our audit are functional correctness and access control. We find that
the project implementation is of a high quality and no severe issues were uncovered.

The general subjects covered are code complexity, use of uncommon language features, unit testing,
documentation, specification, and gas efficiency. Security regarding all the aforementioned subjects is
high with the exception of unit tests and the documentation which have not been updated to reflect the
current state of the project. More specifically, the unit tests do not check for the correctness of the newly
introduced features.

In summary, we find that the codebase provides a high level of security, but we strongly suggest to
implement the missing unit tests.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

J Acknowledged

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the dss-vest repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note
1 | 15 Jun 2022 5c8c2e5141caf7f0936cc31dc900d73cle796¢58 Initial Version
2 | 29 Nov 2022 34bb53655286d715c95a08e752d3d8df143b4e8f Fixes

For the solidity smart contracts, the compiler version 0. 8. 13 was chosen.
The following files were in scope:

* DssVest.sol

The project is a fork of dss-vest developed by MakerDAO commit;
ade4d2ab90ac2lec4294bb804cfad2e29f29466ab. In the current assessment, only the
changes/extensions were reviewed. Moreover, Giry informed us that only the deriving
DssVest Tr ansf err abl e is going to be deployed.

2.1.1 Excluded from scope

Testing files, third-party libraries and any files not listed above were not in scope of this review. As Giry
does not intend to use the DssVestMintable or DssVestSuckable contracts, they are also excluded from
the scope of this review.

3 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

dss-vest allows DAOs to create a vesting plan for participants. The base contract DssVest implements
most of the functionality, while the three deriving contracts, DssVest M nt abl e, DssVest Suckabl e
and DssVest Tr ansf err abl e implement various ways of paying out the vested tokens. However, Giry
only intends to use the DssVest Tr ansf er r abl e implementation.

3.1 Vesting Plans

A vesting plan has several parameters:
 usr: The address of the recipient of the tokens supplied by the vesting plan.

* bgn: The timestamp marking the beginning of the vesting period.

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

« cl f: The timestamp marking the cliff date of the vesting period.

« fi n: The timestamp marking the end of the vesting period.

e mgr : The address of the manager of the vesting period.

e r es: A boolean value marking whether or not the vesting plan is restricted.
« t ot : The total reward amount for the vesting plan.

 r xd: The reward amount that the recipient has received so far.

* bl s: A boolean value marking whether or not the vesting plan has been "blessed".

The reward is distributed linearly over the vesting period. The rate at which it is distributed is determined
bytot / (fin - bgn).The rewards start accumulating at the beginning of the vesting period but can
only be claimed after the cliff date.

The manager may yank (terminate) the vesting plan at any point, in which case all rewards accumulated
up to that point can still be claimed but any later rewards will not be distributed.

If a vesting plan is restricted, that means only the recipient of the rewards may claim them, no one else
can trigger the distribution of the rewards.

If a vesting plan is blessed, the manager of the plan can no longer terminate it. The vesting plan cannot
be terminated unless the blessing is removed.

An admin of the system can set a global cap for the rate at which vesting plans distribute rewards. A
vesting plan with a higher rate than the cap cannot be created.

3.2 Roles and Trust Model

There are three privileged roles in the system. They are the following:

1. Ward - A ward is an admin of the system. They may add or remove other wards, create new vesting
plans and change the global cap for the distribution rate. Lastly, they can restrict, unrestrict, bless,
unbless existing vesting plans or yank them. The role is considered trusted by the system and will
not against the interest of its users.

2. Manager - A manager of a vesting plan is determined at its creation. The manager may yank the
vesting plan, which stops the rewards from accumulating any further. This role is considered trusted
by the system that it will not act maliciously.

3. Recipient - The recipient of a vesting plan has certain privileges as well. They may restrict or
unrestrict their vesting plan. If the vesting plan is restricted, they are the only one who can trigger
distribution of their rewards. Finally, they can nove the vesting plan, essentially transferring it to
another recipient.

4. Everyone else - If a vesting plan is not restricted, anyone can trigger the distribution of rewards (but
they still go to the recipient of the vesting plan).

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings °
ty g

 Redundant Calculationin _yank(_)
 Redundant Overflow Checks (=~)
 Redundant Storage Load in _yank(_)

* Reentrancy Lock Can Be Cheaper ()
» Unnecessary Calculation in accrued ()

6.1 Redundant Calculation in _yank
[Low](Version 1)[]

When _yank is called, it determines how much reward can still be claimed by the recipient. If the new
_end of the vesting plan is before the beginning or the cliff date of the vesting plan, the entire reward
amount is cancelled. Otherwise, the following calculation is done:

awar ds[_id] . tot toUi nt 128(
add(
unpai d(_end, _award.bgn, _award.clf, _award.fin, _award.tot, _award.rxd),
_award. rxd

)

unpai d calculates the following result:

function unpai d(uint256 _tine, uint48 _bgn, uint48 _clf, uint48 _fin, uint128 _tot, uint128 _rxd) internal pure returns (uint256 ant) {
ant _tine _clf ? 0 : sub(accrued(_time, _bgn, _fin, _tot), _rxd);

}

As we know that _end is after the beginning and cliff date of the vesting plan, this calculation can be
simplified. The addition of _rxd in _yank and subtraction of _rxd in unpai d cancel out, so the final
result is simply: t oUi nt 128(accrued(_end, _bgn, fin, _tot)).

