

PUBLIC

Code Assessment

of the Gearbox

Smart Contracts

December 13, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Notes 26

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Gearbox Team,

First and foremost we would like to thank Gearbox Protocol for giving us the opportunity to assess the
current state of their Gearbox system. This document outlines the findings, limitations, and methodology
of our assessment.

The documentation and the code reviewed are of a high standard. Nevertheless, the protocol logic as
well as the implementation are quite complex. Neither documentation nor specification for the
LeveragedAction contract was provided for the audit. Even though this is contract wraps existing
functionality, the specification would have been helpful in clarifying the intended behavior.

This is the final report after an iteration of reviews.

All the issues uncovered by the current review have been fixed, except for a low design issue which was
only partially addressed.

The communication with your team during the audit was very good and helped to resolve arising
questions quickly.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further supporting your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 3

• Code Corrected 3

Medium -Severity Findings 8

• Code Corrected 8

Low -Severity Findings 13

• Code Corrected 12

• Code Partially Corrected 1

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Gearbox repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1
31 August 2021 9df4cd488c3209145af7897fd62bbb7b0b

2319e8
Initial Core Version

2
27 September
2021

f92130695ae6eb59763190812da058fa9
3a59592

Core Fixes After Intermediate Report

3
7 October 2021 caee67202bd29c8f4f3583c367c7c6e2a2

6bcf35
Core Final Fixes

4
12 October
2021

b0fb7bf342199e31b135935a9683709a9
5743bb5

Leveraged Actions (LA)

5
22 October
2021

2a7a9c8cf870cd8bee4b417c8f1b4d6bac
51b43e

LA Fixes for Intermediate Report

6
25 October
2021

0b825ffb2bc0f30fe47355df1bfa9719c9cf
2d2f

LA Final Changes

7
13 December
2021

c922f723f1f4c92e903ac6c536dac021a5
b5c5a2

Final Changes

For the solidity smart contracts, the compiler version 0.7.6 was chosen.

2.1.1 Excluded from scope
The contracts excluded from scope are the following:

• /core/DataCompressor.sol

• all files in /integrations, /fuzzing, /support, /mocks, /interfaces

In the final iteration, after the main review has already completed, pre/post condition have been added as
comments for some of the main functions. These conditions are used for fuzzy testing and have not been
rechecked in detail.

Furthermore, we assume that the imports of hardhat/console.sol and the calls to console.log
are for development purposes only and that they will be removed in the final version of the code.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

At the end of this report section we have added subsections for each of the changes accordingly to the
versions. Furthermore, in the findings section we have added a version icon to each of the findings to
increase the readability of the report.

Gearbox implements a general purpose leverage protocol for ERC-20 tokens. The system can be divided
into the following parts:

2.2.1 The Credit System
It consists of three contracts, the CreditAccount, the CreditManager and the CreditFilter.

1. CreditAccount: It represents a leverage position and holds all the position's balances acting
essentially as a wallet. The owner's access to this wallet is restricted as it contains additional
funds borrowed from the pool. Interaction with external protocols using the funds of the credit
account can be executed through the respective adapters.

2. CreditManager: This contract is responsible for managing credit accounts. Each
CreditManager defines an underlying token and is connected to a liquidity pool with the same
underlying token. Users can open a credit account through a credit manager, this credit
account is then connected to this credit manager. The value which the account holds is
valuated in the underlying. The credit manager exposes the following functionalities:

• openCreditAccount: Takes a credit account from the stock of accounts and moves
all the user's funds and the leverage to the account.

• closeCreditAccount: It trades all the tokens the account holds to the underlying,
pays back the debt, returns the surplus to the owner of the account and returns the
account to the stock of accounts. On successful closure users pay a fee to the
protocol which is proportional to the interest (interest fee) they paid and a fee
proportional to the profits they made (success fee).

• repayCreditAccount: It is similar to account closure but the user pays back the
debt using their own funds and not by converting balances of the credit account. Users
pay the same fees as on closure.

• liquidateCreditAccount: It allows any user to liquidate an undercollateralized
credit account. It functions similarly to closing and repaying a credit account but sells
the tokens at the credit account at a discount in order to incentivize the liquidator.

• addCollateral: Adds an amount of a supported token to the credit account.

• increaseBorrowAmount: It further increases the loan taken by the user.

3. CreditFilter: It is responsible for enforcing the policies on the usage of the credit accounts,
i.e., which tokens are allowed to be traded in the platform and which adapters connecting to
external protocols are allowed to be used.

2.2.2 The Pools
The pools are used to manage the liquidity of the system. Users can lend funds to the pool and accrue
interest. The funds held by the pool are then used as leverage by the users that hold credit accounts.

A pool also defines a denomination asset which is used to evaluate the pool's holdings. It exposes to the
users the following functionalities:

1. addLiquidity: Users transfer an amount of the denomination asset to the pool and mint an
amount of Diesel tokens.

2. removeLiquidity: The users exchange the diesel token they hold for the corresponding
amount of the denomination asset. Note that redemption is not guaranteed at all times as funds
may be borrowed to credit accounts.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.3 The Credit Account Factory
In order to reduce costs of the deployment of the credit accounts, an account renting system is
implemented. Upon opening a credit account, a free credit account contract is taken from the factory.
After a position's closure, the credit account is returned to the factory. In case all the credit accounts are
used, a new one is created by using the cloning paradigm.

