PUBLIC

Code Assessment

of the Gearbox V2.1
Smart Contracts

September 15, 2023

Produced for

{0}) Gearbox

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG

18
19
20
22
27
30

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Gearbox Protocol with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Gearbox V2.1
according to Scope to support you in forming an opinion on their security risks.

Gearbox Protocol has implemented version 2.1, an improved iteration of the existing v2 protocol. Based
on lessons learned since the launch of v2, numerous enhancements and fixes have been incorporated to
strengthen security, such as minimizing the attack surface. Access has been further restricted, with direct
interaction with adapters no longer permitted. All interactions must now go through the CreditFacade.
Additionally, new adapters have been introduced to enable credit accounts to interact with Balancer,
Compound, and Aave V2, along with the addition of three new price feeds.

Our audit's most critical focus areas include verifying the proper behavior, security, and financial stability
of the protocol. A significant portion of our review concentrates on ensuring the accuracy of adapters
when interacting with external systems. We also examined the newly added price feeds.

Security regarding all the aforementioned subjects is high.

We also examined the code's correctness with respect to the available specification and the consistency
of the implementation.

In summary, we find that the codebase of the protocol provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Gearbox V2.1 repository based on
the documentation files: The table below indicates the code versions relevant to this report and when
they were received.

core-v2
Date Commit Hash Note
\Y
20 Mar 529dbfb877b43af45a21dccdd443cle23c84 | Initial Version (V1)
1| 2023 8a64
24 Mar 344687b96eb88dd71662914f1bca0374047 | Updated Version - total debt (V2)
2| 2023 ee478
02 Apr d5e06f3d3bb068c82df65999fa963203a30d | Updated Version - optimizations (V3)
3| 2023 34a9
18 Apr 2f0ldcaa2512a4f51157bacce45544c51e50 | Version with fixes (V4)
4| 2023 33b3
15 Sep 98a984d37fa590e89ff976fe9e2a523b217d5 | Version with onBehalfOf fix (V8)
5| 2023 Oef
integrations-v2
V | Date Commit Hash Note
1 | 20 Mar 2023 | e0d628447¢c3916f70d34a033e5571b730c88574f Initial Version (V1)

integrations-v3

Date Commit Hash Note
V

17 Apr fce737341524d9fb884c7ee29f8ac3d8 | Version with fixes (V4)
1 2023 ab4699a2

21 Apr e34cfbe9fb7e3b41121accel911c4484 | Updated Balancer Adapter (V5)
2| 2023 ca60e211

31 Jul bb68f9a2461clabaa7a5¢c9b42b88a73 | Updated Curve, Convex and, Uniswap
3| 2023 delb9d060 Adapters (V6)

31 Jul 02f239fee250fb11b16a28974e71e732 | Fixes for Curve and Convex Adapters (V7)
4| 2023 64de50b2

For the solidity smart contracts in cor e- v2, the compiler version 0. 8. 10 was chosen.

For the solidity smart contracts in i nt egrati ons-v2 and i nt egrati ons-v3, the compiler version
0. 8. 17 was chosen.

The scope of this review is limited to the changes in the following files and folders compared to the last
commits of the Gearbox V2 report.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com/wp-content/uploads/2022/11/ChainSecurity_Gearbox_Protocol_Gearbox_V2_audit.pdf
https://chainsecurity.com

The previous commit for the core-v2 repository is c6ca919d46dcd82fa69c89316d9ff969e89bd3f6.

The previous commit for the integrations-v2 repository is
€7290c3ef917f456653e7d5151dc610f338a0805.
core-v2:

adapt ers/ *

corel*

credit/*

libraries/*

multicall/*

oracl es/ *

pool / *
support/ Bl ackLi st Hel per. sol
t okens/ *

ntegrati ons-v2/integrations-v3:

adapt er s/ bal ancer/*

adapt er s/ convex/* except ConvexV1l_d ai nZap. sol
adapt ers/ curve/*

adapters/lido/*

adapt er s/ uni swap/ *

adapt ers/ yearn/ *

oracl es/ curve/ CurveCrypt oLPPri ceFeed. sol

The review of Gearbox core-v3 will be conducted at a later time. As a result, at this time the adapters in
i nt egrations-v3 have been reviewed by taking into account only the Abstract Adapter from
cor e- v2. Specifics related to core-v3 can only be covered after the corresponding review has been
completed.

The issues related to i nt egr at i ons- v2 have been fixed in the updated version of i nt egr ati ons-v3
(in the | egacy branch at commit f ce737341524d9f b884c7ee29f 8ac3d8a54699a2).

Open issues and Notes reported in the report of Gearbox V2 are not repeated in this report but may still
apply. Please refer to report of the Gearbox V2 review.

2.1.1 Excluded from scope

Every contract and third-party libraries not explicitly listed above are out of scope for this review.
Especially:

core-v2:

cor e/ Dat aConpr essor . sol

factories/*

interfaces/*

support/* except support/ Bl ackLi st Hel per. sol
test/*

t okens/ DegenNFT. sol

ntegrati ons-v2/integrations-v3:

adapt er s/ convex/ ConvexV1_d ai nZap. sol
adapters/euler/*

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com/wp-content/uploads/2022/11/ChainSecurity_Gearbox_Protocol_Gearbox_V2_audit.pdf
https://chainsecurity.com

factories/*

i ntegrations/*

interfaces/*

mul ticall/*

oracl es/* except oracl es/curve/ CurveCrypt oLPPri ceFeed. sol
test/*

The following files have been removed from the integrations codebase along with the updated version
with fixes

adapt er s/ aave/ W appedATokenGat eway. sol
adapt er s/ convex/ ConvexV1_d ai nZap. sol

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Gearbox Protocol offers an updated version of its general-purposed leverage solution for ERC-20 tokens.
The system is modular and consists of different parts. Gearbox V2.1 consists of the same modules as
V2, the Gearbox V2 system is fully described in the Gearbox V2 report. This system overview will focus
on the changes of V2.1 compared to V2.

2.2.1 The Credit System

In this update, focus has been put into reducing the attack surface by allowing users interaction with their
Credi t Account only through the CreditFacade, and more specifically by forcing users to use
mul tical |l () for every call to either Cr edi t Facade itself or any Adapt er . Note that by using this new
paradigm, users are forced to pay the gas cost for a full health check after each nul ti cal | (), the fast
check has been deprecated. Other updates and improvements are listed below:

Cr edi t Facade:

1. All the ext er nal functions capable of modifying the state of a user's Cr edi t Account have been
removed but their functionalities are still usable through mul ticall (). One exception is for
addCol | at er al (), which is still available as an ext er nal function.

2. A new helper contract Bl ackl i st Hel per has been added and is used during liquidations
whenever the CreditAccount owner is blacklisted by USDC or USDT, which could block
liquidation when the underlying is a blacklistable token. If the owner is blacklisted, the
Cr edi t Facade contract is given ownership of the CreditAccount during liquidation, so
liquidation can happen, and the user can reclaim its fund to the Bl ackl i st Hel per later by calling
cl ai m Moreover, users cannot open a Cr edi t Account if they are blacklisted.

