PUBLIC

Code Assessment

of the Gearbox

Smart Contracts

December 13, 2021

Produced for

by

{0}) Gearbox

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG

10
11
12
26

https://chainsecurity.com

1 Executive Summary

Dear Gearbox Team,

First and foremost we would like to thank Gearbox Protocol for giving us the opportunity to assess the
current state of their Gearbox system. This document outlines the findings, limitations, and methodology
of our assessment.

The documentation and the code reviewed are of a high standard. Nevertheless, the protocol logic as
well as the implementation are quite complex. Neither documentation nor specification for the
Lever agedAct i on contract was provided for the audit. Even though this is contract wraps existing
functionality, the specification would have been helpful in clarifying the intended behavior.

This is the final report after an iteration of reviews.

All the issues uncovered by the current review have been fixed, except for a low design issue which was
only partially addressed.

The communication with your team during the audit was very good and helped to resolve arising
questions quickly.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further supporting your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EXED-Severity Findings 0
(C)-Severity Findings 3
: 3
(Medium)-Severity Findings 8
: :
(Low)-Severity Findings 13
: 12
o() 1

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Gearbox repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

Vv

Date

Commit Hash

Note

31 August 2021

9df4cd488c3209145af7897fd62bbb7b0b
2319e8

Initial Core Version

27 September
2021

f92130695ae6eb59763190812da058fa9
3a59592

Core Fixes After Intermediate Report

7 October 2021

caee67202bd29c8f4f3583c367c7c6e2a2

Core Final Fixes

3 6bcf35
12 October b0fb7bf342199e31b135935a9683709a9 | Leveraged Actions (LA)
4| 2021 5743bb5
22 October 2a7a9c8cf870cd8beedb417c8flb4dd6bac | LA Fixes for Intermediate Report
5| 2021 51b43e
25 October 0b825ffb2bc0f30fe47355df1bfa9719c9cf | LA Final Changes
6| 2021 2d2f

7

13 December
2021

€922f723f1f4c92e903ac6c536dac021a5
b5c5a2

Final Changes

For the solidity smart contracts, the compiler version 0. 7. 6 was chosen.

2.1.1 Excluded from scope

The contracts excluded from scope are the following:

»/ cor e/ Dat aConpr essor . sol

callflesin/integrations,/fuzzing,/support,/nocks,/interfaces

In the final iteration, after the main review has already completed, pre/post condition have been added as
comments for some of the main functions. These conditions are used for fuzzy testing and have not been
rechecked in detail.

Furthermore, we assume that the imports of har dhat / consol e. sol and the calls to consol e. | og
are for development purposes only and that they will be removed in the final version of the code.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

At the end of this report section we have added subsections for each of the changes accordingly to the
versions. Furthermore, in the findings section we have added a version icon to each of the findings to
increase the readability of the report.

Gearbox implements a general purpose leverage protocol for ERC-20 tokens. The system can be divided
into the following parts:

2.2.1 The Credit System

It consists of three contracts, the CreditAccount, the CreditManager and the CreditFilter.

1. Credi t Account : It represents a leverage position and holds all the position's balances acting
essentially as a wallet. The owner's access to this wallet is restricted as it contains additional
funds borrowed from the pool. Interaction with external protocols using the funds of the credit
account can be executed through the respective adapters.

2. Credi t Manager: This contract is responsible for managing credit accounts. Each
CreditManager defines an underlying token and is connected to a liquidity pool with the same
underlying token. Users can open a credit account through a credit manager, this credit
account is then connected to this credit manager. The value which the account holds is
valuated in the underlying. The credit manager exposes the following functionalities:

* openCredi t Account : Takes a credit account from the stock of accounts and moves
all the user's funds and the leverage to the account.

»cl oseCredi t Account : It trades all the tokens the account holds to the underlying,
pays back the debt, returns the surplus to the owner of the account and returns the
account to the stock of accounts. On successful closure users pay a fee to the
protocol which is proportional to the interest (interest fee) they paid and a fee
proportional to the profits they made (success fee).

e repayCredi t Account: It is similar to account closure but the user pays back the
debt using their own funds and not by converting balances of the credit account. Users
pay the same fees as on closure.

| i qui dat eCredi t Account : It allows any user to liquidate an undercollateralized
credit account. It functions similarly to closing and repaying a credit account but sells
the tokens at the credit account at a discount in order to incentivize the liquidator.

e addCol | at er al : Adds an amount of a supported token to the credit account.

i ncr easeBor r owAnount : It further increases the loan taken by the user.

3.CreditFilter:Itisresponsible for enforcing the policies on the usage of the credit accounts,
i.e., which tokens are allowed to be traded in the platform and which adapters connecting to
external protocols are allowed to be used.

2.2.2 The Pools

The pools are used to manage the liquidity of the system. Users can lend funds to the pool and accrue
interest. The funds held by the pool are then used as leverage by the users that hold credit accounts.

A pool also defines a denomination asset which is used to evaluate the pool's holdings. It exposes to the
users the following functionalities:
1. addLi qui di t y: Users transfer an amount of the denomination asset to the pool and mint an
amount of Diesel tokens.

2.renpoveli qui di ty: The users exchange the diesel token they hold for the corresponding
amount of the denomination asset. Note that redemption is not guaranteed at all times as funds
may be borrowed to credit accounts.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.3 The Credit Account Factory

In order to reduce costs of the deployment of the credit accounts, an account renting system is
implemented. Upon opening a credit account, a free credit account contract is taken from the factory.
After a position's closure, the credit account is returned to the factory. In case all the credit accounts are
used, a new one is created by using the cloning paradigm.