2.2.4 Checking Collateral
The system calculates the collateralization of a position using the health factor. The health factor is
essentially the ratio between a discounted value of the holding of an account and the amount that has
been borrowed by the account. The discount in the value aims to prevent abrupt fluctuations in the values
of the assets. As long as the health factor is greater than 1, the account is considered healthy. Otherwise,
it can be liquidated.

Anyone may liquidate unhealthy credit accounts.

In order to prevent adversarial actions by the users such as stealing part of the collateral, a check is done
after each action on the funds at the credit account, e.g., a trade with an external platform. This check on
the collateral prevents an action from leaving a credit account undercollateralized.

However, checking the health factor is gas-heavy. In order to avoid this check after each action, Gearbox
introduces fast check protection. Fast check protection is another check which limits the decrease in the
collateral value. More specifically, it does not allow an action to reduce the collateral value measured in
the difference of the spend and incoming assets to reduce more than a specified percentage. An
additional safeguard is that after a certain number of fastchecks, a full health check has to be performed.

There are two variations of the check of the collateral. One for simple exchanges between two assets
and one for exchange of multiple collaterals. The latter variant is not currently used in the reviewed
system.

Note that fast check cannot cover for the edge case when the collateral is close to 1 and a non-profitable
trade reduces the health factor under 1.

2.2.5 Adapters
The credit accounts can interact with external protocols via the adapters. The adapters are the only entry
points which allow the aforementioned interaction. The adapters currently implemented by the system
are the following:

• UniswapV2 and UniswapV3 which allow the credit account to trade its holdings for other
assets.

• YearnV2 which allows the credit account to deposit and withdraw assets from yearn vaults

• CurveV1 which facilitates arbitrage with leverage on tokens which are part pools that the
underlying token of the credit account also participates.

Generally, the adapters are implemented to mimic the function interface of the DeFi contract by
implementing the functions with the same name and parameters. The adapters process the call on the
function of the 3rd party DeFi system this adapter connects to before executing a check on the new state
of the credit account e.g. using checkCollateralChange. This ensures that the action did not make the
credit account unhealthy.

The current assumption of the adapters is that the balance of the asset sent to the external protocol will
not increase and the balance of the asset received from the external protocol will not decrease.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.6 Governance
The protocol is governed by the use of Gearbox Token. Users can delegate their tokens to other users or
themselves to be eligible to vote. The Gearbox tokens are distributed through the TokenDistributor
contract which was added at Version 7. This contract defines different receivers of the Gearbox Token. In
particular:

• Receivers with A-Voting Power. For each such receiver, a vesting contract (StepVesting) is
deployed which gradually unlocks the tokens. These users can use part of their unvested tokens
to vote.

• Receivers with B-Voting Power. These users can use a smaller portion of their unvested tokens
and are similar to A-Voting Power users otherwise.

• Receivers with 0-Voting Power. These are addresses that represent companies. They don't get
any voting power except for this allowed by their vesting tokens.

• Account Miners. These are addresses which participate in the account mining. Their tokens are
not vested. Users are stored in a Merkle tree and authorized by the AccountMining.

• The treasury. A part of the tokens is going to be stored in the treasury.

• Airdrop Testers. A part of the tokens is dedicated to the testers.

2.2.7 Trust Model
The system relies heavily on the Configurator role since they set the parameters of the system with
few restrictions. Hence, the configurator is a role trusted by the system and is supposed to act honestly
and correctly.

In general, more roles are implemented through the ACL which is the common authorization layer shared
by the whole system. There, more roles are defined, i.e., the pausableAdmin and the
unpausableAdmin who can pause and unpause the system respectively.

Moreover, the system heavily relies on the prices the Chainlink oracles provide to the system. Should the
oracles behave improperly, the system can evaluate the credit accounts erroneously and allow
liquidations that should not take place.

Tokens enabled for use in the system are assumed to be non-malicious ERC-20 tokens without
callbacks.

Finally, the system interacts with third-party protocols, namely, UniswapV2, UniswapV3, CurveV1 and
YearnV2. These protocols are assumed to work correctly. Moreover, any malfunction of these protocols
can seriously compromise the security and the correct behavior of the system.

Users are generally untrusted.

2.2.8 VERSION 4
This version extends the system by adding the LeveragedActions contract. This contracts wraps calls
to the core functionality of the system, allowing the users to execute multiple core functionalities in one
transaction. In particular:

• openLong: With the user supplying some amount of collateral S, opens a leveraged account for
this collateral S. Next a swap operation is executed using the funds of the created leverage
credit account and the parameters specified in the supplied longParams argument. Three
swap adapters are currently supported, UniswapV2/V3 and Curve. The creditManager may
restrict which adapters are allowed. The parameters for the swap amounts are specified by the
caller. Note that the swap input parameters representing amountIn and amountOutMin
respectively are expected to not include the leverage. Optionally the users can choose to
deposit the resulting asset into a liquidity pool, currently only depositing all amount of the
resulting asset to YearnV2 is supported.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• openShort(UniV2, UniV3, Curve): the user defines a token L which is traded through
UniswapV2, UniswapV3 or Curve to a token S. Note that the allowed swap contract must be
whitelisted by the CreditManager, hence not all options may be available to the user. With the
resulting balance of token S a leverage credit account is opened. Then, the leveraged amount of
token S is traded for a token L' given the amounts specified in longParams using the same
functionality as in openLong. Optionally, users can deposit the resulted amount to YearnV2.

