

PUBLIC

Code Assessment

of the Gearbox V3 Governance

Smart Contracts

December 8, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 12

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Gearbox Team,

Thank you for trusting us to help Gearbox with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Gearbox V3 Governance
according to Scope to support you in forming an opinion on their security risks.

Gearbox implements the governance module for Gearbox V3.

The most critical subjects covered in our audit are the functional correctness of the contracts, their
configuration, and the interaction with the rest of the Gearbox system. Only minor issues were uncovered
which have been addressed. Security regarding all the aforementioned subjects is high.

The general subjects covered are access control, documentation and specification, gas efficiency, and
the complexity of the implementation. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Gearbox V3 Governance repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 11 Nov 2023 414df8ebf45ad6d09de3a24426e214300177e5f2 Initial Version

2 27 Nov 2023 6637d9df56b09615a9e88370d90a4dadcb4cd7dd Fixes

3 06 Dec 2023 c90434702c163f3f1c2cb4db90cece525160ee07 Check for EOAs

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

In scope are the following contracts:

• Create2Factory.sol

• GovernorV3.sol

• interfaces/IGovernorV3.sol

• interfaces/ITimelock.sol

2.1.1 Excluded from scope
Any contracts not explicitly listed above are out of the scope of this review. Third-party libraries such as
OpenZepplin's or contracts with which the GovernorV3 interacts such as the Timelock are also out of the
scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Gearbox implements a governance module for Gearbox V3. Readers should refer to the relevant report
from ChainSecurity to get a full overview of the protocol.

The Governance module consists of two smart contracts. The governor and the factory.

2.3 Factory
This contract implements a factory that makes use of deterministic deployments (CREATE2). It allows a
user to deploy a smart contract by calling deploy and configure it by calling
callExternal[WithValue] setting the newly deployed contract as the target.

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.4 GovernorV3
This contract is used for the management of the Gearbox protocol. The Governor interacts with a
Timelock contract similar to one implemented by Uniswap . The timelock contract maintains a queue of
transactions that can be executed after some time. A transaction is defined by a target contract, the ETH
to be attached to the call, the signature of the function to be called, the parameters of the call, and the
time after which it can be executed. The Governor defines two distinct roles, the queue admin which is
the DAO's multisig, and the veto admin, a multisig with a lower signature threshold than the DAO's
multisig. The queue admin can:

• queue a single transaction by calling queueTransaction(),

• queue a batch of transactions by first calling startBatch() and then repeatidly
queueTransaction() while in the same block. These calls are all batched in one transaction.
It is assumed that there's enough gas space to both create and execute the batch.

The veto admin can:

• cancel a queued batch or transaction by calling cancelBatch() or cancelTransaction().

Any user can execute a submitted transaction or batch as long as the required time has elapsed. It is
important to note that a transaction cannot be executed individually if it's also part of a batch even if it
was also enqueued as a single transaction.

2.5 Trust Model and Roles
We extracted the following trust model from the codebase:

• The queue admin i.e., the DAO multisig: It inherits the trust assumptions for the GearboxDAO
and its members. Its role is described in detail in the section above.

• The veto admin: It is considered trusted. It should not be able to harm the system but it can
cause disturbance as it can block its configuration.

• The owner of the factory is considered trusted.

2.6 Changes in Version 2
In version 2 the following changes were implemented:

• Batched transactions can be added only by the admin, who started the batch so that a malicious
admin cannot add a transaction to the batch. Note that a malicious admin could in theory
observe the mempool and front-run any other actions from another admin by starting a new
batch. This would cause all subsequent actions added in that block by an admin other than the
malicious one to fail. The issue can be circumvented with the use of private mempools.

• The eta parameter for batched transactions is defined on a per-batch basis.

2.7 Changes in Version 3
In version 3 the following changes were implemented:

• The Governor contract can be set to reject non-EOA users who try to call
executeTransaction() or executeBatch(). This can happen by setting the
isExecutionByContractsAllowed variable. The modification of the variable can only be
invoked by the timelock contract. It is important to highlight, that limiting the calls to EOAs

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 6

https://github.com/Uniswap/governance/blob/master/contracts/Timelock.sol
https://chainsecurity.com

limits composability as no contracts can execute these transactions and potentially bundle them
with other transactions.

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedMissing Input Sanitization

6.1 Missing Input Sanitization
Design Low Version 1 Code Corrected

CS-GEARGOV-002

1. The addresses in the constructor of GovernorV3 are not sanitized.

2. The addresses given to GovernorV3.addQueueAdmin() and
GovernorV3.updateVetoAdmin() are not sanitized. Even though the veto admins are
expected to prevent setting addresses wrong, the contract logic should also prevent it.

3. The eta parameter of the GovernorV3.queueTransaction is only sanitized by the Timelock
contract as to whether the execution time is beyond some minimum required delay. Moreover, an
action can be executed within a time window. However, there's no check on whether all the batched
actions can be executed within the same window. Thus, a batch could be submitted but not be able
to be executed.

Code corrected:

In version 2, the eta is defined on a per-batch basis. All transactions in the batch should have the same
eta.

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Veto Admin Can Veto Its Own Update
Informational Version 1

CS-GEARGOV-001

In the GovernorV3 (Governor in V2) contract, with the assumption that vetoAdmin is a multisig
requiring fewer signatures than the queueAdmins, it is theoretically easier to compromise vetoAdmin
rather one of the queueAdmin. If some keys of the vetoAdmin multisig are compromised, all the
queued transactions could be vetoed including a veto admin update. This issue is only relevant if the
multisig does not allow the rest of the signers to replace the compromised keys.

Gearbox - Gearbox V3 Governance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Factory
	2.4 GovernorV3
	2.5 Trust Model and Roles
	2.6 Changes in Version 2
	2.7 Changes in Version 3

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Missing Input Sanitization

	7 Informational
	7.1 Veto Admin Can Veto Its Own Update

