

PUBLIC

Code Assessment

of the BAMM

Smart Contracts

June 19, 2024

Produced for Frax Finance

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 14

7 Informational 22

8 Notes 24

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Frax Finance,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of BAMM according to Scope to
support you in forming an opinion on their security risks.

Frax Finance implements BAMM, a Borrow AMM, that wraps Fraxswap LP tokens and allows users to
borrow the two underlying assets of the pair.

The most critical subjects covered in our audit are the system's solvency, the precision and correctness
of arithmetic operations and oracle manipulation resistance. We found that the security of the former two
topics is high. Oracle manipulation resistance is high, especially since the BAMM does not rely on an
oracle as a traditional Lending protocol would, however, we emphasize the costs and risks of oracle
manipulation in Oracle manipulation on FIFO L2s.

Other general subjects covered are rounding direction correctness and denial of service. We found that
the rounding direction has generally been implemented correctly and only minor denial of service
patterns were found and documented in Denial of Service against liquidations and Denial of Service
against redeeming and executing actions.

Frax Finance has been very responsive to our findings and has addressed most of the issues we
reported. The remaining issues are minor and do not pose a significant problem.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 8

• Code Corrected 6

• Risk Accepted 2

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the BAMM repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

dev-frax-bamm

V Date Commit Hash Note

1 18 April 2024 10de29e545a5e68735785f302103190f2636dad5 Initial Version

2 20 May 2024 ca3dba642e7e93e63cdbf1b9c89b57c54dd40ace Version 2

3 14 June 2024 876080e6ae0fd5d364e4b1a39bb2407820a57deb Version 3

dev-fraxswap-v3

V Date Commit Hash Note

1 28 March 2024 7b4826fcfc1d8bddb07dfebfe7e973be934ad048 Initial Version

For the solidity smart contracts, Solidity 0.8.23 is specified. As no EVM version is fixed, the project
compiles to Shanghai, Solidity 0.8.23 default EVM version.

The following solidity files were considered in scope:

From the dev-frax-bamm repository:

• src/contracts/BAMMERC20.sol

• src/contracts/BAMM.sol

• src/contracts/factories/BAMMFactory.sol

• src/contracts/FraxswapOracle.sol

• src/contracts/interfaces/IRateCalculatorV2.sol

• src/contracts/interfaces/IVariableInterestRateV2.sol

• src/contracts/libraries/BitMath.sol

• src/contracts/libraries/FixedPoint.sol

• src/contracts/libraries/UQ112x112.sol

• src/contracts/VariableInterestRate.sol

From the dev-fraxswap-v3 repository, only the FraxswapRouterMultihop.sol was considered. It
was not fully reviewed, only its interaction with BAMM, whether it is functioning as expected in the context
of BAMM swapping tokens, as well as ensuring that no value is leaking during the interactions was
considered.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope
Anything not cited above was considered out of scope. Economic model of the project and the sanity of
parameters is out of scope as well.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Frax Finance offers BAMM, a Borrow AMM, that wraps Fraxswap LP tokens and allows users to borrow
the two underlying assets of the pair. BAMM specificity relies on the fact that the loan-to-value ratio of the
position is independent of the underlying borrowed assets' price, and the only way for a vault to be
insolvent is because of the accumulated interest.

2.2.1 BAMM
The BAMM is designed to be interacted with by 3 different classes of users:

• Liquidity providers (LPs) who provide liquidity to the BAMM by depositing Uniswap/Fraxswap LP
tokens. Their share of the liquidity is accounted for by minting BAMM tokens. LPs can redeem LP
tokens by burning their BAMM tokens.

• Borrowers can borrow the underlying assets of the LP token by overcollateralizing their vault and
unwrapping the LP tokens into the underlying assets. Borrowers can borrow or repay loans, add or
remove tokens from their vault and swap them into the underlying pool.

• Liquidators can liquidate vaults that are undercollateralized by swapping the vault's tokens in the
underlying pool to balance the vault before wrapping them into LP tokens, effectively closing the
position. Liquidators get a portion of the liquidated position for their action.

2.2.1.1 Liquidity providers:
The two functions that can be used by liquidity providers are mint() and redeem(). Before anything, in
both functions, interests are accrued in the system by calling _addInterest() and the underlying pool
is synced to execute TWAMMs with pair.sync().