3. Emergency liquidations are now discounted by energencylLi qui dationDi scount. The
enmer gencyLi qui dati onDi scount can be set by the Cr edi t Conf i gur at or.

4. The cumulative loss of the Cr edi t Facade is tracked and updated during liquidations, if needed. If
the pool occurred a loss, any increase of the debt is forbidden (i sl ncr easeDebt For bi dden is

set to true), i.e.,, _i ncreaseDebt () and opening a new Cr edi t Account are blocked. If the
cumulative loss happens to go over maxCunul ati velLoss, the Credit Manager is paused,
meaning that the CreditFacade has the isPausabl eAdnin role. The

current Currul ati veLoss can be reset by the CreditConfigurator. The parameters

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com/wp-content/uploads/2022/11/ChainSecurity_Gearbox_Protocol_Gearbox_V2_audit.pdf
https://chainsecurity.com

maxCumul ati veLoss and i slncreaseDebt Forbidden can be managed by the
Credi t Confi gurator.

5. An additional sanity check is now done after a Cr edi t Account is closed. This check ensures that
the pool received at least the borrowed amount plus the interest it was due. Note this does not
include the fees. If it is not the case, the transaction reverts. This should already be enforced by the
Cr edi t Manager which transfers anount ToPool consisting of the borrowed amount, the interests
and fees, but this check has been added as a second batrrier.

6. The set of upgradeable contracts and related functions have been removed.

Credi t Confi gurator:

1.1t is now possible to deploy a new CreditConfigurator for an already existing
Cr edi t Account . The new Cr edi t Confi gur at or will copy the set of allowed contracts from the
old one.

2. A liquidation threshold of 0 is now allowed for the assets.

3. When allowing a new contract, if the mapping adapt er ToCont r act [curr ent Adapt er] is set,
the mapping will be set to addr ess(0) to avoid having dangling adapters. The new function
f or bi dAdapt er can be used to remove dangling adapters from the already deployed system,
however, this function should not be used for disabling an adapter in the system, as it will only
remove one way of the two-ways mapping.

4. When upgrading the Cr edi t Facade, the copy of upgradeable contracts has been removed, the
total debt limit and current debt parameters, and the emergency liquidation discount are copied into
the new Cr edi t Facade if the ni gr at ePar ans flag is set. If the flag is not set, the total current
debt is copied and the total debt limit is set to t ype(ui nt 128) . max.

5. The function set | ncr easeFor bi dden has updated access control. If _node is true, the caller
must be a pausable admin, if set to false, the caller must be an unpausable admin.

6. All the functions related to the upgradeble contracts have been removed.

7. New configuration functions have been added:

e set MaxCunul ati velLoss

ereset Curul ati velLoss

e set Ener gencyLi qui dati onDi scount
eset Tot al Debt Li m t

Cr edi t Manager :

The code of the credit manager remains unchanged. Note that some functionality such as the fast check
is no longer used. The same applies to functions featuring a paramter convert WETH, the updated
CreditFacade now calls these functions with this parameter hardcoded to f al se.

BoundedPr i ceFeed:

This price feed reads a price from a Chainlink price oracle and upper bounds the returned price by
upper Bound. The decimals are the decimals of the queried Chainlink price oracle.

Composi t ePri ceFeed:

This price feed indirectly computes the price of the target asset in USD, by using a base asset. This price
feed reads two prices from Chainlink price oracle: target asset price in base denomination T_b, and base
asset price in USD denomination B_usd. Then the returned price for the target asset is computed as
T_b * B_usd. The decimals are the decimals of the B_usd price feed.

CurveLPPri ceFeed:

Implements a price feed for curve crypto pools (pools of assets with volatile prices, with no expectation of
price stability) with either 2 or 3 tokens. The LP price is calculated based on the prices of the pool's

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

assets retrieved from Chainlink and the pools virtual price. Note that this pricefeed enforces that the
Chainlink data is current.

2.2.2 Adapters

Adapters facilitate interaction with third party protocols using the Cr edi t Account s's funds. All adapters
have been updated to follow the new interaction paradigm, i.e., interactions with the Credit Account must
be done through the Credit Facade. Generally Adapters implement the very same function interfaces as
the target contract. Note that starting from this version, unsupported functions are no longer present.
Some adapters implement variations of functions ending with .. all (). These functions spend all
balance-1 the CreditAccount has of of the spent token.

The following Adapters exist:

2.2.2.1 Yearn V2

Connects to a Yearn V2's Vaul t contract.
Year nV2Adapt er supports the following functionality:

e deposit (): deposits the available balance-1 of the Vaul t underlying token into the Yearn V2
Vaul t . Enables the yToken and disables the underlying token.

e deposi t (anount) : deposits the specified amount of the Vaul t underlying token into the Yearn V2
Vaul t . Enables the yToken.

edeposit (amount, recipient): deposits the specified amount into the Yarn V2 Vaul t, the
reci pi ent isignored and forced to be the Cr edi t Account . Enables the yToken.

«w t hdraw() : redeems the available balance-1 of yToken for the underlying token. Enables the
underlying token and disables the yToken.

*w t hdrawm maxShar es) : redeems the specified amount of yToken for the underlying token.
Enables the underlying token.

W t hdrawm maxShar es, recipient): redeems the specified amount of yToken for the
underlying token, the r eci pi ent is ignored and forced to be the Cr edi t Account . Enables the
underlying token.

W t hdrawm maxShar es, recipient, naxLoss):redeems the specified amount of yToken for
the underlying token, the reci pi ent is ignored and forced to be the Credit Account, the
maxLoss parameter is forwarded to the Vaul t . Enables the underlying token.

As Yearn V2 only works with ERC20 tokens, a Vaul t can accept deposits in ETH, but will never send
ETH back.

2.2.2.2 Uniswap V2

Connects to Uniswap V2's Rout er 02 contract.
Uni swapV2Adapt er supports the following functionality:

* swapTokensFor Exact Tokens: swaps the specified amount of t okenCQut for at most the specified
amount of t okenl n, following the pat h. Enables t okenCQut .

e swapExact TokensFor Tokens: swaps the specified amount of t okenl n for at least the specified
amount of t okenCQut , following the pat h. Enables t okenQut .

* swapAl | TokensFor Tokens: swaps the available balance-1 of t okenl n for t okenQut at a
minimum price of r at eM nRAY, following the pat h. Enables t okenQut and disables t okenl n.

Note that only swapping is allowed on Uniswap V2. The adapter allows up to 3 hops in the swapping
path, i.e., the maximum length of the path is 4. All the intermediary tokens must be whitelisted in the
adapter, this is done through Uni swapConnect or Checker, where at most 10 tokens can be

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

whitelisted. If not all the 10 addresses are set, Uni swapConnect or Checker will consider
addr esss(0) as avalid hop.