2.2.4 Checking Collateral

The system calculates the collateralization of a position using the health factor. The health factor is
essentially the ratio between a discounted value of the holding of an account and the amount that has
been borrowed by the account. The discount in the value aims to prevent abrupt fluctuations in the values
of the assets. As long as the health factor is greater than 1, the account is considered healthy. Otherwise,
it can be liquidated.

Anyone may liquidate unhealthy credit accounts.

In order to prevent adversarial actions by the users such as stealing part of the collateral, a check is done
after each action on the funds at the credit account, e.g., a trade with an external platform. This check on
the collateral prevents an action from leaving a credit account undercollateralized.

However, checking the health factor is gas-heavy. In order to avoid this check after each action, Gearbox
introduces fast check protection. Fast check protection is another check which limits the decrease in the
collateral value. More specifically, it does not allow an action to reduce the collateral value measured in
the difference of the spend and incoming assets to reduce more than a specified percentage. An
additional safeguard is that after a certain number of fastchecks, a full health check has to be performed.

There are two variations of the check of the collateral. One for simple exchanges between two assets
and one for exchange of multiple collaterals. The latter variant is not currently used in the reviewed
system.

Note that fast check cannot cover for the edge case when the collateral is close to 1 and a non-profitable
trade reduces the health factor under 1.

2.2.5 Adapters

The credit accounts can interact with external protocols via the adapters. The adapters are the only entry
points which allow the aforementioned interaction. The adapters currently implemented by the system
are the following:

* Uni swapV2 and Uni swapV3 which allow the credit account to trade its holdings for other
assets.

* Year nV2 which allows the credit account to deposit and withdraw assets from yearn vaults

e CurveV1l which facilitates arbitrage with leverage on tokens which are part pools that the
underlying token of the credit account also participates.

Generally, the adapters are implemented to mimic the function interface of the DeFi contract by
implementing the functions with the same name and parameters. The adapters process the call on the
function of the 3rd party DeFi system this adapter connects to before executing a check on the new state
of the credit account e.g. using checkCollateralChange. This ensures that the action did not make the
credit account unhealthy.

The current assumption of the adapters is that the balance of the asset sent to the external protocol will
not increase and the balance of the asset received from the external protocol will not decrease.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.6 (Governance

The protocol is governed by the use of Gearbox Token. Users can delegate their tokens to other users or
themselves to be eligible to vote. The Gearbox tokens are distributed through the TokenDi st ri but or
contract which was added at Version 7. This contract defines different receivers of the Gearbox Token. In
particular:

» Receivers with A-Voting Power. For each such receiver, a vesting contract (St epVest i ng) is
deployed which gradually unlocks the tokens. These users can use part of their unvested tokens
to vote.

» Receivers with B-Voting Power. These users can use a smaller portion of their unvested tokens
and are similar to A-Voting Power users otherwise.

* Receivers with 0-Voting Power. These are addresses that represent companies. They don't get
any voting power except for this allowed by their vesting tokens.

» Account Miners. These are addresses which participate in the account mining. Their tokens are
not vested. Users are stored in a Merkle tree and authorized by the Account M ni ng.

» The treasury. A part of the tokens is going to be stored in the treasury.

* Airdrop Testers. A part of the tokens is dedicated to the testers.

2.2.7 Trust Model

The system relies heavily on the Conf i gur at or role since they set the parameters of the system with
few restrictions. Hence, the configurator is a role trusted by the system and is supposed to act honestly
and correctly.

In general, more roles are implemented through the ACL which is the common authorization layer shared
by the whole system. There, more roles are defined, i.e., the pausabl eAdm n and the
unpausabl eAdm n who can pause and unpause the system respectively.

Moreover, the system heavily relies on the prices the Chainlink oracles provide to the system. Should the
oracles behave improperly, the system can evaluate the credit accounts erroneously and allow
liquidations that should not take place.

Tokens enabled for use in the system are assumed to be non-malicious ERC-20 tokens without
callbacks.

Finally, the system interacts with third-party protocols, namely, Uni swapV2, Uni swapV3, Cur veV1 and
Year nV2. These protocols are assumed to work correctly. Moreover, any malfunction of these protocols
can seriously compromise the security and the correct behavior of the system.

Users are generally untrusted.

2.2.8 VERSION 4

This version extends the system by adding the Lever agedAct i ons contract. This contracts wraps calls
to the core functionality of the system, allowing the users to execute multiple core functionalities in one
transaction. In particular:

* openLong: With the user supplying some amount of collateral S, opens a leveraged account for
this collateral S. Next a swap operation is executed using the funds of the created leverage
credit account and the parameters specified in the supplied | ongPar ans argument. Three
swap adapters are currently supported, UniswapV2/V3 and Curve. The creditManager may
restrict which adapters are allowed. The parameters for the swap amounts are specified by the
caller. Note that the swap input parameters representing anount !l n and anmount Qut M n
respectively are expected to not include the leverage. Optionally the users can choose to
deposit the resulting asset into a liquidity pool, currently only depositing all amount of the
resulting asset to Year nV2 is supported.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

eopenShort (Uni V2, Uni V3, Curve): the user defines a token L which is traded through
Uni swapV2, Uni swapV3 or Cur ve to a token S. Note that the allowed swap contract must be
whitelisted by the CreditManager, hence not all options may be available to the user. With the
resulting balance of token S a leverage credit account is opened. Then, the leveraged amount of
token S is traded for a token L' given the amounts specified in | ongPar ans using the same
functionality as in openLong. Optionally, users can deposit the resulted amount to Year nV2.

e openLP: opens a leveraged account which is then deposited to a yield accruing protocol i.e.,
Year nV2 in the current release.