• mint(): Given an amount of LP tokens, transfer the tokens from the message sender to the
contract and mint the corresponding amount of BAMM tokens to the specified recipient.

• redeem(): Given an amount of BAMM tokens, burn the tokens from the message sender and
transfer the corresponding amount of LP tokens to the specified recipient.

When the borrower borrows from the BAMM, the LP tokens are burned and the borrower receives
underlying tokens. As a consequence, the liquidity providers won't receive pool swap fees for the
borrowed LPs. The interest generated by the BAMM protocol should be enough for the LPs to be
incentivized to provide liquidity to the protocol as opposed to just holding their LP tokens. In theory, a
liquidity provider can receive fewer tokens during redemptions, than what he put into BAMM during mint.

2.2.1.2 Borrowers:
For each borrower, the contract keeps track of his position with a vault. The vault is a struct that contains
the following fields:

• token0: The amount of token0 in the vault. This includes token0 being rented from the protocol as
well as potential collateral that the borrower has added to the vault.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• token1: The amount of token0 in the vault. This includes token1 being rented from the protocol as
well as potential collateral that the borrower has added to the vault.

• rented: The unscaled amount of sqrt(#token0 * #token1) that is being rented. This field
scaled by rentedMultiplier represents the real amount being rented.

The solvency of a vault is determined by the following formula:

ltv ≔ rented * rentedMultiplier
√ token0 * token1

solvent ≔ (rented = 0 || ltv < solvencyThreshold)
Each borrower can perform the following actions as long as the updated vault remains solvent:

• Add tokens to the vault.

• Remove tokens from the vault.

• Swap tokens from the vault.

• Borrow tokens from the protocol and have them added to the vault (increase rented).

• Repay tokens to the protocol and have them removed from the vault (decrease rented).

• Close their position, effectively repaying the user loan, and sending the remaining tokens to the
user.

All of these actions can be performed by calling executeActions() (or executeActionsAndSwap
when a swap should be executed). The function allows any combination of the actions described above
in a single call, except for borrowing and repaying/closing the position in the same call. The actions are
executed in the following order and the solvency of the vault is only checked at the very end of the
function:

1. Borrow tokens.

2. Add tokens to the vault.

3. Execute the swap.

4. Repay the user's loan.

5. Send tokens from the vault to the user. (in case the position is being closed: all tokens).

Adding and removing tokens

A user can always add more tokens to their vault as this essentially increases the collateralization ratio of
their vault. The user can also remove tokens from their vault as long as the vault remains solvent given
the formula described above.

Borrowing tokens

Given some amount of sqrt(x*y) to be borrowed, the contract computes the amount of LP to burn and
adds the corresponding amount of tokens to the vault. Given that the amount of tokens obtained follows
the ratio of the underlying pool, should the user want to only borrow one of the two tokens and have their
collateral in the other token, they will have to add the desired collateral and swap some tokens for the
desired token. The debt of the user is denominated in terms of sqrt(x*y) and not in LP tokens to avoid
malicious actors creating bad debt in the system by increasing the value of the LP token by donating to
the underlying pool for example.

Repaying tokens

Given the amount of sqrt(x*y) to be repaid, including the interest accrued, the contract computes the
amount of LP to mint and removes the corresponding amount of tokens from the vault. A position can be
partially or fully repaid.

Swapping tokens

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Given some swap parameters, the contract will swap the user vault's tokens through the Fraxswap
Router Multihop. The caller can specify the amount of tokens to be swapped, the minimum amount of
tokens to receive, and the path of the swap. The contract will execute the swap and update the vault
accordingly.

2.2.1.3 Liquidators:
In the BAMM, insolvent positions can be liquidated by anyone. Liquidations can be triggered by calling
liquidate() and consist of selling one of the Vault's tokens to the underlying pool to balance the Vault
before minting some LP to repay part or all the position. It works as follows:

1. The spot price of the underlying pools is compared to its TWAP to ensure that the pool is being
manipulated at the time of the liquidation, this is done using the FraxswapOracle.

2. In the case the amount of token to be sold is larger than one of the following, it is capped to the
smallest amount of:

• 1/10th of the vault's balance

• 1/10th of the underlying pool's total liquidity

In most cases, even swapping a small amount of the vault balance is sufficient to bring the vault to
an overcollateralized state. Limiting the sold value also prevents high slippage swaps.