2.2.2.3 Uniswap V3

Connects to Uniswap V3's SwapRout er contract.
Uni swapV3Adapt er supports the following functionality:

* exact | nput Si ngl e: swaps the specified amount of t okenl n for at least the specified amount of
tokenQut on only one liquidity pool following the settings set in the provided
Exact | nput Si ngl ePar ans struct. The reci pi ent field of the struct is enforced to be the
Credi t Account . Enables t okenCut .

e exact Al 'l I nput Si ngl e: swaps the available balance-1 of t okenl n for t okenQut at a minimum
price of rateM nRAY on only one liquidity pool following the settings set in the provided
Exact Al | I nput Si ngl ePar ans struct. Enables t okenQut and disables t okenl n.

eexact | nput: swaps the specified amount of t okenl n for at least the specified amount of

tokenQut on at least one liquidity pool following the settings set in the provided
Exact | nput Parans struct. The recipient field of the struct is enforced to be the
Credi t Account . Enables t okenCut .

e exact Al | I nput : swaps the available balance-1 of t okenl n for t okenQut at a minimum price of
rateM nRAY on at least one liquidity pool following the settings set in the provided
Exact Al I I nput Par ans struct. Enables t okenQut and disables t okenl n.

e exact Qut put Si ngl e: swaps the specified amount of t okenQut for at most the specified amount
of tokenln on only one liquidity pool following the settings set in the provided
Exact Qut put Si ngl ePar ans struct. The reci pi ent field of the struct is enforced to be the
Credi t Account . Enables t okenCut .

e exact Qut put : swaps the specified amount of t okenQut for at most the specified amount of

tokenln on at least one liquidity pool following the settings set in the provided
Exact Qut put Par ans struct. The recipient field of the struct is enforced to be the
Credi t Account . Enables t okenCut .

Note that only swapping is allowed on Uniswap V3. The adapter allows up to 3 hops in the swapping
path, i.e., the maximum length of the path is 4. All the intermediary tokens must be whitelisted in the
adapter, this is done through Uni swapConnect or Checker, where at most 10 tokens can be
whitelisted. If not all the 10 addresses are set, Uni swapConnect or Checker will consider
addr esss(0) as a valid hop.

2.2.2.4 Balancer V2

Connects to Balancer V2's Vaul t contract.

The Balancer system allows to use internal balances for swaps, this adapter ensures internal balances
are not used. Each attached pool has a status: NOT_ALLOWED, ALLOWED, and SWAP_ONLY.
Bal ancer V2Vaul t Adapt er supports the following functionality:

The following actions are allowed on ALLOWED and SWAP_QONLY pools:

e swap: swaps t okenl n for t okenQut on only one liquidity pool, following the setting set in the
Si ngl eSwap struct. Enables t okenCQut .

*swapAl | : swaps the available balance-1 of t okenl n for t okenQut on only one liquidity pool,
following the setting set in the Si ngl eSwapAl | struct. Enables t okenQut and disables t okenl n.

* bat chSwap: allows one or more tokens to be traded on one or more liquidity pools, following the
settings set in the Bat chSwapSt ep structs, asset s and | i ni t s arrays. Enables all the tokens in
asset s that have a negative asset Del t a.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

The user Dat a field of the swap structs can be set freely by the Cr edi t Account owner. At the time of
writing, none of the deployed pools make use of this user Dat a, but it may play a role in the pools
deployed in the future. Thus, Gearbox Protocol should carefully choose which pools they allow Gearbox
V2.1 to interact with, since the behaviour of such pool is yet unknown when user Dat a is nhon-zero and
can cause security issues. (Documentation snapshot for Single Swap, Documentation snapshot for Batch
Swaps)

The following actions are allowed on ALLOWED pools:

*j oi nPool : provides liquidity to a pool, following the settings set in the Joi nPool Request . The
sender and reci pi ent parameters are enforced to be the Credi t Account. The user Dat a is
freely chosen by the Cr edi t Account owner. Enables the associated Balancer Pool Token.

*j oi nPool Si ngl eAsset : provides liquidity to a pool in a single asset. The user Dat a is set to
EXACT_TOKENS_ | N_FOR_BPT_QUT for the Joi nKi nd, followed by the specified amount of
t okenl n and the minimum amount of t okenQut . Enables the associated Balancer Pool Token.

*j oi nPool Si ngl eAsset Al | : provides liquidity to a pool in a single asset. The user Dat a is set to
EXACT_TOKENS_ | N_FOR_BPT_QUT for the Joi nKi nd, followed by the available balance-1 of
t okenl n and the minimum amount of t okenCQut, computed from m nRat eRAY. Enables the
associated Balancer Pool Token and disables t okenl n.

The user Dat a field encodes a member of the Joi nKi nd enum, followed by specialized parameters.
(Documentation snapshot)

« exi t Pool : withdraws liquidity from a pool, following the settings set in the Exi t Pool Request . The
sender and reci pi ent parameters are enforced to be the Credi t Account. The userDat a is
freely chosen by the Cr edi t Account owner. Enables the pool's underlying tokens if the balance
has more than 1 wei.

e exi t Pool Si ngl eAsset : withdraws liquidity from a pool in a single asset. The user Dat a is set to
EXACT_BPT I N FOR_ONE_TOKEN QOUT for the Exi t Ki nd, followed by the amount of BPT that will
be burned and the index of the token to be withdrawn. Enables the pool's underlying tokens if the
balance has more than 1 wei.

e exi t Pool Si ngl eAsset Al | : withdraws liquidity from a pool in a single asset. The user Dat a is
set to EXACT _BPT_IN FOR ONE TOKEN QUT for the ExitKind, followed by the available
balance-1 of BPT that will be burned and the index of the token to be withdrawn. Enables the pool's
underlying tokens if the balance has more than 1 wei and disables the BPT.

The user Dat a field encodes a member of the Exi t Ki nd enum, followed by specialized parameters.
(Documentation snapshot)

2.2.2.5 Aave V2

AaveV2_Lendi ngPool Adapt er connects to Aave V2's Lendi ngPool and supports the following
functionality:

*deposi t: provides liquidity to the specified asset market to the extent of the specified anount .
Enables the associated aToken.

e«deposit Al | : provides liquidity to the specified asset market to the extent of the available
balance-1. Enables the associated aToken and disables the specified asset .

*w t hdr aw. withdraws liquidity from the specified asset market and burns the specified anount of
aToken. If anount ==t ype(ui nt 256) . max, redeems the available balance-1 of aToken. Enables
asset . Disables the associated aToken if amount ==t ype(ui nt 256) . max.

«w t hdrawAl | : withdraws liquidity from the specified asset market and burns the available
balance-1 of aToken. Enables asset and disables the associated aToken.