• openLP: opens a leveraged account which is then deposited to a yield accruing protocol i.e.,
YearnV2 in the current release.

2.2.9 VERSION 5
There are two important changes in this version:

• For transferOwnership, new restrictions have been applied whenever the sender is an
address unknown to the system or the receiver is an address known to the system. In this case,
in order for the receiver can get a Credit Account only after they have given an allowance. In
other words, transferOwnership will fail if the receiver has not explicitly given their consent
to receive an account from the sender.

• The success fees have been removed.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Partially CorrectedMissing Sanity Checks

5.1 Missing Sanity Checks
Design Low Version 4 Code Partially Corrected

When opening a short position in the Gearbox system by calling shortOpenUniV2, the user must
provide multiple parameters. These parameters are not sanitized, thus arbitrary behavior may occur.
More specifically it is never checked that path[path.length - 1] == collateral and
collateral == longParams.path[0].

The lpInterface and lpContract in the struct LongParameters used in _openLong are not
checked to match. Similarly, an arbitrary router can be passed as shortSwapContract as long as
there is an adapter for it. Note that this is currently not an issue since different adapters/routers do not
share the same interface and the transaction would revert. However, the addition of more adapters in the
future might require some kind of sanity check.

Code partially corrected:

shortOpenUniV2 now features an additional check ensuring that the token out of the exchange using
shortSwapContract is the collateral. Similar checks have been added to openShortUniV3 and
openShortCurve.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 3

• Code CorrectedIncorrect Arguments in checkCollateralChange

• Code CorrectedNon-Accessible Credit Accounts

• Code CorrectedRetain Ownership of Credit Account

Medium -Severity Findings 8

• Code CorrectedDoS of LeverageActions

• Code CorrectedIncorrect params.amountOutMinimum

• Code CorrectedContracts Implement Proxy Pattern

• Specification Changed Code CorrectedTrust Model of External Adapters

• Code CorrectedUsers Can Avoid Paying Fees On Closure

• Code CorrectedWrong Approval To Pool

• Code CorrectedmaxAmount Can Be Circumvented

• Code CorrectedtakeOut May Break the Account List

Low -Severity Findings 12

• Code CorrectedDiscrepancy Between openShortUniV2 and openShortUniV3

• Code CorrectedUse of transfer

• Code CorrectedRounding Errors

• Code CorrectedHead Cannot Be Taken Out

• Code CorrectedPointers Not Updated On takeOut

• Code CorrectedRedundant Multiplication

• Code CorrectedStorage Optimizations

• Code CorrectedTaking Out the First-Ever Created Account

• Code CorrectedallowToken Can Be Blocked

• Code CorrectedcancelAllowance Cannot Be Called

• Code CorrectedconnectCreditManager Access Control

• Code CorrectedrayMul and rayDiv Are Used With No Ray Values

6.1 Incorrect Arguments in
checkCollateralChange
Correctness High Version 2 Code Corrected

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

In YearnV2.withdraw(uint256, address, uint256), the checkCollateralChange is called
with wrong arguments. Particularly, the following snippet is used:

creditFilter.checkCollateralChange(
 creditAccount,
 token,
 yVault,
 balanceInBefore.sub(IERC20(yVault).balanceOf(creditAccount)),
 balanceOutBefore.add(IERC20(token).balanceOf(creditAccount))
);

Note that token is the tokenOut in this particular case, we convert yVault tokens to the underlyings
and yVault is the tokenIn. This error later results in querying the oracles with wrong balances.

Code Corrected:

The arguments are now passed correctly to checkCollateralChange.

*While the final round of the review was ongoing Gearbox Protocol informed us of an issue in the new
implementations of the adapters. The adapters were calculating the delta of the incorrectly and hence
were passing wrong parameters to `checkCollateralChange`. The issue has been fixed.

6.2 Non-Accessible Credit Accounts
Security High Version 1 Code Corrected

The transferAccountOwnership function of a CreditManager contract allows the owner of a credit
account to transfer it onwards to a new owner. Per CreditManager an address is only allowed to hold one
credit account. trasferAccountOwnerhip(). However, there is no check on whether the recipient
already holds a credit account at this CreditManager contract and simply overwrites the entry for the
credit account of the recipient. Hence a credit account which holds funds can become non-accessible
and its funds will be trapped.

Code corrected:

In the updated code the transferAccountOwnership function no longer overwrites an existing credit
account entry of the recipient, hence the issue no longer exists.

6.3 Retain Ownership of Credit Account
Security High Version 1 Code Corrected

In Gearbox, Credit Accounts are reused after they have been returned to the factory. Due to a reentrancy
issue, account ownership can be retained and after the next user got this credit account assigned, the
previous owner may access its funds belonging to the new owner.

Function transferAccountOwnership does not feature the non nonReentrant modifier and hence
can be executed during another operation. Consider the follwowing scenario:

Alice owns a healthy credit account 0xA which holds some WETH balance.

1. Alice prepares a contract that allows her to execute all necessary actions. As a first step, the credit
account ownership is transferred to this contract.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

2. The credit account is repaid using repayCreditAccount specifying the contract as to address.
This transfers all assets to the provided to address. Notably the WETH asset is unwraped into
Ether, the Ether is transferred in a call to the reciepient's address to. This call executes code at the
contract.