3. The amount of tokens to be sold is swapped in the underlying pool.

4. Several checks are performed:

• In case of a partial liquidation the token that has been sold should still be in excess in the
vault.

• In case of a full liquidation, the vault's assets should be in the same ratio as the underlying
pool given some error margin.

5. The liquidator is given a fee of 1% of the liquidated assets.

6. The liquidity is added back to the pool and the LP tokens are minted to repay the position:

• If the liquidation covers the entire debt of the vault, the debt is nullified and the remaining
tokens are left in the vault. This case also includes partial liquidations if they were able to
cover the entire debt.

• Otherwise, in case of a partial liquidation that could not cover the entire debt, the debt is
reduced by the amount of tokens sold and the remaining tokens are left in the vault.

• Finally if none of the cases above match, the liquidation is not able to cover the entire debt
and the part of the debt that was not covered is left in the system as bad debt. The bad
debt is socialized among the LPs of the system. Given that the BAMM's solvency is
independent of the price of the two underlying tokens, Such a case should not frequently
since, for it to happen, the following conditions should be met, and liquidators should not
have liquidated the vault before:

• Interests have accumulated to the point that the vault is not only insolvent
(according to _solvent()) but also has a loan-to-value ratio greater than 1.

• The liquidation trade should not bring the vault back to solvency. This can happen
when the token proportions of the vault are already very close to the one of the
underlying pool, meaning that the trade will not have a significant impact on the
vault's solvency (sqrt(x*y) will not increase a lot after the trade).

7. The vault doesn't need to be solvent after a liquidation, it could be that several partial liquidations
are needed to make the vault solvent again.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.1.4 Utilization and interest rates:
The interest rate of the protocol is determined by the utilization rate. The utilization is defined as the ratio
of the total amount of sqrt(x*y) borrowed to the total amount of sqrt(x*y) managed by the protocol.
The logic in the VariableInterestRate contract is used to calculate the interest rate and is similar to
the one being used in FraxLend which is explained in detail in the FraxLend documentation.

The model used here is a linear rate that allows for two linear functions to be defined. The slope of these
two functions is updated over time with a Time-weighted Variable Interest rate. When the utilization is
low, the slope will decrease. If utilization is high, the Vertex and Max Rate will increase. In short the less
the utilization is, and the longer the time it has been low, the lower the new interest rate will be. On the
other hand, the higher the utilization is, and the longer the time it has been, the higher the new interest
rate will be. In the case of the BAMM protocol, when the utilization is between 72.5% and 82.5%, the
target utilization range, the interest rate is constant over time given that the utilization does not change.

2.2.2 BAMM Factory
The BAMM factory is a simple factory contract that allows the creation of new BAMM contracts. The
implementation contract for BAMM can be set using setCreationCode() by the owner of the factory
only once. Anyone can then create new BAMM contracts by calling createBAMM() with a given pair
address. The pair address must be a valid Fraxswap pair address. The factory allows for deploying
contracts whose init bytecode size is greater than 24KB by storing it in 2 separate contracts and
concatenating their content before deploying the contract.

2.2.3 FraxswapOracle
The FraxswapOracle is a stateless contract that allows for querying the TWAP of a Fraxswap pair given
some period. The contract queries the pair's observation history in a binary search fashion to find the
TWAP of the period given.

2.2.4 Trust Model
The underlying tokens of the pool are expected to be regular ERC20 tokens that are not rebasing and
don't have fees on transfers. The owner of BAMMFactory is assumed to be trusted as they can set the
implementation contract for the BAMM contracts.

Version 2 Version 32.2.5 Changes in and
Both versions do not introduce any significant changes to the system, the modifications are
implementations of fixes to the issues found in the initial version of the contracts.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 9

https://docs.frax.finance/fraxlend/advanced-concepts/interest-rates
https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Risk AcceptedDenial of Service Against Redeeming and Executing Actions

• Risk AcceptedBAMMFactory Does Not Support Contracts Smaller Than 20500 Bytes

5.1 Denial of Service Against Redeeming and
Executing Actions
Design Low Version 1 Risk Accepted

CS-FRAX_BAMM-003

The function BAMM.redeem() and executeActionsAndSwap() performs the following check before
returning:

if (!_isValidUtilityRate({ reserve0: reserve0, reserve1: reserve1, pairTotalSupply: pairTotalSupply })) {
 revert InvalidUtilityRate();
}

A malicious actor could front-run call to those functions to make them revert by either:

• redeeming a large amount of LP tokens to increase the utilization of the contract and make the
check fail. Note that this requires the attacker to hold a large amount of BAMM tokens in the first
place.