Since Gearbox V2.1 does not work with rebasing tokens as borrowable assets, Gearbox Protocol
provides a wrapper for aTokens, W appedAToken. This token wraps an aToken with the following

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 11

https://web.archive.org/web/20230401175730/https://docs.balancer.fi/reference/swaps/single-swap#singleswap-struct
https://web.archive.org/web/20230403082641/https://docs.balancer.fi/reference/swaps/batch-swaps#batchswapstep-struct
https://web.archive.org/web/20230403082641/https://docs.balancer.fi/reference/swaps/batch-swaps#batchswapstep-struct
https://web.archive.org/web/20230401193315/https://docs.balancer.fi/reference/joins-and-exits/pool-joins#userdata
https://web.archive.org/web/20230401193448/https://docs.balancer.fi/reference/joins-and-exits/pool-exits#userdata
https://chainsecurity.com

exchange rate: aT. bal anceOf (t hi s)/WAT. t ot al Supply. The wrapped token is an ERC20 with
additional functionality:

edeposit: pulls and deposits the specified amount of aToken in the contract and mints the
corresponding amount of shares to the caller.

e deposi t Under | yi ng: pulls and deposits the specified amount of underlying of aToken in the
corresponding Aave V2 market, deposits the aToken in the wrapper and mints the corresponding
amount of shares to the caller.

«w t hdraw. burns the specified amount of shares and transfers the corresponding amount of
aToken to the caller.

«w t hdrawUnder | yi ng: burns the specified amount of shares, withdraws the corresponding
amount of aToken from the Aave V2 market, and transfers the corresponding amount of underlying
of aToken to the caller.

The W appedAToken is permissionless.

Gearbox V2.1 implements a second adapter for Aave V2, that allows direct liquidity provision and
aToken wrapping, AaveV2_W appedATokenAdapt er, through the W appedAToken contract.

AaveV2_ W appedATokenAdapt er connects to an aToken and supports the following functionality:

e deposit: calls WappedAToken. deposi t () with the specified amount of aToken. Enables the
associated WaToken.

edeposit Al | : calls WappedAToken. deposi t () with the available balance-1 of aToken. Enables
the associated WVAToken and disables aToken.

e«deposi t Underl ying: calls W appedAToken. deposi t Underl yi ng() with the specified
amount of aToken underlying token. Enables the associated WAToken.

edeposi t Under | yi ngAl | : calls W appedAToken. deposi t Underl yi ng() with the available
balance-1 of aToken underlying token. Enables the associated WaToken and disables the
underlying token.

*w t hdraw: calls W appedAToken. wi t hdraw() with the specified amount of VAToken. Enables
aToken.

w t hdrawAl | : calls W appedAToken. wi t hdraw() with the available balance-1 of WAToken.
Enables aToken and disables the associated WAToken.

w t hdrawuUnder | yi ng: calls W appedAToken. wi t hdr awUnder | yi ng() with the specified
amount of WAToken. Enables the underlying token.

w t hdrawuUnder | yi ngAl | : calls W appedAToken. wi t hdr awUnder | yi ng() with the available
balance-1 of WAToken. Enables the underlying token and disables the associated WAToken.

Gearbox Protocol makes available a new gateway contract to provide liquidity in aToken on Gearbox
V2.1's WaToken lending pools.

W appedATokenGat eway connects to a Gearbox's WaToken liquidity pool and supports the following
functionality:

edepositReferral : pulls the specified amount of aToken from the caller, wraps it with
W appedAToken. deposi t (), provides liquidity in the associated Gearbox's WAToken pool and
transfers the corresponding amount of dToken to the specified r ecei ver.

* r edeem redeems the previously approved specified amount of dToken from the associated liquidity
pool, unwraps the WAToken and transfers the corresponding amount of aToken to the specified
receiver.

The W appedATokenGat eway is permissionless.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

2.2.2.6 Compound V2

CompoundV2_CEr c20Adapt er connects to a Compound V2's cToken that has an ERC20 token as
underlying, and supports the following functionality:

e m nt : deposits the specified amount of underlying token in the associated market. Enables cToken.

m nt Al | : deposits the available balance-1 of underlying token in the associated market. Enables
cToken and disables the underlying token.

* r edeem redeems the specified amount of cToken. Enables the underlying token.

redeemAl | : redeems the available balance-1 of cToken. Enables the underlying token and
disables the cToken.

*r edeenmnder | yi ng: redeems an amount of cToken equals to the specified amount of underlying
token, divided by the current exchange rate. Enables the underlying token.
A similar adapter is used for the ETH market, ConpoundV2_CEt her Adapt er, its target contract will be
CEt her Gat eway instead of the cETH.
Both adapters will revert if the cToken returns a non-zero error code.

Since the external system expects native Ether in the ETH market, a gateway contract
(CEt her Gat eway) is used as the Cr edi t Account supports wrapped ETH only. The gateway contract
implements the required interfaces of the target contract, retrieves and unwraps the WETH from the
neg. sender (the Credit Account) and forwards it to the cToken contract. cToken received from
Compound are transferred onwards to the nsg. sender (the Credi t Account).

This gateway contract is permissionless and can be used by anyone. Moreover, it will revert if the
cToken returns an error.

2.2.2.7 Lido
Connects to Lido.fi which enables liquidity for staked tokens.
LidoV1 Adapter:

e submi t: stakes the given amount of WETH into Lido via the Gateway. StETH is received and
enabled at the Cr edi t Account .

esubm t Al | : stakes all available WETH balance-1 of the CreditAccount into Lido via the
Gateway. StETH is received and enabled at the Cr edi t Account . WETH is disabled as all balance
is spent.

The Adapter features a limit on how much can be staked through this adapter. This limit can be changed
by the configurator.

Since the external system expects native Ether a gateway contract (Li doV1_WETHGat eway) is used as
the Credit Account supports wrapped ETH only. The gateway contract implements the required
interfaces of the target contract, retrieves and unwraps the WETH from the nsg. sender (the
Credi t Account) and forwards it to the Lido contract. StETH received from Lido are transferred
onwards to the nsg. sender (the Cr edi t Account).

This gateway contract is permissionless and can be used by anyone.
WStETHV1:
e wWr ap: wraps given amount of stETH into wstETH. WSstETH is enabled at the Cr edi t Account .

wr apAl | : wraps all available stETH balance-1 of the Cr edi t Account . WstETH is enabled at the
Cr edi t Account , stETH is disabled as all balance is spent.

eunwrap: unwraps the given amount of wstETH into StETH. stETH is enabled at the
Credi t Account .

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

e unwr apAl | : unwraps all available stETH balance-1 of the Cr edi t Account into stETH. WssStETH
is enabled at the Cr edi t Account , wstETH is disabled since all balance is spent.

WstETHGateway:

e addLi qui di t y: add stETH liquidity to the wstETH pool of Gearbox. Note that wstETH is spent from
the Credit Account, unwrapped and deposited into the pool. The Diesel tokens are received
directly by and enabled at the Cr edi t Account .

erenoveli qui di ty: redeems LP tokens for wstETH from the pool, unwraps the wstETH into stETH
which is transferred to and enabled at the Cr edi t Account .