3. At the specified to address a contract exists. This contract transfers the ownership of the credit
account onwards to another address (newAddress) Alice controls. This means that
creditAccounts[newAddress] will point to the credit account

4. The closure of the credit account continues as normal. All assets are transferred to address to, the
debt is repaid to the pool and the credit account is returned to the AccountFactory.

5. Next delete creditAccounts[borrower]; is executed, this should delete the assignment of
this credit account to the borrower. However, as we already transferred the ownership from
borrower which is the contract address back to Alice, creditAccounts[borrower] contains
no entry at this point and deleting it has no effect.

At the end of this sequence, the credit account has been returned to the AccountFactory but the entry
creditAccounts[newAddress] in this CreditManager still points to this account.

The next time this CreditAccount is reused at the same CreditManager by a new user, due to the
entry in creditAccounts Alice will still have access to this account and can collect its funds by e.g.
closing or repaying the account.

Code corrected:

transferAccountOwnership() now features the nonReentrant modifier. Hence, the reentrancy
issue described is no longer possible.

6.4 DoS of LeverageActions
Design Medium Version 4 Code Corrected

LeveragedActions can be blocked completely or for specific collaterals only in different ways:

1. When opening an account the credit manager will check if onBehalfOf already has an
account. In case a malicious user has already transferred the ownership of a credit account to
the LeverageActions contract then the CreditManager will fail to open a new one:

function openCreditAccount(
 ...
 require(
 !hasOpenedCreditAccount(onBehalfOf) && onBehalfOf != address(0),
 Errors.CM_ZERO_ADDRESS_OR_USER_HAVE_ALREADY_OPEN_CREDIT_ACCOUNT
); // T:[CM-3]
 ...

2. Although this is more a theoretical attack, assume a credit manager which prohibits the user to
invest more that A amount of tokens. A malicious user sends to the the contract A + 1 tokens.
When the contract will try to open a leveraged position it will do so using the total balance of the
token it holds. If this amount is greater than the allowed one the account opening will block.
The snippets which dictate the above behavior are the following:

LeverageActions:

function _openLong(LongParameters calldata longParams, uint256 referralCode){

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

 ...
 uint256 amount = IERC20(collateral).balanceOf(address(this)); // M:[LA-1]
 ...
}

CreditManager:

function openCreditAccount(
 ...
 require(
 amount >= minAmount &&
 amount <= maxAmount &&
 leverageFactor > 0 &&
 leverageFactor <= maxLeverageFactor,
 Errors.CM_INCORRECT_PARAMS
); // T:[CM-2]
 ...
}

Code corrected:

For the case #1, an allowance system was implemented for the transfer of credit account. In order to get
a credit account transferred, the receiver needs to pre-approve the sender of the credit account. Hence
one can no longer transfer a credit account to the LeveragedAction contract and the issue no longer
exists.

To mitigate case #2 the LeveragedActions contract now uses the actual balance difference.

*Moreover, Gearbox Protocol pointed out a third way to use the attack described above. Specifically, a
user can open an account on behalf of the LeverageAccount contract which would result in a
Denial-of-Service for the LeverageAction contract. The issue has been resolved by also restricting the
address on behalf of which the credit account is opened.

6.5 Incorrect params.amountOutMinimum
Correctness Medium Version 4 Code Corrected

The parameter params.amountOutMinimum passed to the call to the UniswapV3 adapter in
_openLong() is calculated incorrectly and does not include the leverage.

_openLong executes a swap using the funds of the opened leveraged account given the swap
parameters in longParams. The relevant parameters for the swap are in bytes swapCalldata which
are first extracted and prepared for the call to the swap contract. Note however the parameters
representing amountIn and amountOutMinimum extracted from swapCalldata do not include the
leverage, hence the actual values for the swap have to be calculated:

else if (longParams.swapInterface == Constants.UNISWAP_V3) {
 ISwapRouter.ExactInputParams memory params = abi.decode(
 longParams.swapCalldata,
 (ISwapRouter.ExactInputParams)
);

 params.amountIn = leveragedAmount;
 params.amountOutMinimum = params
 .amountOutMinimum

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

 .mul(leveragedAmount)
 .div(params.amountIn);
 ISwapRouter(adapter).exactInput(params);
 (, asset) = _extractTokensUniV3(params.path);
}

First params.amountIn is overwritten with leveragedAmount. Next params.amountOutMinimum is
calculated, this calculation uses params.amountIn which is equal to leveragedAmount at this point.

Hence the calculation:
params.amountOutMinimum.mul(leveragedAmount).div(params.amountIn); actually is
params.amountOutMinimum.mul(leveragedAmount).div(leveragedAmount); which
simplifies to params.amountOutMinimum.

The leverage is not included in params.amountOutMinimum.

Code corrected:

The calculation of the leveraged value for params.amountOutMinimum is now done correctly using the
unchanged value of the decoded params.amountIn. params.amountIn is only set to
leveragedAmount afterwards.

6.6 Contracts Implement Proxy Pattern
Security Medium Version 1 Code Corrected

All adapters and the YearnPriceFeed contract inherit from OpenZeppelin's abstract Proxy contract and
implement an _implementation function pointing to the address of the 3rd party system contract the
adapter connects to. However, this proxy functionality is not needed nor used. The intended functionality
of the adapter is implemented in functions inside the adapter contract itself.

