PUBLIC

Code Assessment

of the Core & Oracles V3.10
Smart Contracts

March 31, 2025

Produced for

QS} Gearbox

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

N o o b~ WDN P

Informational

@ Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG

10
11
12
14

https://chainsecurity.com

1 Executive Summary

Dear Gearbox Team,

Thank you for trusting us to help Gearbox with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Core & Oracles V3.10
according to Scope to support you in forming an opinion on their security risks.

Gearbox implements V3.10 of the Core protocol and the oracles. The new version aims to make the
system compatible with the new governance module. Moreover, it adds partial liquidations.

The most critical subjects covered in our audit are the correctness and potential regressions of the
refactored code, the correctness of partial liquidations and the new Tumbler rate keeper. Security
regarding all the aforementioned subjects is high.

The general subjects covered are gas efficiency, testing, documentation and specification. Security
regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code

commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Core & Oracles V3.10 repository
based on the documentation files. The table below indicates the code versions relevant to this report and

when they were received.

Core
V | Date Commit Hash Note
1 | 8Jan 1ba776314057e3dbcb05d0fb65e4d86547e830 | Initial Version
2025 di
2 | 15 Jan 66f9b8e7be833964c935cd43d1e8002b9f08d9e | Version updated during review
2025 a
3 | 24 Feb f9894ch5ce8c0f6fd3dd4b233e8d72f953d2fb05 | First fixes iteration
2025
4 | 31 Mar 562ccc19210fe43c170c4451eb35fb786982ca4 | Final Version
2025 3
Oracles
V | Date Commit Hash Note
1 | 8Jan 2025 951b71670465e2f1b86d3140117d6e74cf55ee7a Initial Version
2 | 17 Mar 2025 | fc8d3a0ab5bd7eb50ce3f6b87dde5cd3d887bafe Final Version
Integrations
V | Date Commit Hash Note
1 | 31 Mar 2025 | 361fb5c04dflla42d43bd46a2befcfo8daba8ce3 Initial Version
2 | 31 Mar 2025 | 9e56¢h66d59ab27bad0c04339d3b401c230e7ae?2 Final Version

For the Cor e solidity smart contracts, the compiler version 0. 8. 17 was chosen.

For the Or acl es solidity smart contracts, the compiler version 0. 8. 23 was chosen.

For the | nt egr at i ons solidity smart contracts, the compiler version 0. 8. 23 was chosen.

For the Cor e, the following contracts are in scope:

cor e:
Bot Li st V3. sol
Def aul t Account Fact or yV3. sol
Gear St aki ngV3. sol
PriceOracl eV3. sol

credit:
Cr edi t Account V3. sol
Cr edi t Confi gur at or V3. sol
Cr edi t FacadeVs. sol

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 5

https://github.com/Gearbox-protocol/core-v3/tree/1ba776314057e3dbcb05d0fb65e4d86547e830d1
https://github.com/Gearbox-protocol/core-v3/tree/1ba776314057e3dbcb05d0fb65e4d86547e830d1
https://github.com/Gearbox-protocol/core-v3/tree/66f9b8e7be833964c935cd43d1e8002b9f08d9ea
https://github.com/Gearbox-protocol/core-v3/tree/66f9b8e7be833964c935cd43d1e8002b9f08d9ea
https://github.com/Gearbox-protocol/core-v3/tree/f9894cb5ce8c0f6fd3dd4b233e8d72f953d2fb05
https://github.com/Gearbox-protocol/core-v3/tree/562ccc19210fe43c170c4451eb35fb786982ca43
https://github.com/Gearbox-protocol/core-v3/tree/562ccc19210fe43c170c4451eb35fb786982ca43
https://github.com/Gearbox-protocol/oracles-v3/tree/951b71670465e2f1b86d3140117d6e74cf55ee7a
https://github.com/Gearbox-protocol/oracles-v3/tree/fc8d3a0ab5bd7eb50ce3f6b87dde5cd3d887bafe
https://github.com/Gearbox-protocol/integrations-v3/tree/361fb5c04df11a42d43bd46a2befcf98da6a8ce3
https://github.com/Gearbox-protocol/integrations-v3/tree/9e56cb66d59ab27bad0c04339d3b401c230e7ae2
https://chainsecurity.com

Cr edi t Manager V3. sol
Cr edi t Manager V3_USDT. sol
l'ibraries:
Bal ancesLogi c. sol
Bi t Mask. sol
Col | at eral Logi c. sol
Const ant s. sol
Cr edi t Account Hel per. sol
Credi tLogi c. sol
Quot asLogi c. sol
USDTFees. sol
pool :
GaugeVs. sol
Li near | nt er est Rat eMbdel V3. sol
Pool Quot aKeeper V3. sol
Pool V3. sol
Pool V3_USDT. sol
Tunbl er V3. sol
traits:
ACLTrait. sol
ContractsRegi sterTrait. sol
Pri ceFeedVal i dationTrait. sol
Reent rancyGuardTrait. sol
Sani t yCheckTrai t. sol
USDT_Tr ansf er. sol