2.2.9 VERSION 5

There are two important changes in this version:

e For transf er Owmner shi p, new restrictions have been applied whenever the sender is an
address unknown to the system or the receiver is an address known to the system. In this case,
in order for the receiver can get a Credit Account only after they have given an allowance. In
other words, t r ansf er Omner shi p will fail if the receiver has not explicitly given their consent
to receive an account from the sender.

* The success fees have been removed.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
* Missing Sanity Checks ()

5.1 Missing Sanity Checks
[Low] (Version 4][]

When opening a short position in the Gearbox system by calling short GpenUni V2, the user must
provide multiple parameters. These parameters are not sanitized, thus arbitrary behavior may occur.
More specifically it is never checked that path[path.length - 1] == collateral and
col l ateral == | ongParans. pat h[0] .

The | plnterface and | pContract in the struct LongPar aneters used in _openLong are not
checked to match. Similarly, an arbitrary router can be passed as short SwapContract as long as
there is an adapter for it. Note that this is currently not an issue since different adapters/routers do not
share the same interface and the transaction would revert. However, the addition of more adapters in the
future might require some kind of sanity check.

Code partially corrected:

shor t OpenUni V2 now features an additional check ensuring that the token out of the exchange using
short SwapCont ract is the collateral. Similar checks have been added to openShort Uni V3 and
openShort Curve.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 3

* Incorrect Arguments in checkCollateralChange (SRS IiEaLl
* Non-Accessible Credit Accounts (SR
* Retain Ownership of Credit Account (LRl

(Medium)-Severity Findings 8

* DoS of LeverageActions (eIl
« Incorrect params.amountOutMinimum (Sl eLIIE)

* Contracts Implement Proxy Pattern (EuReia)

 Trust Model of External Adapters el EN-CY (S el =t}

» Users Can Avoid Paying Fees On Closure
« Wrong Approval To Pool

» maxAmount Can Be Circumvented

» takeOut May Break the Account List

(Low)-Severity Findings —

« Discrepancy Between openShortUniV2 and openShortUniVv3

e Use of transfer (oL CRelI T o0

* Rounding Errors (LERSIiEE T
* Head Cannot Be Taken Out (Sllel=g eI 7=N]

« Pointers Not Updated On takeOut
« Redundant Multiplication

» Storage Optimizations
» Taking Out the First-Ever Created Account

- allowToken Can Be Blocked

» cancelAllowance Cannot Be Called

» connectCreditManager Access Control

« rayMul and rayDiv Are Used With No Ray Values

6.1 Incorrect Arguments in
checkCol | at er al Change

Correctness JHENNEZZTE)] Code Corrected)

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

In Year nV2. wi t hdr aw(ui nt 256, address, uint256), the checkCol | at er al Change is called
with wrong arguments. Particularly, the following snippet is used:

creditFilter.checkCol | at eral Change(
credi t Account ,
t oken,
yVaul t,
bal ancel nBef or e. sub(1 ERC20(yVaul t) . bal anceO (credi t Account)),
bal anceCQut Bef or e. add(| ERC20(t oken) . bal anceO (credi t Account))

)i

Note that t oken is the t okenCQut in this particular case, we convert yVaul t tokens to the underlyings
and yVaul t is the t okenl n. This error later results in querying the oracles with wrong balances.

Code Corrected:
The arguments are now passed correctly to checkCol | at er al Change.

*While the final round of the review was ongoing Gearbox Protocol informed us of an issue in the new
implementations of the adapters. The adapters were calculating the delta of the incorrectly and hence
were passing wrong parameters to “checkCollateralChange’. The issue has been fixed.

6.2 Non-Accessible Credit Accounts

(Security | High {CZEEBY Code Corrected

The t ransf er Account Oaner shi p function of a CreditManager contract allows the owner of a credit
account to transfer it onwards to a new owner. Per CreditManager an address is only allowed to hold one
credit account. tr asf er Account Oaner hi p() . However, there is no check on whether the recipient
already holds a credit account at this CreditManager contract and simply overwrites the entry for the
credit account of the recipient. Hence a credit account which holds funds can become non-accessible
and its funds will be trapped.

Code corrected:

In the updated code the t r ansf er Account Oawner shi p function no longer overwrites an existing credit
account entry of the recipient, hence the issue no longer exists.

6.3 Retain Ownership of Credit Account
(Security JIHigh [WCETTBY Code Corrected

In Gearbox, Credit Accounts are reused after they have been returned to the factory. Due to a reentrancy
issue, account ownership can be retained and after the next user got this credit account assigned, the
previous owner may access its funds belonging to the new owner.

Function t r ansf er Account Oaner shi p does not feature the non nonReent r ant modifier and hence
can be executed during another operation. Consider the follwowing scenario:

Alice owns a healthy credit account OxA which holds some WETH balance.

1. Alice prepares a contract that allows her to execute all necessary actions. As a first step, the credit
account ownership is transferred to this contract.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

2. The credit account is repaid using r epayCr edi t Account specifying the contract as t o address.
This transfers all assets to the provided t o address. Notably the WETH asset is unwraped into
Ether, the Ether is transferred in a call to the reciepient's address t 0. This call executes code at the
contract.

3. At the specified t o address a contract exists. This contract transfers the ownership of the credit
account onwards to another address (newAddress) Alice controls. This means that
credi t Account s[newAddr ess] will point to the credit account

4. The closure of the credit account continues as normal. All assets are transferred to address t o, the
debt is repaid to the pool and the credit account is returned to the AccountFactory.