Inheriting the proxy contract, however, has serious consequences. Calls to non-existing functions in the
contract execute the fallback function, which is implemented by the inherited proxy. This function
forwards the call by delegate-calling into the implementation contract. During a delegate-call, the code at
the target is executed in the context of the caller. Notably, it is read from and written to the storage of the
caller, the adapter contract. This can have an adverse effect on the stored variables of the adapter
contract. For example the stored values for the creditManager or the creditFilter.

Code corrected:

The adapter contracts were rewritten and the proxy pattern was removed.

6.7 Trust Model of External Adapters
Design Medium Version 1 Specification Changed Code Corrected

The trust model for the external adapters has not been properly specified. Moreover, all four available
adapters behave differently and the assumptions these adapters rely on have not been documented.

After the action on the external system which is invoked by an adapter, there is a check on the collateral
of the credit account. All currently available adapters use the following function which takes the following
parameters:

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

function checkCollateralChange(
 address creditAccount,
 address tokenIn,
 address tokenOut,
 uint256 amountIn,
 uint256 amountOut
)

The concern is about what is passed as amount especially for the spent asset. It is vital that these
amounts represent the actual state of the credit accounts holding or the check may be circumvented.

Some adapters rely on the values returned by the 3rd party system, some query the actual balance.

While querying the actual balance for the assets involved in the action is the safest option, it may be
expensive in terms of gas. However note that in the current implementation of the EVM (London
hardfork), repeated access to the same contract/storage location got significantly cheaper the overhead
in terms of gas may not be that big.

Using values returned by the call to the third-party contract may be an option if the third-party contract is
fully trusted to do so correctly. Similarly, this holds for input parameters. This critical part should be
documented and assessed thoroughly. In case of doubts/uncertainties, it may be safer to query the
balances and calculate the delta of the balances and use this.

Regarding the YearnAdapter, it can be inspected and documented: Querying the balances could be
avoided since both Vault.deposit and Vault.withdraw
[https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy] return the change in the balance of
the tokens of interest. However, the current YearnAdapter does not do this but queries the balance and
calculates the delta.

The UniswapV3 Adapter relies on the returned values by the 3rd party system. However, there is no
documentation why this assumption holds.

Specification changed and code corrected:

A pattern of how all adapters should be built has been created. All existing adapters have been rewritten
to adhere to this pattern: The balance is queried before and after the action and the difference is used for
the check of the collateral change.

Note that due to the existing token allowances for the adapters from the credit accounts these checks are
not 100% failsafe. It is vital that the 3rd party system is fully trusted to not transfer any other tokens of the
credit account. The system performs the fast check only for the tokens passed as arguments to the
check. Any other change in balance will be ignored.

6.8 Users Can Avoid Paying Fees On Closure
Design Medium Version 1 Code Corrected

On account closure, all the assets held by the account are converted to the underlying token through
defaultSwapContract which is set to be UniswapV2. For this conversion, the user defines a path of
tokens to the underlying. This path can contain arbitrary tokens, tokens even controlled by the user. A
check in _closeCreditAccountImpl assures that the closure of a credit account will not lead to
losses for the protocol i.e., require(loss <= 1). On the closure of an account users are supposed to
return to pool the amount they borrowed, the interest accrued for that amount and an extra amount for
fees namely, feeSuccess and feeInterest. It is important to note that if the funds do not suffice
totalFunds < amountToPool then only the borrowed amount with the interest accrued is returned
and no fees are required to be paid. This means that draining a credit account to the point that does not
make losses can allow a user to avoid paying fees to the protocol.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 17

https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy
https://chainsecurity.com

Code Corrected:

A new check has been introduced which requires that remainingFunds > 0. This way it is guaranteed
that the user has paid their fees. Due to this requirement, a closure that does not result in fee payout will
be reverted. Hence, the only option for the users will be to repay.

6.9 Wrong Approval To Pool
Design Medium Version 1 Code Corrected

*While the review was ongoing Gearbox Protocol informed us about this issue independently in parallel.

In the WETHGateway.repayCreditAccountETH an approval is given to the pool:

_checkAllowance(pool, amount); // T: [WG-11]

However, this approval is wrong and should be given to the credit manager who performs the transfer
from the WETHGateway to the pool.

Code corrected:

The code has been corrected in a further commit and the allowance is now given to the CreditManager
instead of the pool in order for the credit manager to be able to transfer the tokens from the user to the
pool.

6.10 maxAmount Can Be Circumvented
Design Medium Version 1 Code Corrected

When opening a credit account, a check of the amount invested is performed:

require(
 amount >= minAmount && amount <= maxAmount,
 Errors.CM_INCORRECT_AMOUNT
);

By limiting the amount originally invested, one can limit the amount of leverage that can be borrowed by
the pool. However, this limitation can be circumvented as follows:

1. The user opens an account with an allowed account.

2. She calls CreditManager.addCollateral.

3. She calls increaseBorrowedAmount.

Note, that addCollateral does not perform any checks and increaseBorrowedAmount only checks
that the borrowed amount does not turn the account unhealthy.

Code Corrected:

The implementation has been extended to prevent increasing the borrowed amount more than the
predetermined maximum:

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

require(
 borrowedAmount.add(amount) <
 maxAmount.mul(maxLeverageFactor).div(
 Constants.LEVERAGE_DECIMALS
),
 Errors.CM_INCORRECT_AMOUNT
);

6.11 takeOut May Break the Account List
Design Medium Version 1 Code Corrected

The configurator can take out an account by calling AccountFactory.takeOut(). During account
removal, there is no check whether this is the tail nor is the tail updated in case this account is taken out.
Should the tail account be taken out this is problematic:

New accounts added will not be connected to the original list, hence they cannot be taken using
takeCreditAccount() which takes the head of the original list.