2.2.2.8 Curve

Multiple adapters exist which facilitate the interaction with Curve.fi.
CurveV1 2/ CurveV1l 3/ CurveV1_4 Adapters:

Exchanging:

e exchange: swaps token i of the curve pool (t okenln) for token j (tokenQut). Enables
t okenQut .

eexchange_al | : swaps all balance-1 the Credi t Account holds of token i of the curve pool
(t okenl n) for token j (t okenQut). Enablest okenQut , disablest okenl n-

e exchange_under| yi ng: swaps token i of the curve pool (t okenl n) for the underlying of token j
(t okenQut). Enables t okenCut .

eexchange_al | _underl yi ng: swaps all balance-1 the Cr edi t Account holds of token i of the
curve pool (t okenl n) for the underlying of token j (t okenCQut). Enables t okenCut, disables
t okenl n-

Adding Liquidity:

e«add_I i quidity: adds liquidity based on the amounts per token specified (t okenl n, multiple) in
exchange for Ip shares (t okenCQut). Enables t okenCut .

eadd_liquidity_one_coin: add the amount of liquidity of the specified token (t okenl n) in
exchange for Ip shares. Enables t okenCQut .

eadd_all _|'iquidity_one_coin: adds all balance-1 the Cr edi t Account has of the pool token
i specified (t okenl n) in exchange for Ip shares t okenCut . Enables t okenQut .

Removing Liquidity

erenove_liquidity: redeem Ip shares (t okenl n) for pool tokens (t okenQut , multiple). Enables
t okenQut .

« renmove_|iquidity_inbal ance: redeems Ip shares (t okenl n) for the specified pool tokens
(t okenQut). Enables t okenCut .

erenove_liquidity one_coin: redeems Ip shares (t okenln) for the specified pool token
(t okenQut). Enables t okenCut .

erenove_all _liquidity one_coin: redeems all Ip shares (t okenln) balance-1 of the
Cr edi t Account for the specified pool token (t okenQut). Enables t okenCut , disables t okenl n.

Furthermore, these adapters provide a view function cal c_add_one_coi n. Supported Metapools must
be in the form (token[O]=asset, token[1]=underlying pool).

Note that Curve.fi has some (old) pools which do not implement the default APl. Whenever this adapter is
deployed for a certain pool, extra care should be taken to ensure that this curve pool is compatible and
implements the expected interface.

Curve_ st ETH

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

This is a special version of the adapter to interact with the stETH-ETH curve pool. Since the external
system works with native Ether a gateway contract (CurveV1l _stETHGateway) is used as the
Cr edi t Account supports wrapped ETH only. The gateway contract implements the required interfaces
of the target contract, retrieves and unwraps the WETH from the nsg. sender (the Credit Account)
and forwards it to the target contract. LP tokens receive are transferred onwards to the nsg. sender (the
Credi t Account). Ether received is wrapped and forwarded to the nsg.sender (the
Cr edi t Account).

This gateway contract is permissionless and can be used by anyone.
CuveVl _Deposit Zap:

erenove_liquidity_one_coi n: redeems Ip shares of the pool (t okenl n) for token i of the pool
(t okenQut). Enables t okenCut .

erenove_all _liquidity_one_coin: redeems all Ip shares balance-1 the Credit Account
holds of the pool (t okenl n) for token i of the pool (t okenCut). Enables t okenQut, disables
t okenl n. Min amount of tokens to be received calculated based on the r at eM nRAY passed.

Caution |: Note that the Adapter exposes further functions inherited from Cur veV1Adapt er Base,
however none of these functions is present on DepositZap contracts.

Caution IlI: Older lending pool deposit zaps may differ in their API.

2.2.2.9 Convex

ConvexV1l BaseRewar dPool :
Connects to a V1 ConvexV1_BaseRewar dPool .

Since participation in a Convex reward pool isn't represented by a token, Gearbox introduces a phantom
token per pool which allows the Credi t Account to keep track of the balance. This phantom token
supports bal anceOf only. These tokens cannot be transferred. In case of closure/liquidation of a
credit account holding such assets, these assets must be converted using the multicall
functionality.

» st ake: stakes Convex LP tokens (t okenl n). The staked position is represented by the phantom
token which is enabled at the Cr edi t Account (t okenCut).

e stakeAl | : stakes all balance of the Convex LP token (t okenln). The staked position is
represented by a by the phantom token which is enabled at the Credi t Account (t okenQut).
Since all balance of t okenl n was spent, this token is disabled.

« get Rewar d: allows the Cr edi t Account to call get Rewar d() on the target contract. Enables the
tokens of the rewar dTokenMask. This mask contains all reward tokens detected when the
constructor ran.

* W t hdr aw: unstakes and enables Convex LP tokens (t okenQut) at the Cr edi t Account

*w t hdrawAl | : unstakes and enables Convex LP tokens (t okenQut) at the Credit Account.
Since all virtual balance of the phantom token was spent, disables the phantom token (t okenl n) at
the Cr edi t Account .

*w t hdrawAndUnwr ap: unstakes Convex LP tokens and unwraps them into Curve LP tokens.
Enables Curve LP tokens (t okenl n) at the Cr edi t Account .

*w t hdrawAl | AndUnwr ap: unstakes Convex LP tokens and unwraps them into Curve LP tokens.
Enables CurvelLP tokens (t okenl n) at the Credit Account. Since all virtual balance of the
phantom token was spent, disables the phantom token (t okenl n) at the Cr edi t Account .

ConvexV1_Booster:

e deposi t : deposits Curve LP tokens (t okenl n) into the booster for Convex LP tokens. Depending
on the parameter bool _stake, stakes these Convex LP tokens into a reward pool. Hence

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

depending on the boolean t okenQut is either Convex LP or the respective phantom token of the
pool, this token is enabled at the Cr edi t Account .

e deposi t Al | : deposits all Curve LP tokens (t okenl n) of the Cr edi t Account into the booster for
Convex LP tokens. Depending on the parameter bool st ake, stakes these Convex LP tokens
into a reward pool. Hence depending on the boolean, t okenQut is either Convex LP or the
respective phantom token of the pool, this token is enabled at the Cr edi t Account .

*w t hdraw. Withdraws Curve LP (t okenQut) in exchange for Convex LP (t okenl n). Enables
t okenQut .

« Wt hdr awAl | : Withdraws Curve LP (t okenQut) in exchange for all Convex LP (t okenl n) of the
Credi t Account . Enables t okenCQut , disables t okenl n.

To track participation in a Convex reward pool a phantom token is used (see
ConvexV1l_BaseRewar dPool). The ConvexV1Boost er Adapt er keeps a mapping to track pool ids to
phantom tokens. To update this mapping, the configurator can call
updat eSt akedPhant omlokensMap. This iterates through all adapters of the CreditManager this
ConvexV1_Booster adapter is connected to. For every ConvexV1l BaseRewar dPool adapter found,
the phantom token is querried and the mapping is updated.