5. Next del et e creditAccount s[borrower]; is executed, this should delete the assignment of
this credit account to the borrower. However, as we already transferred the ownership from
bor r ower which is the contract address back to Alice, cr edi t Account s[borrower] contains
no entry at this point and deleting it has no effect.

At the end of this sequence, the credit account has been returned to the AccountFactory but the entry
credi t Account s[newAddr ess] in this CreditManager still points to this account.

The next time this Cr edi t Account is reused at the same CreditManager by a new user, due to the
entry in credi t Account s Alice will still have access to this account and can collect its funds by e.g.
closing or repaying the account.

Code corrected:

transf er Account Omner shi p() now features the nonReent r ant modifier. Hence, the reentrancy
issue described is no longer possible.

6.4 DoS of Lever ageActi ons

(D (Widium) (Version 4) IR

Lever agedAct i ons can be blocked completely or for specific collaterals only in different ways:

1. When opening an account the credit manager will check if onBehal f Of already has an
account. In case a malicious user has already transferred the ownership of a credit account to
the LeverageActions contract then the CreditManager will fail to open a new one:

function openCreditAccount (
require(
hasOpenedCr edi t Account (onBehal f OF) && onBehal f O address(0),

Errors. CM ZERO ADDRESS OR USER HAVE ALREADY OPEN CREDI T_ACCOUNT
)

2. Although this is more a theoretical attack, assume a credit manager which prohibits the user to
invest more that A amount of tokens. A malicious user sends to the the contract A + 1 tokens.
When the contract will try to open a leveraged position it will do so using the total balance of the
token it holds. If this amount is greater than the allowed one the account opening will block.
The snippets which dictate the above behavior are the following:

Lever ageActi ons:

function _openLong(LongParameters calldata | ongParans, uint256 referral Code){

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

ui nt 256 anount | ERC20(col | ateral). bal anceO (address(this));

}

Cr edi t Manager :
function openCreditAccount (
require(
anmount m nAmount &&
anmount maxAnmount &&
| ever ageFact or 0 &&

| ever ageFact or maxLever ageFact or
Errors. CM | NCORRECT _PARANS

Code corrected:

For the case #1, an allowance system was implemented for the transfer of credit account. In order to get
a credit account transferred, the receiver needs to pre-approve the sender of the credit account. Hence
one can no longer transfer a credit account to the LeveragedAction contract and the issue no longer
exists.

To mitigate case #2 the LeveragedActions contract now uses the actual balance difference.

*Moreover, Gearbox Protocol pointed out a third way to use the attack described above. Specifically, a
user can open an account on behalf of the LeverageAccount contract which would result in a
Denial-of-Service for the LeverageAction contract. The issue has been resolved by also restricting the
address on behalf of which the credit account is opened.

6.5 Incorrect parans. anount Qut M ni num

(Medium] [Version 4] Code Corrected

The parameter parans. anmount Qut M ni nrum passed to the call to the UniswapV3 adapter in
_openLong() is calculated incorrectly and does not include the leverage.

_openLong executes a swap using the funds of the opened leveraged account given the swap
parameters in | ongPar ans. The relevant parameters for the swap are in byt es swapCal | dat a which
are first extracted and prepared for the call to the swap contract. Note however the parameters
representing anount | n and anount Qut M ni num extracted from swapCal | dat a do not include the
leverage, hence the actual values for the swap have to be calculated:

el se i f (longParamns. swapl nterface Const ant s. UNI SWAP_V3) {
| SwapRout er . Exact | nput Par ans nenory params abi . decode(
| ongPar ans. swapCal | dat a,
(I SwapRout er . Exact | nput Par ans)

);
par ans. anount | n | ever agedAnount ;

par ans. anount Qut M ni rum = par ans
.anmount Qut M ni mum

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

.mul (I ever agedAnount)

. di v(parans. anount | n);

| SwapRout er (adapt er) . exact | nput (parans) ;

(, asset) _extract TokensUni V3(par ans. pat h) ;

}

First par ans. amount | n is overwritten with | ever agedAnount . Next par ans. anount Qut M ni numis
calculated, this calculation uses par ans. anount | n which is equal to | ever agedAnount at this point.

Hence the calculation:
par ans. anount Qut M ni mum rrul (1 ever agedAnount) . di v(parans. anount I n); actually is
par ans. anount Qut M ni mum rmul (| ever agedAnount) . di v(I| ever agedAnount) ; which

simplifies to par ans. anount Qut M ni mum

The leverage is not included in par ans. amount Qut M ni mum

Code corrected:

The calculation of the leveraged value for par ans. anmount Qut M ni mumis now done correctly using the
unchanged value of the decoded parans.anmountln. parans.anountln is only set to
| ever agedAnount afterwards.

6.6 Contracts Implement Proxy Pattern

(Security |CIZ IR Code Corrected)

All adapters and the YearnPriceFeed contract inherit from OpenZeppelin's abstract Proxy contract and
implement an _i npl enment at i on function pointing to the address of the 3rd party system contract the
adapter connects to. However, this proxy functionality is not needed nor used. The intended functionality
of the adapter is implemented in functions inside the adapter contract itself.

Inheriting the proxy contract, however, has serious consequences. Calls to non-existing functions in the
contract execute the fallback function, which is implemented by the inherited proxy. This function
forwards the call by delegate-calling into the implementation contract. During a delegate-call, the code at
the target is executed in the context of the caller. Notably, it is read from and written to the storage of the
caller, the adapter contract. This can have an adverse effect on the stored variables of the adapter
contract. For example the stored values for the creditManager or the creditFilter.