Similarly, returned accounts will be added to the list after the removed tail account which no longer
exists in the list. Again, the connection to the original list starting at head is interrupted and these
accounts cannot be used anymore.

Code Corrected:

The implementation has been extended to correctly update tail when the last account is taken out.

6.12 Discrepancy Between openShortUniV2 and
openShortUniV3
Design Low Version 4 Code Corrected

LeverageAction.openShortUniV2 sets the deadline for the short swap to the current block
timestamp:

bytes memory data = abi.encodeWithSelector(
 bytes4(0x38ed1739), // "swapExactTokensForTokens(uint256,uint256,address[],address,uint256)",
 amountIn,
 amountOutMin,
 path,
 address(this),
 block.timestamp
); // M:[LA-5]

This way the call cannot fail due to a passed deadline. On the other hand,
LeverageAction.openShortUniV3 lets users define the deadline themselves. This means that a
transaction that takes long to be included into a block might fail.

Code corrected:

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

The code of openShortUniV2 was changed and now uses the user-specified parameter deadline
instead of block.timestamp. It's the caller's responsibility to specify a proper deadline. With this
change, the behavior of the functions for UniV2 and V3 are now consistent.

6.13 Use of transfer
Design Low Version 4 Code Corrected

_returnTokenOrUnwrapWETH uses transfer instead of safeTransfer for transferring tokens. This
call will fail for tokens which do not adhere to the ERC20 interface e.g., USDT.

Code corrected:

The code was changed to use safeTransfer.

6.14 Rounding Errors
Design Low Version 2 Code Corrected

In CreditManager.increaseBorrowedAmount the following check is performed:

require(
 borrowedAmount.add(amount) <
 maxAmount.mul(maxLeverageFactor).div(
 Constants.LEVERAGE_DECIMALS
),
 Errors.CM_INCORRECT_AMOUNT
);

This check includes a division with Constants.LEVERAGE_DECIMALS which results in a rounding error.
This error can be avoided, if one multiplies the left side of the inequality with the same value instead.

In the following snippet of PoolService.expectedLiquidity a division before multiplication takes
place:

uint256 interestAccrued = totalBorrowed
.mul(borrowAPY_RAY)
.div(Constants.RAY)
.mul(timeDifference)
.div(Constants.SECONDS_PER_YEAR);

Division before multiplication can result in rounding errors. In this particular case, the
interestAccrued will be smaller.

Code Corrected:

Regarding the first issue, the division has been replaced with a multiplication. Regarding the second one,
the order of operations has changed and the multiplications take place first.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.15 Head Cannot Be Taken Out
Design Low Version 1 Code Corrected

Calling AccountFactory.takeOut requires to pass the previous account of the one to be deleted
(prev). This means that the head credit account of the list cannot be taken out since there is no prev
defined for it.

Code Corrected:

The implementation has been extended to handle the removal of the head.

6.16 Pointers Not Updated On takeOut
Design Low Version 1 Code Corrected

A credit account can be taken out of the system by the configurator using function
AccountFactory.takeOut. Under normal circumstances this account cannot be accessed again by
the function. However, consider the following scenario:

1. The controller removes the head account (A1). In this case, the head is just updated to the
second account (A2). Note that at the removal of the head, the pointers of the head account
_nextCreditAccount[head] is not reset.

2. Later A2, the current head is also removed.

3. This means that the controller can take out A2 again by calling takeOut(A1, A2) and
connect it to a new to address.

The reason for the above is that _nextCreditAccount[A1] is not updated upon removal and still
points to A2 which has also been removed. The check

require(
 _nextCreditAccount[prev] == creditAccount,
 Errors.AF_CREDIT_ACCOUNT_NOT_IN_STOCK
);

is still satisfied despite the accounts being no longer part of the system.

Code Corrected:

The pointers are now updated correctly.

6.17 Redundant Multiplication
Design Low Version 1 Code Corrected

In PoolService.removeLiquidity a part of the amount requested by the user is sent back to them
determined by withdrawMultiplier and an amount determined by the withdrawFee is sent to the
treasury. By construction we know that
withdrawMultiplier + withdrawFee == PERCENTAGE_FACTOR. These two amounts should add
up to underlyingTokensAmount. Hence, there is no need to perform two safe multiplications with both
withdrawFee and withdrawMultiplier and the following multiplication is redundant:

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

IERC20(underlyingToken).safeTransfer(
 ...
 underlyingTokensAmount.percentMul(withdrawFee)
); // T:[PS-3, 34]

Code Corrected:

The issue has been resolved. In the current implementation, only one multiplication takes place. The
amount sent to the treasury is now calculated by subtracting amountSent from
underlyingTokensAmount.