2.2.3 Changes in Version 2

The Credit Facade has a new storage struct t ot al Debt. The current total debt is increased by
bor r onedAnount when opening a new Credi t Account and on _i ncreaseDebt () calls, and is
decreased by borrowedAnount when closing or liquidating a CreditAccount, and on
_decreaseDebt () calls. If the current debt exceeds the t ot al Debt Li mi t, the current debt cannot be
increased, and the transaction reverts. Note that even if the pool makes a loss during a liquidation, the
current debt is reduced by borrowedAnmount. The parameters currentTotal Debt and
t ot al Debt Li m t can be set by the Cr edi t Confi gur at or.

2.2.4 Changes in Version 3

» The CreditManager now stores the pool it's connected to as i nmrut abl e.

* Error Tokenl sNot | nAl | owedLi st (addr ess) has been changed to
TokenNot Al | owedExcepti on.
* The sanity check on the liquidity pool after a liquidation in

Credi t Facade. _cl oseli qui dat eAccount () has been simplified and no longer takes the
expected liquidity into account.

2.2.5 Changes in Version 6

» For UniswapV3 adapter, pair of tokens are whitelisted along with the fee level. This means users
cannot interact with UniswapV3 pools for all possible fee levels for a whitelisted pair.

2.2.6 Changes in Version 8

» The feature that allowed to add collateral to a CreditAccount on behalf of another CreditAccount
during the mul ti cal I has been removed. Now users can only add collateral to their own accounts.
If a user wants to add collateral on behalf of another account they should use the
Credi t Facade. addCol | ateral ().

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

2.2.7 Additions and clarifications to the Trust model

Any privileged role of the Gearbox System is fully trusted to behave honestly and correctly at all times. All
supported tokens are expected to be fully vetted & audited. A broken token may break the system.

The protocol and the adapters ensure security for the Gearbox protocol. The CreditFacade offers the
possibility to perform balance checks at the end of the multicalls. This is one protection for the user
against unexpected behavior of the external systems the adapters used interact with (notably unexpected
balance changes of tokensIn/Out). Generally, users, however, must trust the external system they
interact with.

This version of Gearbox introduces support to liquidate credit accounts when the owner of the
CreditAccount is blacklisted by the underlying token. While this resolves the most important issue of
blocked liquidations in case of surplus underlying to be transferred to the blacklisted owner, tokens with a
blacklist may lead to other problems. If system contracts such as CreditAccounts or the Pool are
blacklisted, the system cannot operate as intended.

This version of Gearbox features integrations with Aave V2, whose aTokens are rebasing. The
assumption is that the current linear interest model, the rate should only increase, but Aave governance
can change that. If the rate was updated to be decreasing, this would mean a loss of value in the
Credi t Account holding aToken/ WAToken. This should not threaten the system as long as the
decreasing rate allows the liquidators to liquidate before the system makes a loss.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 2

» Curve Base Adapter Misconfiguration GIE a1
* Unusable Inherited Functions GESLEE L

5.1 Curve Base Adapter Misconfiguration

(Desigi DI EETRY Risk Accepted

The Curve base adapter does not sanitize _nCoi ns and could be initialized with only one coin. Such a
misconfiguration would not have security implication, but the adapter is likely to revert on most of the
interactions.

CS-GEARV21-001

Risk accepted:

Gearbox Protocol states:

This contract is never deployed by itself, and we never have to manually enter the val ue
for this paraneter, since it's defined as constant in derived adapters.

5.2 Unusable Inherited Functions

(D (Cow) (Version 1) (ETIETED)

The contract Cur veV1Adapt er Deposi t inherits Cur veV1Adapt er Base but the inherited exchange*
and functions do not exist on the Curve's deposit zappers. These functions will be available through
Cur veV1Adapt er Deposi t but will revert if called.

CS-GEARV21-002

Risk accepted:

Gearbox Protocol states:

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

Pot ent i al

costs of changing contracts hierarchy exceed additiona

depl oynment costs.

Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0

(CL:0)-Severity Findings 1
 Wrong WaToken Distribution

(Medium)-Severity Findings 2

« Compound Adapter's redeemUnderlying() Not Executed
» Inheriting ACLTrait Includes Pause/Unpause

(Low)-Severity Findings 5
» Inconsistent Test for Reward Token Wrapper
« Missing Event
* Query of Curve's Tricrypto Pool Virtual Price
» BlacklistHelper Claimable Balance Is 1 Wei off
« UniswapConnectorChecker Missing Sanity Check

6.1 Wrong WAToken Distribution
(Correctness | High (ZZERII| Code Corrected)

The exchange rate depends on the contract's balance of aTokens and the total supply of the
WrappedAtokens:

CS-GEARV21-016

function exchangeRate() public view override returns (uint256) {
ui nt 256 supply t ot al Suppl y() ;
it (supply 0) return WAD;
return (aToken. bal ancef (address(this)) WAD) suppl y;

}

In W appedAToken. deposit (), the exchange rate is computed after the contract received the
aToken, so its balance has already been updated. This leads to a wrong computation of the distributed
shares or WVaToken.

function deposit(uint256 assets) external override returns (uint256 shares) {
aToken. transferFrom nsg. sender, address(this), assets);
shar es _deposit(assets);

}

function _deposit(uint256 assets) internal returns (uint256 shares) {
shares (assets WAD) exchangeRat e() ;
_mnt(nsg. sender, shares);

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

emt Deposit(nsg.sender, assets, shares);

}

Example:
For simplicity, we assume that the exchange rate of the aToken is 1.

User A deposits 10 aToken, the computed shares are 10 / 1 = 10 since the total supply is 0. After
this transaction, the contract has 10 aToken and the total supply is 10.

User B deposits 10 aToken, the computed shares are 10 / (20 / 10) = 5 because the contract
already holds the new 10 aToken. After this transaction, the contract has 20 aToken and the total supply
is 15.

If user A or B wants to withdraw at that point, each should get their 10 aToken back. But if user B
withdraws, the computed amount of aToken he will receiveis5 * (20 / 15) = 6. 666. .., whichis
clearly not the expected amount.

Code corrected:

The updated code does not take the balances into account anymore for the computation of the exchange
rate. Now, the exchange rate is computed as the ratio of the current Aave pool's normalized income and
the normalized income at WAToken contract deployment.

function exchangeRate() public view override returns (uint256) {
return WAD * | endi ngPool . get ReserveNor mal i zedl ncone(addr ess(underlying)) _normal i zedl ncone;

}

Doing so, the contract only sees the exchange rate grow, as long as Aave's interest rate is growing, and
the shares cannot be maniputaled by users of the WAToken contract.