Code corrected:

The adapter contracts were rewritten and the proxy pattern was removed.

6.7 Trust Model of External Adapters
(Design |\ T TBY Specification Changed] Code Corrected

The trust model for the external adapters has not been properly specified. Moreover, all four available
adapters behave differently and the assumptions these adapters rely on have not been documented.

After the action on the external system which is invoked by an adapter, there is a check on the collateral
of the credit account. All currently available adapters use the following function which takes the following
parameters:

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

function checkCol | at er al Change(
addr ess creditAccount,
address tokenl n,
address tokenQut,
ui nt 256 armount | n,
ui nt 256 anount Qut

)

The concern is about what is passed as amount especially for the spent asset. It is vital that these
amounts represent the actual state of the credit accounts holding or the check may be circumvented.

Some adapters rely on the values returned by the 3rd party system, some query the actual balance.

While querying the actual balance for the assets involved in the action is the safest option, it may be
expensive in terms of gas. However note that in the current implementation of the EVM (London
hardfork), repeated access to the same contract/storage location got significantly cheaper the overhead
in terms of gas may not be that big.

Using values returned by the call to the third-party contract may be an option if the third-party contract is
fully trusted to do so correctly. Similarly, this holds for input parameters. This critical part should be
documented and assessed thoroughly. In case of doubts/uncertainties, it may be safer to query the
balances and calculate the delta of the balances and use this.

Regarding the Year nAdapt er, it can be inspected and documented: Querying the balances could be
avoided since both Vaul t . deposi t and Vaul t . wi t hdr aw
[https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy] return the change in the balance of
the tokens of interest. However, the current YearnAdapter does not do this but queries the balance and
calculates the delta.

The UniswapV3 Adapter relies on the returned values by the 3rd party system. However, there is no
documentation why this assumption holds.

Specification changed and code corrected:

A pattern of how all adapters should be built has been created. All existing adapters have been rewritten
to adhere to this pattern: The balance is queried before and after the action and the difference is used for
the check of the collateral change.

Note that due to the existing token allowances for the adapters from the credit accounts these checks are
not 100% failsafe. It is vital that the 3rd party system is fully trusted to not transfer any other tokens of the
credit account. The system performs the fast check only for the tokens passed as arguments to the
check. Any other change in balance will be ignored.

6.8 Users Can Avoid Paying Fees On Closure
CIETD) (Miedium) (Version 1) (CXIESIEED)

On account closure, all the assets held by the account are converted to the underlying token through
def aul t SwapCont r act which is set to be UniswapV2. For this conversion, the user defines a path of
tokens to the underlying. This path can contain arbitrary tokens, tokens even controlled by the user. A
check in _cl oseCredit Account | npl assures that the closure of a credit account will not lead to
losses for the protocol i.e., requi re(l oss <= 1) . On the closure of an account users are supposed to
return to pool the amount they borrowed, the interest accrued for that amount and an extra amount for
fees namely, f eeSuccess and f eel nt erest. It is important to note that if the funds do not suffice
t ot al Funds < ampunt ToPool then only the borrowed amount with the interest accrued is returned
and no fees are required to be paid. This means that draining a credit account to the point that does not
make losses can allow a user to avoid paying fees to the protocol.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 17

https://github.com/yearn/yearn-vaults/blob/main/contracts/Vault.vy
https://chainsecurity.com

Code Corrected:

A new check has been introduced which requires that r emai ni ngFunds > 0. This way it is guaranteed
that the user has paid their fees. Due to this requirement, a closure that does not result in fee payout will
be reverted. Hence, the only option for the users will be to repay.

6.9 Wrong Approval To Pool
(Design LT ICLETIRY] Code Corrected)

*While the review was ongoing Gearbox Protocol informed us about this issue independently in parallel.

In the WVETHGat eway. r epayCr edi t Account ETH an approval is given to the pool:
_checkAl | owance(pool, anount);

However, this approval is wrong and should be given to the credit manager who performs the transfer
from the WVETHGat eway to the pool.

Code corrected:

The code has been corrected in a further commit and the allowance is now given to the CreditManager
instead of the pool in order for the credit manager to be able to transfer the tokens from the user to the
pool.

6.10 maxAnount Can Be Circumvented

(D (Viedium) (Version 1) IR

When opening a credit account, a check of the amount invested is performed:

require(
anount m nAnmount && anount max Anmount ,
Errors. CM | NCORRECT _AMOUNT

)i

By limiting the amount originally invested, one can limit the amount of leverage that can be borrowed by
the pool. However, this limitation can be circumvented as follows:

1. The user opens an account with an allowed account.
2. She calls Cr edi t Manager . addCol | at er al .

3. She calls i ncr easeBor r onedAnpunt .

Note, that addCol | at er al does not perform any checks and i ncr easeBor r owedAnmount only checks
that the borrowed amount does not turn the account unhealthy.

Code Corrected:

The implementation has been extended to prevent increasing the borrowed amount more than the
predetermined maximum:

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

require(
bor r owedAnount . add(anmount)
maxAnount . mul (maxLever ageFact or) . di v(
Const ant s. LEVERAGE _DECI MALS

) ’
Errors. CM | NCORRECT _AMOUNT

),

6.11 takeCQut May Break the Account List
CITD) (Viedium) (Version 1) (XIS

The configurator can take out an account by calling Account Fact ory. t akeCQut (). During account
removal, there is no check whether this is the tail nor is the tail updated in case this account is taken out.
Should the tail account be taken out this is problematic:

New accounts added will not be connected to the original list, hence they cannot be taken using
t akeCr edi t Account () which takes the head of the original list.