6.18 Storage Optimizations
Design Low Version 1 Code Corrected

There are various small optimizations that can be applied to the contracts of the system to improve gas
efficiency:

1. Storage variable can be declared as constants: In GearToken contract totalSupply can be
declared as constant.

2. Some functions can be declared as external:

• AccountFactory.countCreditAccountsInStock()

• CreditFilter.checkCollateralChange(address,address,address,uint256,uint256)

• CreditFilter.allowedContractsCount()

• CreditFilter.allowedContracts(uint256)

• GearToken.delegate(address)

• GearToken.delegateBySig(address,uint256,uint256,uint8,bytes32,bytes32)

• GearToken.getPriorVotes(address,uint256)

3. Dead code which can be removed:

• BytesLib.slice(bytes,uint256,uint256)

• BytesLib.toUint24(bytes,uint256)

Code Corrected:

Issues 1. and 2. have been resolved. Regarding 3., the client states:

BytesLib functions are used in support contracts which are not in the scope

6.19 Taking Out the First-Ever Created Account
Correctness Low Version 1 Code Corrected

The configurator can call AccountFactory.takeOut to remove an account completely and connect it
to an address of their choice. To do so, they provide the address of the account to be removed and the
address of the previous account in the list of the available accounts. Let us consider the addition of the

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

first-ever created account. The account is added during the deployment of the AccountFactory i.e.,
when the constructor is invoked. At this point, both the head and the tail are 0. This means that in the
following snippet, it holds _nextCreditAccount[0] == clonedAccount.

function addCreditAccount() public {
 ...

 _nextCreditAccount[tail] = clonedAccount; // T:[AF-2]

 ...

Note that _nextCreditAccount[0] is never updated. This means that there is always a pointer at 0 to
the first-ever created account. If the configurator calls takeOut with prev == 0x0 and
creditAccount the first ever created account they can control it even though the account might be in
use at the time of the call. In other words, there is always a pointer to the first ever created account even
if the account is not in stock. The case above makes the following check in AccountFactory.takeOut
and the error message emitted imprecise:

require(
 _nextCreditAccount[prev] == creditAccount,
 Errors.AF_CREDIT_ACCOUNT_NOT_IN_STOCK
); // T:[AF-15]

The check whether the account is in stock doesn't work as expected in the scenario described above.

Code Correct:

The pointer of _nextCreditAccount[0] now points to address(0) and not the first-ever created
account.

6.20 allowToken Can Be Blocked
Design Low Version 1 Code Corrected

The purpose of creditFilter.allowToken is twofold. On one hand, it allows the system to use new
tokens. On the other hand, in the case of an already registered token, it allows updating the liquidation
threshold for this token.

Due to the bitmask optimization used, the following check assures that no more than 256 different tokens
can be tracked by the system.

require(allowedTokens.length < 256, ...);

However, in the unlikely case of 256 registered tokens, the liquidation threshold cannot be updated
anymore since the above check will fail, leading the transaction to revert.

Code Corrected:

The code has been corrected. The requirement will be satisfied when the function is called with a token
for which tokenMasksMap[token] > 0 as shown in the following in snippet:

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

require(
 tokenMasksMap[token] > 0 || allowedTokens.length < 256, ...
);

6.21 cancelAllowance Cannot Be Called
Design Low Version 1 Code Corrected

When an account is closed, it is returned to the factory. It is important to note, however, that the
allowances the account has given to other addresses remain in place. This can be dangerous in case of
malfunctioning approved contracts. In order to mitigate this risk, the configurator is allowed to reduce
or remove the allowances. This functionality is implemented by CreditManager.cancelAllowance.
This function is supposed to be called by the factory. However, no function that calls cancelAllowance
is implemented, thus the allowance cannot be revoked.

Code Corrected:

The code has been corrected. In the current implementation the configurator can call
AccountFactory.cancelAllowance which then calls CreditAccount.cancelAllowance.

6.22 connectCreditManager Access Control
Design Low Version 1 Code Corrected

The CreditFilter.connectCreditManager function does not implement proper access control.
The first caller to this function can set CreditManager to his address. This does not pose threat to the
system but could lead to wasted deployments of the Credit Filter.

Code Corrected:

The code has been fixed, now only the configurator is allowed to set the creditManager for the filter.

6.23 rayMul and rayDiv Are Used With No Ray
Values
Correctness Low Version 1 Code Corrected

PoolService.expectedLiquidity() performs a multiplication using rayMul passing
totalBorrowed as a parameter. However totalBorrowed is not in RAY but in the decimals of the
underlying token.

uint256 interestAccrued = totalBorrowed.rayMul(
 borrowAPY_RAY.mul(timeDifference).div(Constants.SECONDS_PER_YEAR)
); // T:[GM-1]

This contradicts the specification for rayMul which states the following:

* @dev Multiplies two ray, rounding half up to the nearest ray

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Similarly this applies for fromDiesel(). Additionally getDieselRate_RAY() uses and toDiesel()
use rayDiv which is annotated with:

* @dev Divides two ray, rounding half up to the nearest ray

Code corrected:

rayMul and rayDiv are now correctly used.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Blocking updateContributors
Note Version 7

TokenDistributor.updateContributors can block. The function makes use of
TokenDistributor.updateVesting for each holder. Consider the following scenario: A receiver RA
of the Vesting contract calls setReceiver to an address RB which is a receiver of another contract.
Then for updateVesting(RA), it holds vestingContracts[RB].contractAddress != 0 which
makes the transaction revert. This leads the execution of updateContributors to revert as well. Note that
users do not have an incentive to change the receiver address to another's receiver address. Moreover,
the new receiver can change again the address to another public address they control. This would
unblock the execution of TokenDistributor.updateContributors. However, it is up to the specific
user to address the issue.

This just affects the updateContributors function which attempts to update all holders. The
unaffected holders can always be updated individually through updateVesting().