For the O acl es, the following contracts are in scope:

or acl es:

bal ancer:
BPTSt abl ePri ceFeed. sol
BPTWei ght edPri ceFeed. sol

curve:
CurveCrypt oLPPri ceFeed. sol
CurveSt abl eLPPri ceFeed. sol
Cur veUSDPr i ceFeed. sol

er c4626:

ERC4626Pr i ceFeed. sol
i do:

Wst ETHPr i ceFeed. sol
nmel | ow:

Mel | owLRTPri ceFeed. sol
updat abl e:

Redst onePri ceFeed. sol
yearn:

Year nPri ceFeed. sol
BoundedPri ceFeed. sol
Conposi t ePri ceFeed. sol
LPPri ceFeed. sol
Pri ceFeedPar ans. sol
Si ngl eAsset LPPri ceFeed. sol
Zer oPri ceFeed. sol

For the Integrations, the scope is limited to the scope defined in the dedicated report:
https://www.chainsecurity.com/security-audit/gearbox-v3-integrations.

(S: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/gearbox-v3-integrations
https://chainsecurity.com

2.1.1 Excluded from scope

Any contracts not explicitly listed above are out of the scope of this review, especially Fi xedPoi nt and
LogExpMat h are assumed to work correctly, Pendl e TWAPPTPr i ceFeed and Pyt hPri ceFeed are out
of the scope of this review. Third-party libraries are out of the scope of this review. In particular,
OpenZeppelin libraries and the contracts inherited by the Redstone price oracle are considered to
function as expected. The parameters of the system are assumed to be properly set. The system
integrates with external protocols through adapters which are assumed to operate properly, their
implementation is not part of the current review. A dedicated review for the adapters can be found at
Gearbox V3.10 Integrations. The compatibility with previously deployed contracts, typically core systems
of Gearbox V1 and V2, is out of the scope of this review. The configuration of the system by its admins is
beyond the scope of this review. Configuration includes but is not limited to the selection of tokens which
will be added to the system as well as their parametrization. Economic attacks to the protocol are beyond
the scope of this review.

This review focuses on the changes from V3 to V3.10, for a holistic understanding of the system, refer to
the reports of V3:

« Core: https://www.chainsecurity.com/security-audit/gearbox-v3-core
« Integrations: https://www.chainsecurity.com/security-audit/gearbox-v3-integrations

« Oracles: https://www.chainsecurity.com/security-audit/gearbox-v3-oracles-2

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Gearbox offers an upgrade to Gearbox protocol from Version 3 (V3) to Version 3.10 (V3.10). The
upgrade affects all components of the protocol, namely the core, the oracles and the integrations. This
review is concerned with the core and the oracles.

2.2.1 Core

For the Core the most important changes are the following:

* Partial liquidations: Gearbox allows credit accounts to hold a great number of tokens as
collateral. As some of the tokens might not be liquid, an account might not be fully liquidatable
since this might not be profitable for the liquidators. In this case, a credit account can only be
partially liquidated. Liquidation can happen either when an account is unhealthy or when the
facade is expired. A partial liquidation consists of a user providing an amount of underlying in
exchange for an amount of a token held by the credit account. For the liquidation to be
profitable, the liquidator gets the token on a discount (I i qui dationDi scount or
I i qui dati onDi scount Expi red) compared to its relative price with the underlying.
Moreover, not the whole repaid amount goes to debt decrease. A part of it goes to the treasury
as a fee (f eeLi qui dat i onExpi red or f eeLi qui dati on).

* All tokens are quoted: V3 introduced the mechanism of quoted tokens. Users have to buy the
capacity to hold a quoted token. The mechanism is explained in detail in our GearboxV3 report.
In V3.10, all tokens but the underlying are quoted. This greatly simplifies how the protocol
handles the enabled tokens for a credit account. In V3.10, the only way to enable or disable a
token is by updating the quota of a credit account.

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 7

https://www.chainsecurity.com/security-audit/gearbox-v3-integrations
https://www.chainsecurity.com/security-audit/gearbox-v3-core
https://www.chainsecurity.com/security-audit/gearbox-v3-integrations
https://www.chainsecurity.com/security-audit/gearbox-v3-oracles-2
https://www.chainsecurity.com/security-audit/gearbox-v3-core
https://chainsecurity.com

* Phantom tokens: These tokens are implemented by Gearbox to represent non-tokenized
positions (see Zircuit integration). The protocol can now handle such tokens.

e Tumbler: V3.10 aims to be more flexible about how the quota rates are determined. The
Tumbler is a simplified version of the Gauge contract which allows the configurator of the
contract to arbitrarily specify the rates.

 Access control: It has been simplified as the governance update will take care of it.