Similarly, returned accounts will be added to the list after the removed t ai | account which no longer
exists in the list. Again, the connection to the original list starting at head is interrupted and these
accounts cannot be used anymore.

Code Corrected:

The implementation has been extended to correctly update t ai | when the last account is taken out.

6.12 Discrepancy Between openShort Uni V2 and
openShort Uni V3
7D (Low) (Version 4) CXIESIEED)

Lever ageActi on. openShort Uni V2 sets the deadline for the short swap to the current block
timestamp:

bytes nenory data = abi.encodeWthSel ect or(
byt es4(0x38ed1739),
anount | n,
anmount Qut M n,
pat h,
addr ess(this),
bl ock. ti nmest anp
IE

This way the «call cannot fail due to a passed deadline. On the other hand,
Lever ageActi on. openShort Uni V3 lets users define the deadline themselves. This means that a
transaction that takes long to be included into a block might fail.

Code corrected:

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

The code of openShort Uni V2 was changed and now uses the user-specified parameter deadl i ne
instead of bl ock. ti mestanp. It's the caller's responsibility to specify a proper deadline. With this
change, the behavior of the functions for UniV2 and V3 are now consistent.

6.13 Use of transfer

D (Low) (Version 4) (XIS

_returnTokenO Unw apWETHuses t r ansf er instead of saf eTr ansf er for transferring tokens. This
call will fail for tokens which do not adhere to the ERC20 interface e.g., USDT.

Code corrected:

The code was changed to use saf eTr ansf er .

6.14 Rounding Errors
D) (Low) (Version 2) (XL

In Cr edi t Manager . i ncr easeBor r owedAnount the following check is performed:

require(
bor r onedAnount . add(anount)
maxAnount . mul (maxLever ageFact or) . di v(
Const ant s. LEVERAGE DECI MALS

),
Errors. CM | NCORRECT _AMOUNT

)i

This check includes a division with Const ant s. LEVERAGE DECI MALS which results in a rounding error.
This error can be avoided, if one multiplies the left side of the inequality with the same value instead.

In the following snippet of Pool Ser vi ce. expect edLi qui di ty a division before multiplication takes
place:

ui nt 256 i nterest Accrued t ot al Bor r owed
. mul (bor r owAPY_RAY)

. di v(Const ant s. RAY)

.mul (timeDi fference)

. di v(Const ant s. SECONDS_PER_YEAR) ;

Division before multiplication can result in rounding errors. In this particular case, the
i nt er est Accr ued will be smaller.

Code Corrected:

Regarding the first issue, the division has been replaced with a multiplication. Regarding the second one,
the order of operations has changed and the multiplications take place first.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.15 Head Cannot Be Taken Out
(Design [(EDERITB] Code Corrected)

Calling Account Fact ory. t akeQut requires to pass the previous account of the one to be deleted
(pr ev). This means that the head credit account of the list cannot be taken out since there is no prev
defined for it.

Code Corrected:
The implementation has been extended to handle the removal of the head.

6.16 Pointers Not Updated On t akeQut
D) (Low) (Version 1) (XL

A credit account can be taken out of the system by the configurator using function
Account Fact ory. t akeQut . Under normal circumstances this account cannot be accessed again by
the function. However, consider the following scenario:

1. The controller removes the head account (Al). In this case, the head is just updated to the
second account (A2). Note that at the removal of the head, the pointers of the head account
_next Credi t Account [head] is not reset.

2. Later A2, the current head is also removed.

3. This means that the controller can take out A2 again by calling t akeQut (Al, A2) and
connect it to a new t o address.

The reason for the above is that _next Credi t Account [Al] is not updated upon removal and still
points to A2 which has also been removed. The check

require(
_next Credi t Account [prev] credi t Account ,
Errors. AF_CREDI T_ACCOUNT_NOT_I N_STOCK

)

is still satisfied despite the accounts being no longer part of the system.

Code Corrected:

The pointers are now updated correctly.

6.17 Redundant Multiplication
7D (Low) (Version 1) (CXISIEED)

In Pool Servi ce. renoveli qui di ty a part of the amount requested by the user is sent back to them
determined by wi t hdrawiul ti pl i er and an amount determined by the wi t hdr awFee is sent to the
treasury. By construction we know that
Wi thdrawMul tiplier + wthdrawee == PERCENTAGE FACTCOR These two amounts should add
up to under | yi ngTokensAnount . Hence, there is no need to perform two safe multiplications with both
wi t hdr awFee and wi t hdr awiul ti pl i er and the following multiplication is redundant:

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

| ERC20(under | yi ngToken) . saf eTransfer (

under | yi ngTokensAnount . per cent Mul (wi t hdr awFee)
);

Code Corrected:

The issue has been resolved. In the current implementation, only one multiplication takes place. The
amount sent to the treasury is now calculated by subtracting anount Sent from
under | yi ngTokensAnount .