6.2 Compound Adapter's r edeemnder | yi ng()
Not Executed

(D (Wiedium) (Version 1) GRS

In the ConmpoundV2_CEr c20Adapt er. _redeeninder! yi ng() and
ConpoundV2_CEt her Adapt er. _redeenlnder| yi ng() only encode the call to the target contract,
but _execut e() is not called:

CS-GEARV21-014

error abi . decode(_encodeRedeeninder| yi ng(anmount), (uint256));

This has no security implications for Gearbox, but users cannot use this function.

Code corrected:

The code has been updated to execute the call:

error abi . decode(_execut e(_encodeRedeentnder | yi ng(anmount)), (uint256));

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6.3 Inheriting ACLTrait Includes Pause/Unpause
(Design LT ICETIRY] Code Corrected)
CS-GEARV21-012

The AbstractAdapter (which is inherited by all Adapters) and the BlacklistHelper inherit ACLTrait. This
abstract contract implements pause functionality:

function pause() external {
it (! _acl.isPausabl eAdm n(nsg. sender))
revert Call er Not Pausabl eAdm nException();
_pause() ;

function unpause() external {
if (! _acl.isUnpausabl eAdm n(nsg. sender))
revert Call er Not UnPausabl eAdnm nExcepti on() ;

_unpause() ;

}

Hence contracts inheriting from ACLTrait will have external functions pause and unpause exposed.
These functions may make it look like the contract can be paused - despite no function actually being
pausable.

Code corrected:

The inheritance from ACLTrait has been removed in the Abstract Adapter and kept in
Bl ackl i st Hel per . Gearbox Protocol responded:

Abstract adapter no longer inherits ACL trait (for adapters, it could have potentially caused problens if
we introduced sonme pausabl e functions, because credit facade is, in fact, a pausable adm n, so users woul d
then be able to pause an adapter in the nulticall; for blacklist helper there is no risk so no change)

6.4 Inconsistent Test for Reward Token Wrapper

(Design {(ETVZIEETN0] Code Corrected

To check whether a reward token is wrapped, a call to the boost er () function of the contract is
performed. If the call succeeds, then the reward token is further unwrapped. However, the test whether
the second reward token is wrapped or not in the constructor of ConvexV2_BaseRewar dPool is
inconsistent. The check for is using _ext r aRewar d1 instead of _ext r aRewar d2.

CS-GEARV21-013

Code corrected:
Now boost er () is called on _ext r aRewar d2.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

6.5 Missing Event
D) (Low) (Version 1) (XL

Events should be emitted whenever an important state change happens in a smart contract. Since setting
i sl ncr easeDebt For bi dden to true when the pool occurred a loss in
Credi t Facade. _cl oseLi qui dat edAccount () is an important state change, an event may be
useful.

CS-GEARV21-010

Code corrected:
If the pool occurred a loss during liquidation, the | ncur LossOnLi qui dat i on event is emitted.

6.6 Query of Curve's Tricrypto Pool Virtual Price
D) (Low) (Version 1) (XL

In CurveCrypt oLPPri ceFeed. | at est RoundDat a(), the virtual price is queried with
curvePool . get _virtual _price(), but on the reference code provided by Gearbox Protocol
(https://arbiscan.io/address/Ox4e828A117Ddc3e4dd919b46c90D4E04678a05504#code#F3#L1) and
notably in the official curve.finance pricefeed template (https://github.com/curvefi/crypto_lp_pricing/blob/b
6fea6943d5ddf8648f05d442daad284c1757c86/contracts/LPPrice_tricrypto_ethereum.vy#L41), the
virtual price is queried from the storage variable with cur vePool . vi rtual _price().

CS-GEARV21-011

Code corrected:

The function CurveCryptolLPPriceFeed. | atest RoundData has been wupdated to use
curvePool . virtual _price() instead of curvePool . get _virtual _price().

6.7 Bl ackl i st Hel per Claimable Balance Is 1 Wel
off
D) (Low) (Version 1) (XL

In Credi t Facade. _i ncr eased ai mabl eBal ance() , the parameter bal anceBef or e has 1 wei too
many due to _i sBl ackl i st ed(). The claimable anount is computed as bal ance- bal anceBef or e
and will lack 1 wei.

CS-GEARV21-015

Code corrected:

The claimable amount has been updated to be computed as
hel per Bal ance - hel per Bal anceBefore + 1;

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 25

https://arbiscan.io/address/0x4e828A117Ddc3e4dd919b46c90D4E04678a05504#code#F3#L1
https://github.com/curvefi/crypto_lp_pricing/blob/b6fea6943d5ddf8648f05d442daad284c1757c86/contracts/LPPrice_tricrypto_ethereum.vy#L41
https://github.com/curvefi/crypto_lp_pricing/blob/b6fea6943d5ddf8648f05d442daad284c1757c86/contracts/LPPrice_tricrypto_ethereum.vy#L41
https://chainsecurity.com

6.8 Uni swapConnect or Checker Missing Sanity
Check
D) (Low) (Version 1) (XTI

The constructor of Uni swapConnect or Checker accepts an array of addresses as parameter, but the
length of the array is never checked to be <=10. So the checker could be deployed with an array of 25
addresses, only the 10 first will be saved in storage, but nunConnect or s will be 25. This will also incur
unnecessary gas cost when get Connect or s() is called.

CS-GEARV21-009

Code corrected:
The constructor has been updated to revert if more than 10 addresses are provided.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Code Duplication

(Informational] [Version 1]

CS-GEARV21-003

The function Cur veV1St ETHPool Gat eway. r enove_| i qui di ty_i nmbal ance transfers t oken0 and
t okenl in the function's body, but the dedicated function _t r ansf er Al | TokensOf can be used.

7.2 Code Inconsistencies
(Informational] [Version 1][]

CS-GEARV21-006

1. For gas optimizations, the system tries to always keep 1 wei in the balances and the standard way
to check it across the codebase is with balance <= 1, however in
Bl ackl i st Hel per. cl ai n() the check is anbunt < 2.

2. The Lido gateway transfers the full balance instead of balance-1 as everywhere else in the system
(gas optimization).

3. In the adapters, _gear boxAdapt er Type is sometimes overridden as a constant, and some other
times as a function. For consistency across the codebase, one of the two solutions should be
chosen.

Code partially corrected:
1. Changed to anbunt < 1.
2. Not addressed.
3. Not addressed.

7.3 Gas Optimizations
(Informational] [Version 1][]

CS-GEARV21-007

1. In Uni swapV2Adapt er. _par seUni V2Pat h(), pat h. | engt h could be loaded from memory to
a local variable at the beginning of the function and read from the local variable to save a M_OAD.

2.In Uni swapV2Adapt er. parseUni V2Pat h(), the function could return early if
path.length < 2,path.length > 4, orif one of the hops is not an allowed connector to save
some gas.

3.1n the Cur veV1Adapt er Base, the functions
add/ renove_liqui dity_one_coi n(ui nt 256, ui nt 256, ui nt256) do not need the

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

credi t FacadeOnl y() modifier, since
add/ renove_liquidity_one_coi n(uint 256, i nt 128, ui nt 256) have it already.