7.2 Handling Of Reward Tokens
Note Version 1

Users of the Gearbox system are allowed to trade through specific adapters. Moreover, the credit
accounts are only enabled to access the balance of the enabled tokens which are specified by the
governance. However, there might be the case where one of the allowed tokens accrues rewards in
another token which is not part of the enabled tokens. Currently, users can only collect their rewards by
repaying their accounts and receive the tokens which accrue the rewards.

Furthermore, rewards may be accrued by the credit account address e.g., due to a user interacting with a
certain third-party system. Such a reward may be only claimable in the future, notably e.g., after a credit
account user returned his account to the factory. Such a reward may be claimable by the next user of this
credit account.

7.3 Liquidity Removal Not Always Possible
Note Version 1

Users can remove liquidity they have offered to the pool by calling PoolService.removeLiquidity.
During this call, a transfer is performed from the pool to the msg.sender with the requested amount. It is
important to be aware that in case of high utilization of the pool, the amount requested might not be
available since it is used as leverage in some positions.

7.4 Oracles Do Not Handle Stale Prices
Note Version 1

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

The Gearbox system relies on chainlink oracles to derive the value of the assets a credit account holds.
The chainlink interface allows the consumers of the data to know whether a price returned is stale or not
based on the timestamps https://docs.chain.link/docs/price-feeds-api-reference/#latestrounddata.
However, Gearbox does not take advantage of these timestamps meaning that stale data could be used
by the system.

7.5 Price Feeds Cannot Be Updated
Note Version 1

A price feed can be added by the configurator of the system by calling PriceOracle.addPriceFeed.
The logic of the addition is implemented inside an if statement with the following condition:

if (priceFeeds[token] == address(0)) {

This means that if the price feed for a token T is already defined i.e., priceFeeds[T] != 0 then it
cannot be updated. This becomes important especially when it comes to custom price feed such as the
yearn price feed which might require an upgrade at some point.

7.6 Special ERC-20 Token Behavior May Be
Problematic
Note Version 1

Some ERC-20 tokens have transfer fees. Supporting such tokens may lead to accounting errors as the
actual amount received after a transfer may not match the expected amount, e.g. when funds are repaid
to the pool.

Furthermore, note that the _convertAllAssetsToUnderlying() used during the closure of a credit
account uses UniswapV2's swapExactTokensForTokens function which does not support token with
transfer fees.

In general, when adding tokens to the system they should be carefully inspected for any special behavior
such as hooks. If any special behavior is detected, the impact on the system should be evaluated
carefully.

7.7 Users Can Turn Their Account Liquidatable
Inadvertently
Note Version 1

Gearbox uses fast check and health factor in order to prevent users from draining funds that should be
returned back to the pool.

However an unaware user may turn his account into a liquidatable state inadvertently. Consider the
following scenario:

Assume that a healthy account holds only token A with value V_A (in the underlying token) and owes
amount B. The health factor of the account is H_f = V_A * LT_A / B.

Now, this user trades the balance of A to token C, which is worth slightly when evaluated in the underlying
asset. After the trade through the adapter is completed, the check on the collateral takes place. Let's
assume we're eligible for the fast check and this passes as the value in terms of the underlying has
increased.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 27

https://docs.chain.link/docs/price-feeds-api-reference/#latestrounddata
https://chainsecurity.com

However, it could be that the liquidation threshold of token A and token C are different, e.g.
LT_C << LT_A. This means that the health factor H_f' = V_C * LT_C / B may become less than 1
after the trade even though the value of the holdings has not been decreased.

Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 The Credit System
	2.2.2 The Pools
	2.2.3 The Credit Account Factory
	2.2.4 Checking Collateral
	2.2.5 Adapters
	2.2.6 Governance
	2.2.7 Trust Model
	2.2.8 VERSION 4
	2.2.9 VERSION 5

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Missing Sanity Checks

	6 Resolved Findings
	6.1 Incorrect Arguments in checkCollateralChange
	6.2 Non-Accessible Credit Accounts
	6.3 Retain Ownership of Credit Account
	6.4 DoS of LeverageActions
	6.5 Incorrect params.amountOutMinimum
	6.6 Contracts Implement Proxy Pattern
	6.7 Trust Model of External Adapters
	6.8 Users Can Avoid Paying Fees On Closure
	6.9 Wrong Approval To Pool
	6.10 maxAmount Can Be Circumvented
	6.11 takeOut May Break the Account List
	6.12 Discrepancy Between openShortUniV2 and openShortUniV3
	6.13 Use of transfer
	6.14 Rounding Errors
	6.15 Head Cannot Be Taken Out
	6.16 Pointers Not Updated On takeOut
	6.17 Redundant Multiplication
	6.18 Storage Optimizations
	6.19 Taking Out the First-Ever Created Account
	6.20 allowToken Can Be Blocked
	6.21 cancelAllowance Cannot Be Called
	6.22 connectCreditManager Access Control
	6.23 rayMul and rayDiv Are Used With No Ray Values

	7 Notes
	7.1 Blocking updateContributors
	7.2 Handling Of Reward Tokens
	7.3 Liquidity Removal Not Always Possible
	7.4 Oracles Do Not Handle Stale Prices
	7.5 Price Feeds Cannot Be Updated
	7.6 Special ERC-20 Token Behavior May Be Problematic
	7.7 Users Can Turn Their Account Liquidatable Inadvertently