6.18 Storage Optimizations
CIETD) (Low) (Version 1) (CXIESEED)

There are various small optimizations that can be applied to the contracts of the system to improve gas
efficiency:

1. Storage variable can be declared as constants: In GearToken contract t ot al Suppl y can be
declared as constant.

2. Some functions can be declared as ext er nal :

* Account Fact ory. count Credi t Account sl nSt ock()

*CreditFilter.checkCol |l at eral Change(addr ess, addr ess, addr ess, ui nt 256, ui nt 256)
eCreditFilter.all owedContract sCount ()

*CreditFilter.all onwedContracts(uint256)

» Gear Token. del egat e(addr ess)

» Gear Token. del egat eBySi g(addr ess, ui nt 256, ui nt 256, ui nt 8, byt es32, byt es32)

» Gear Token. get Pri or Vot es(addr ess, ui nt 256)

3. Dead code which can be removed:

* Byt esLi b. sl i ce(byt es, ui nt 256, ui nt 256)
* Byt esLi b. t oUi nt 24(byt es, ui nt 256)

Code Corrected:
Issues 1. and 2. have been resolved. Regarding 3., the client states:

BytesLib functions are used in support contracts which are not in the scope

6.19 Taking Out the First-Ever Created Account
(Correctness JIET)RVIETTB Code Corrected)

The configurator can call Account Fact ory. t akeQut to remove an account completely and connect it
to an address of their choice. To do so, they provide the address of the account to be removed and the
address of the previous account in the list of the available accounts. Let us consider the addition of the

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

first-ever created account. The account is added during the deployment of the Account Fact ory i.e.,
when the constructor is invoked. At this point, both the head and the t ai | are 0. This means that in the
following snippet, it holds _next Credi t Account [0] == cl onedAccount .

function addCredit Account () public {

_nextCredit Account[tail] cl onedAccount ;

Note that _next Cr edi t Account [0] is never updated. This means that there is always a pointer at 0 to
the first-ever created account. If the configurator calls takeQut with prev == 0x0 and
credi t Account the first ever created account they can control it even though the account might be in
use at the time of the call. In other words, there is always a pointer to the first ever created account even
if the account is not in stock. The case above makes the following check in Account Fact ory. t akeQut
and the error message emitted imprecise:

require(
_next Credi t Account [prev] credi t Account ,
Errors. AF_CREDI T_ACCOUNT_NOT_|I N_STOCK

)i

The check whether the account is in stock doesn't work as expected in the scenario described above.

Code Correct:

The pointer of _next Credi t Account [0] now points to addr ess(0) and not the first-ever created
account.

6.20 al | owToken Can Be Blocked
CIETD) (Low) (Version 1) (CXISIEED)

The purpose of credi tFi |l ter. al | owToken is twofold. On one hand, it allows the system to use new
tokens. On the other hand, in the case of an already registered token, it allows updating the liquidation
threshold for this token.

Due to the bitmask optimization used, the following check assures that no more than 256 different tokens
can be tracked by the system.

require(all owedTokens. | ength 256, ...);

However, in the unlikely case of 256 registered tokens, the liquidation threshold cannot be updated
anymore since the above check will fail, leading the transaction to revert.

Code Corrected:

The code has been corrected. The requirement will be satisfied when the function is called with a token
for which t okenMasksMap[t oken] > 0 as shown in the following in snippet:

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

require(
t okenMasksMap[t oken] 0 || allowedTokens. | ength 256,
);

6.21 cancel Al | owance Cannot Be Called

(D (Low) (Version 1) ST

When an account is closed, it is returned to the factory. It is important to note, however, that the
allowances the account has given to other addresses remain in place. This can be dangerous in case of
malfunctioning approved contracts. In order to mitigate this risk, the conf i gur at or is allowed to reduce
or remove the allowances. This functionality is implemented by Cr edi t Manager . cancel Al | owance.
This function is supposed to be called by the factory. However, no function that calls cancel Al | owance
is implemented, thus the allowance cannot be revoked.

Code Corrected:

The code has been corrected. In the current implementation the configurator can call
Account Fact ory. cancel Al | owance which then calls Cr edi t Account . cancel Al | owance.

6.22 connect Credi t Manager Access Control

(Design J(ED| LB Code Corrected)

The CreditFilter.connect Credit Manager function does not implement proper access control.
The first caller to this function can set CreditManager to his address. This does not pose threat to the
system but could lead to wasted deployments of the Credit Filter.

Code Corrected:

The code has been fixed, now only the configurator is allowed to set the cr edi t Manager for the filter.

6.23 rayMul and rayDi v Are Used With No Ray
Values

D (Cow) (Version 1) CIEEIEEED)

Pool Servi ce. expectedLiquidity() performs a multiplication wusing rayMil passing
t ot al Bor r owed as a parameter. However t ot al Bor r owed is not in RAY but in the decimals of the
underlying token.

ui nt 256 i nterest Accrued t ot al Bor r owed. rayMul (
bor r owAPY_RAY. nul (ti neDi fference). di v(Const ants. SECONDS_PER_YEAR)
i

This contradicts the specification for r ayMul which states the following:

@ev Multiplies two ray, rounding half up to the nearest ray

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Similarly this applies for f r onDi esel (). Additionally get Di esel Rat e_RAY() uses and t oDi esel ()
use r ayDi v which is annotated with:

@lev Divides two ray, rounding half up to the nearest ray

Code corrected:

rayMul and rayDi v are now correctly used.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Blocking updat eContri butors

TokenDi stri butor.updateContri butors can block. The function makes use of
TokenDi stri but or. updat eVest i ng for each holder. Consider the following scenario: A receiver RA
of the Vesting contract calls set Recei ver to an address RB which is a receiver of another contract.
Then for updat eVest i ng(RA), it holds vesti ngContract s[RB] . contract Address ! = 0 which
makes the transaction revert. This leads the execution of updateContributors to revert as well. Note that
users do not have an incentive to change the receiver address to another's receiver address. Moreover,
the new receiver can change again the address to another public address they control. This would
unblock the execution of TokenDi stri but or. updat eCont ri but or s. However, it is up to the specific
user to address the issue.