Acknowledged:

Giry chooses not to modify the code out of caution, as the original dss-vest code has been the subject of
extensive formal checking and is battle-tested.

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6.2 Redundant Overflow Checks
[Low] [Version 1][]

As of Solidity version 0.8.0, the compiler automatically inserts overflow checks when doing integer
arithmetic. As such, the add, sub and nul functions are redundant.

Additionally, the following require statement in _cr eat e can also be considered redundant:
require(ids type(ui nt 256) . max, "DssVest/ids-overflow');

This statement makes sure that the increase of the id (i d = ++i d) in the following line will not overflow.

Acknowledged:

Giry chooses not to modify the code out of caution, as the original dss-vest code has been the subject of
extensive formal checking and is battle-tested.

6.3 Redundant Storage Load in _yank
[Low] (Version 1)[j

The _yank function loads awar ds[_i d] from storage multiple times:

function _yank(uint256 _id, uint256 _end) internal |ock {
requi re(wards[nsg. sender] 1 || awards[_id].nmgr nsg. sender, "DssVest/not-authorized");
Award nenory _award awar ds[_id];

It is important to note that since the Berlin hardfork, the memory slot of awar ds[_i d] is considered
warm, thus the benefit of such optimization is limited.

See more here https://eips.ethereum.org/EIPS/eip-2929.

Acknowledged:

Giry chooses not to modify the code out of caution, as the original dss-vest code has been the subject of
extensive formal checking and is battle-tested.

6.4 Reentrancy Lock Can Be Cheaper
[Low] (Version 1)[j

Using different values for the | ocked variable results in cheaper transactions overall. Setting a storage
variable from 0 to 1, but then resetting it back to 0 costs ~20112 gas but causes 19900 gas to be
refunded. However, the total refund amount a transaction is eligible for is limited to a fraction of the total
gas expended by the transaction. Hence, for simple transactions it is likely that not the entire gas refund
will be received.

Instead, one could initialize the | ocked variable with a value of 1 in the constructor. Then, at the start of
a transaction set it to O for the reentrancy lock and setting it back to 1 at the end. This costs ~3012 gas,
but refunds 2800. Assuming a complete refund, this costs the same amount of gas per transaction, but is
more likely to be completely refunded as the total refund amount is smaller.

For completeness, we should note that a similar practice is utilized by the OpenZeppelin library. In this
case, the values 1 and 2 are used instead of values 1 and 0. The efficiency of this approach is similar.

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 10

https://eips.ethereum.org/EIPS/eip-2929
https://chainsecurity.com

For more information about gas refunds and the exact refund amounts, see
https://eips.ethereum.org/EIPS/eip-3529.

Acknowledged:

Giry chooses not to modify the code out of caution, as the original dss-vest code has been the subject of
extensive formal checking and is battle-tested.

6.5 Unnecessary Calculation in accr ued
[Low][Version 1)[]

In the accr ued function, unnecessary calculations are performed in the case where _time == _bgn.
In this case, the result will be 0. As such, the first if condition could be modifiedtobe _ti ne <= _bgnin
order to save gas in this case.

function accrued(uint256 _tine, uint48 _bgn, uint48 _fin, uintl128 _tot) internal pure returns (uint256 ant) ({
if (_time < _bgn) {
anmt 0;
} elseif (_tine _fin) {
ant _tot;
} else {

ant mul (_tot, sub(_tine, _bgn)) sub(_fin, _bgn);
}

Acknowledged:

Giry chooses not to modify the code out of caution, as the original dss-vest code has been the subject of
extensive formal checking and is battle-tested.

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 11

https://eips.ethereum.org/EIPS/eip-3529
https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CI)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

* Code Duplication (LR L

7.1 Code Duplication
D) (Low) (Version 1) (TN

The bl ess and unbl ess functions check for the condition war ds[nsg. sender] == 1. This is the
same condition as is enforced by the aut h modifier. In order to reduce code duplication, the auth
modifier could be applied to these functions instead.

Code corrected:

The condition check was removed and replaced with the aut h modifier.

@ Giry - dss-vest - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Vesting Plans
	3.2 Roles and Trust Model

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 Redundant Calculation in _yank
	6.2 Redundant Overflow Checks
	6.3 Redundant Storage Load in _yank
	6.4 Reentrancy Lock Can Be Cheaper
	6.5 Unnecessary Calculation in accrued

	7 Resolved Findings
	7.1 Code Duplication