Code partially corrected:

1. The length of the array is loaded only once at the beginning of the function and stored in a local
variable.

2. The conditionnal structure has been optimized. However, the function could return early ifl en > 4
to save some gas in the case of a failure.

3. The concerned functions have been updated to call the internal
_add/ renove_liquidity_one_coi n(int128) which do not have the cr edi t FacadeOnl y()
modifier.

7.4 Unused Constants
(Informational] [Version 1]

CS-GEARV21-004
Some of the defined constants are still declared and imported, but never used. A non-exhaustive list is:
* ALLOWANCE_THRESHOLD
* EXACT_INPUT
* EXACT_OUTPUT

7.5 Wrong Comments
(Informational] [Version 1] (]

CS-GEARV21-008
Some comments in the code are wrong, here is a non-exhaustive list:

1. Wt ETHGat eway: the @ot i ce comment is wrong, the contract does not allow to convert st ETH
into W6t ETH, it allows to provide liquidity to Gearbox's Wt ETH in the form of st hETH.

2. ACLNonReent rant Trai t : the comment of the control | er Onl y() modifier is incomplete, it
only covers the case where ext er nal Cont r ol | er is false.

3. Credi t Configurator: in the constructor, the call to
credi t Manager . upgr adeCr edi t Facade has a comment that specifies
Connects creditFacade and priceOracl e, but only the Cr edi t Facade is connected.

4. CurveCrypt oLPPri ceFeed: the @otice of the | at est RoundDat a function is wrong, the
specified formula is not the one implemented.

5.Credi t Facade: In _liqui dat eExpiredCredit Account the comment "Checks if the
liquidsation . . ." contains a typo.

6. The natspec of Bal ancer V2Vaul t Adapt er . bat chSwap() specifies that the asset s must be
ordered. Nothing is enforcing the ordering and Balancer V2 does not need to have the assets
ordered.

Specifications partially corrected:

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

1. Not addressed.

2. The comment has been updated to include the case where ext er nal Cont r ol | er is true.
3. Not addressed.

4. The formula in the specification has been updated to match the implementation.

5. The typo has been corrected.

6. The mention of the assets' ordering has been removed.

7.6 saf eApprove Can Revert

(Informational] [Version 1]

CS-GEARV21-005

Theoretically, | ERC20. saf eApprove() can revert in Wt ETHGat eway. _checkAl | owance() and
WAToken. deposi t Under | yi ng() because the saf eApprove() function requires either the current
allowance or the value to be 0.

* In W6t ETHGat eway, the allowance for the Wst ETHtoken is setto t ype(ui nt 256) . max at contract
deployment, and is decreased each time Wt ETHGat eway. addLi qui di t y() is called. Also, each
time Wst ETHGat eway. addLi qui di ty() is called, the allowance check is performed, so if the
allowance is strictly smaller than the amount. But the maximum allowance is such a big number that
this will never happen in practice.

*In Wt ETHGat eway. renovelLi quidity() and WAToken. depositUnderlying() set the
allowance for Gearbox's and Aave's lending pool to the exact amount that should be pulled from the
contract. The pools are trusted to pull the exact specified amount and not less to set the allowance
back to 0. If one of the pool was to be updated and pulls less than the specified amount,
Wt ETHGat eway. r enoveli qui di ty() and WAToken. deposi t Under | yi ng() would revert.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 MetaPool With Underlying

Note that there could be a Curve Metapool with a Metabpoolbase which contains an asset which has an
underlying. The current CuveV1_Base implementation does not support interaction using the underlying
of of one of the assets in the Metapoolbase. Gearbox Protocol stated they do not aim to support this. In
practice the two most relevant base pools are 3CRV and crvFRAX, which both don't have underlyings for
their assets. If such a metapool was to be added, the swap into an underlying would be supported by the
router.

8.2 Multicall Reverts When Temporarily
Exceeding TokenLimit

Adapters don't disable t okenl n when uncertain whether all balance was spent. Such tokens will be
disabled at the end of the multicall when the full check is executed. There is a corner case where a
sequence of multicalls may revert for one credit account (as the limit would be temporarily exceeded) but
not for another (where the limit is not exceeded).

This may hinder the usage of predefined multicall sequences. Note that the problem can always be
rectified by adding a call to di sabl eToken in between.

8.3 WrappedAToken: depositUnderlying
Assumption

It's of uttermost importance that the expected amount of aToken is deposited into the wrapper contract
when shares are minted.

As argument asset s the user passes the amount of underlying to deposi t Under | yi ng() . There is an
assumption that when depositing x amount of underlying into Aave, x amount of aTokens is received in
exchange. This holds if Aave works correctly as specified.

function depositUnderlying(uint256 assets) external override returns (uint256 shares) {
under | yi ng. saf eTransf er From nsg. sender, address(this), assets);
under | yi ng. saf eApprove(address(| endi ngPool), assets);
| endi ngPool . deposi t (address(underlying), assets, address(this), 0);
shares _deposi t(assets);

}

However, this makes the contract vulnerable if Aave doesn't behave as expected.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Gearbox Protocol states:

W apped aTokens wi ||l probably be deployed only for known tokens |ike WETH or USDC,
for which said assunption can be easily validated.

@ Gearbox Protocol - Gearbox V2.1 - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 The Credit System
	2.2.2 Adapters
	2.2.2.1 Yearn V2
	2.2.2.2 Uniswap V2
	2.2.2.3 Uniswap V3
	2.2.2.4 Balancer V2
	2.2.2.5 Aave V2
	2.2.2.6 Compound V2
	2.2.2.7 Lido
	2.2.2.8 Curve
	2.2.2.9 Convex

	2.2.3 Changes in Version 2
	2.2.4 Changes in Version 3
	2.2.5 Changes in Version 6
	2.2.6 Changes in Version 8
	2.2.7 Additions and clarifications to the Trust model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Curve Base Adapter Misconfiguration
	5.2 Unusable Inherited Functions

	6 Resolved Findings
	6.1 Wrong WaToken Distribution
	6.2 Compound Adapter's redeemUnderlying() Not Executed
	6.3 Inheriting ACLTrait Includes Pause/Unpause
	6.4 Inconsistent Test for Reward Token Wrapper
	6.5 Missing Event
	6.6 Query of Curve's Tricrypto Pool Virtual Price
	6.7 BlacklistHelper Claimable Balance Is 1 Wei off
	6.8 UniswapConnectorChecker Missing Sanity Check

	7 Informational
	7.1 Code Duplication
	7.2 Code Inconsistencies
	7.3 Gas Optimizations
	7.4 Unused Constants
	7.5 Wrong Comments
	7.6 safeApprove Can Revert

	8 Notes
	8.1 MetaPool With Underlying
	8.2 Multicall Reverts When Temporarily Exceeding TokenLimit
	8.3 WrappedAToken: depositUnderlying Assumption