This just affects the updat eContri butors function which attempts to update all holders. The
unaffected holders can always be updated individually through updat eVesti ng() .

7.2 Handling Of Reward Tokens

Users of the Gearbox system are allowed to trade through specific adapters. Moreover, the credit
accounts are only enabled to access the balance of the enabled tokens which are specified by the
governance. However, there might be the case where one of the allowed tokens accrues rewards in
another token which is not part of the enabled tokens. Currently, users can only collect their rewards by
repaying their accounts and receive the tokens which accrue the rewards.

Furthermore, rewards may be accrued by the credit account address e.g., due to a user interacting with a
certain third-party system. Such a reward may be only claimable in the future, notably e.g., after a credit
account user returned his account to the factory. Such a reward may be claimable by the next user of this
credit account.

7.3 Liquidity Removal Not Always Possible

Users can remove liquidity they have offered to the pool by calling Pool Ser vi ce. renoveli qui di ty.
During this call, a transfer is performed from the pool to the nsg. sender with the requested amount. It is
important to be aware that in case of high utilization of the pool, the amount requested might not be
available since it is used as leverage in some positions.

7.4 Oracles Do Not Handle Stale Prices

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

The Gearbox system relies on chainlink oracles to derive the value of the assets a credit account holds.
The chainlink interface allows the consumers of the data to know whether a price returned is stale or not
based on the timestamps https://docs.chain.link/docs/price-feeds-api-reference/#latestrounddata.
However, Gearbox does not take advantage of these timestamps meaning that stale data could be used
by the system.

7.5 Price Feeds Cannot Be Updated
(D) (Version 1

A price feed can be added by the configurator of the system by calling Pri ceOr acl e. addPr i ceFeed.
The logic of the addition is implemented inside an if statement with the following condition:

I T (priceFeeds|token] address(0)) {

This means that if the price feed for a token T is already defined i.e., pri ceFeeds[T] != 0 then it
cannot be updated. This becomes important especially when it comes to custom price feed such as the
yearn price feed which might require an upgrade at some point.

7.6 Special ERC-20 Token Behavior May Be
Problematic

Some ERC-20 tokens have transfer fees. Supporting such tokens may lead to accounting errors as the
actual amount received after a transfer may not match the expected amount, e.g. when funds are repaid
to the pool.

Furthermore, note that the _convert Al | Asset sToUnder | yi ng() used during the closure of a credit
account uses UniswapV2's swapExact TokensFor Tokens function which does not support token with
transfer fees.

In general, when adding tokens to the system they should be carefully inspected for any special behavior
such as hooks. If any special behavior is detected, the impact on the system should be evaluated
carefully.

7.7 Users Can Turn Their Account Liquidatable
Inadvertently

Gearbox uses fast check and health factor in order to prevent users from draining funds that should be
returned back to the pool.

However an unaware user may turn his account into a liquidatable state inadvertently. Consider the
following scenario:

Assume that a healthy account holds only token A with value V_A (in the underlying token) and owes
amount B. The health factor of the accountisH f = V.A* LT A/ B.

Now, this user trades the balance of Ato token C, which is worth slightly when evaluated in the underlying
asset. After the trade through the adapter is completed, the check on the collateral takes place. Let's
assume we're eligible for the fast check and this passes as the value in terms of the underlying has
increased.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 27

https://docs.chain.link/docs/price-feeds-api-reference/#latestrounddata
https://chainsecurity.com

However, it could be that the liquidation threshold of token A and token C are different, e.g.
LT_C << LT_A This means that the health factorH f' = V_.C * LT_C / B may become less than 1
after the trade even though the value of the holdings has not been decreased.

@ Gearbox Protocol - Gearbox - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 The Credit System
	2.2.2 The Pools
	2.2.3 The Credit Account Factory
	2.2.4 Checking Collateral
	2.2.5 Adapters
	2.2.6 Governance
	2.2.7 Trust Model
	2.2.8 VERSION 4
	2.2.9 VERSION 5

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Missing Sanity Checks

	6 Resolved Findings
	6.1 Incorrect Arguments in checkCollateralChange
	6.2 Non-Accessible Credit Accounts
	6.3 Retain Ownership of Credit Account
	6.4 DoS of LeverageActions
	6.5 Incorrect params.amountOutMinimum
	6.6 Contracts Implement Proxy Pattern
	6.7 Trust Model of External Adapters
	6.8 Users Can Avoid Paying Fees On Closure
	6.9 Wrong Approval To Pool
	6.10 maxAmount Can Be Circumvented
	6.11 takeOut May Break the Account List
	6.12 Discrepancy Between openShortUniV2 and openShortUniV3
	6.13 Use of transfer
	6.14 Rounding Errors
	6.15 Head Cannot Be Taken Out
	6.16 Pointers Not Updated On takeOut
	6.17 Redundant Multiplication
	6.18 Storage Optimizations
	6.19 Taking Out the First-Ever Created Account
	6.20 allowToken Can Be Blocked
	6.21 cancelAllowance Cannot Be Called
	6.22 connectCreditManager Access Control
	6.23 rayMul and rayDiv Are Used With No Ray Values

	7 Notes
	7.1 Blocking updateContributors
	7.2 Handling Of Reward Tokens
	7.3 Liquidity Removal Not Always Possible
	7.4 Oracles Do Not Handle Stale Prices
	7.5 Price Feeds Cannot Be Updated
	7.6 Special ERC-20 Token Behavior May Be Problematic
	7.7 Users Can Turn Their Account Liquidatable Inadvertently