 Sanity checks: Various sanity checks have been implemented. A multicall will revert if an
external call requiring safe prices is done on a CA holding some forbidden tokens.

2.2.2 Oracles

The changes in the oracles are mostly related to the bigger upgrade in the governance (see relevant
report). The contract type is standardized. The new type makes use of this format: DOMAI N: : POSTFI X.
For more information about how the contract type is used please refer to the governance report.
Moreover, the most privileged role of the price oracles is the owner instead of some addresses set in the
ACL (access control list) contract.

2.2.3 Trust Model and Roles

As discussed already, the access control has been simplified as it's handled by the governance module.
We discuss the new trust model in the governance report.

2.2.4 \Version 2

introduces Al i asedLossPol i cyV3. It introduces a fine-grained control over the conditions
that allow for liquidations with loss. This is a loss policy that supports 3 different modes:

* For bi dden: it doesn't allow for liquidations.

» Per m ssi oned: only users with LOSS LI QUI DATORrole

e Per mi ssi onl ess: any user can liguidate. In such a case, the configurator can set some
aliased price feeds that are used to check that an account is indeed liquidatable.

Moreover, the Cr edi t Conf i gur at or can now make all the tokens but the underlying quoted by calling
makeAl | TokensQuot ed() .

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E
(CD-Severity Findings ¢
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(&)-Severity Findings 0

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 1
« Excessive Gas Burnt for Static Calls

(Low)-Severity Findings 3

» Missing Input Sanitization
+ PQK Reads the Wrong Gauge on Gauge Update

* Wrong Specifications (EuSX i

Informational Findings 1

* Inconsistent "Is Contract" Checks (Sl eI T=r]

6.1 Excessive Gas Burnt for Static Calls

(D (Wiedium) (Version 1) IR

_tryWt hdrawPhant onifoken() performs a get Phant omlTokenl nf o() staticcall to an arbitrary
address. For a staticcall, 63/64 of the gas available is given by default. If state change takes place, during
a staticcall, the call reverts by consuming all the gas. This case is quite usual given that WETH is
extensively used within the system. WETH implements a fallback function which is invoked during the
static call and performs a state change i.e., mints WETH for the received ETH. As a result, paths such as
collateral withdrawal or partial liquidations become very expensive.

CS-GEARPROTOV310-005

Code corrected:

The call is done with st ati cCal | Opti onal Saf e(), which will burn at most 30_000 gas in case of
failure.

6.2 Missing Input Sanitization

(D (Cow) (Version 1) XTI

In Tunbl er V3, epochLengt h_is never checked to be in an acceptable range

CS-GEARPROTOV310-004

Code corrected:

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

The epochLengt h_ is enforced to be at most 28 days.

6.3 PQK Reads the Wrong Gauge on Gauge
Update
(Correctness J(ETINZIZITR) Code Corrected

In the function Pool Quot aKeeper . set Gauge(), the old gauge is queried for i sTokenAdded(), but
this information should be queried from the new gauge instead.

CS-GEARPROTOV310-003

Code corrected:
The code has been updated to query the new gauge.

6.4 Wrong Specifications
(Correctness (ETYAIETTRY Code Corrected)

The specs of the Cr edi t Manager V3 constructor specify:

CS-GEARPROTOV310-006

Adds pool's underlying as collateral token with LT = 0.
But the constructor sets:

| t Underlying PERCENTAGE _FACTOR - _liquidationPrem um - _feelLiquidation

Code corrected:

The specs have been corrected to reflect the actual implementation.

6.5 Inconsistent "Is Contract" Checks

(Informational) (Version 1)

The codebase uses two different ways to check for an address being a contract, even though the
underlying checks are the same, using only one of them would make the codebase more consistent.

CS-GEARPROTOV310-002

e addr ess(0Oxabc). code. |l ength == 0/address(0Oxabc).code.length > 0
! Address. i sContract (Oxabc) /Address. i sContract (0Oxabc)

Code corrected:

All the checks for contract addresses should be done using the Addr ess. i sContract function.

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Misleading Error Name
(Informational] [Version 1]

CS-GEARPROTOV310-001

1. The error UnknownMet hodExcepti on emitted by CreditFacadeV3. _rmulticall () in the
case fl ags & SKI P_COLLATERAL_CHECK FLAG ! = 0 is misleading as the function selector is
known in the system, but may be disabled in some callpaths

I:$: Gearbox - Core & Oracles V3.10 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Core
	2.2.2 Oracles
	2.2.3 Trust Model and Roles
	2.2.4 Version 2

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Excessive Gas Burnt for Static Calls
	6.2 Missing Input Sanitization
	6.3 PQK Reads the Wrong Gauge on Gauge Update
	6.4 Wrong Specifications
	6.5 Inconsistent "Is Contract" Checks

	7 Informational
	7.1 Misleading Error Name