• borrowing a large amount of tokens to max out the utilization and repaying just after the target
transaction. This could be made feeless given that the interest would not accrue in the meantime if
all transactions are made in the same block.

Risk accepted

Frax Finance answered:

Not possible and expensive on mainnet because you can go around it using flashbots. On L2s like
Fraxtal it might be possible, but the attacker needs to do it blindly for every block, because the
attacker can not know when users are going to use the BAMM.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5.2 BAMMFactory Does Not Support Contracts
Smaller Than 20500 Bytes
Design Low Version 1 Risk Accepted

CS-FRAX_BAMM-011

The BAMMFactory.setCreationCode() function includes some logic in the case
_creationCode.length < 20_500. However, in such case, setCreationCode() would always
revert with a slice_outOfBounds error, from the call to
BytesLib.slice(_creationCode, 0, 20_500). Similarly, createBamm() cannot handle such a
case given that SSTORE2.read(contractAddress2) would revert with an underflow since the
contract would be empty in that case, while SSTORE2.read() expects at least 1 byte that is used as
DATA_OFFSET.

Risk accepted

Frax Finance answered:

This change is only required if BAMM.sol contract size is less than 20.5kb. This will not happen in
the current spec.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedIncorrect Fee Computation

• Code CorrectedBAMM Does Not Always Account for Potential Pair Fees

Low -Severity Findings 6

• Code CorrectedContract Does Not Implement Interface

• Code CorrectedFloating Dependencies Versions

• Code CorrectedFloating Pragma

• Code CorrectedRounding Direction When Minting

• Code CorrectedBAMM._addTokensToVault() Permit When Closing the Vault Can Cause Reverts

• Code CorrectedFraxOracle Does Not Handle Potential Overflows in Pairs

Informational Findings 7

• Code CorrectedInitializable Used for Non-Upgradeable Contract

• Code CorrectedMisleading Comments

• Code CorrectedProject Uses a Deprecated Library

• Code CorrectedContract Still Has TODOs

• Code CorrectedIncorrect NatSpecs

• Code CorrectedGas Savings

• Code CorrectedcalcRent() Missing Reentrancy Modifier

6.1 Incorrect Fee Computation
Correctness Medium Version 1 Code Corrected

CS-FRAX_BAMM-001

In BAMM._addInterest(), the fee to be sent to the factory's fee receiver if specified is computed as
follows:

address feeTo = IBAMMFactory(factory).feeTo();
if (feeTo != address(0)) {
 // accrue fee
 uint256 fee = (sqrtInterest * FEE_SHARE) / 10_000;
 uint256 feeMintAmount = (fee * iBammErc20.totalSupply()) /
 (sqrtBalance + ((uint256(sqrtRented) * rentedMultiplier) / PRECISION));

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

 iBammErc20.mint(feeTo, feeMintAmount);
}

However, the computation of feeMintAmount does not account for the rentedMultiplier in the
numerator. This means that as the interest accrues and the rentedMultiplier increases, the fee sent
to the factory's fee receiver will decrease given some fixed rented amount of sqrt(x,y).

Code corrected

The computation of feeMintAmount has been corrected to account for the rentedMultiplier in the
numerator.

6.2 BAMM Does Not Always Account for Potential
Pair Fees
Design Medium Version 1 Code Corrected

CS-FRAX_BAMM-002

BAMM contract intended to work with FraxswapPair contracts, that might have fee enabled, where 1/6th
of the growth in sqrt(k) is minted as liquidity. This fee is accounted for in
BAMM._calcMintedSupplyFromPairMintFee() function which is used during borrowing and
repayment of the debt. However, in functions, this fee is not accounted for:

• In mint(), bammOut will be overestimated.

• in redeem(), lpOut will be underestimated.

• in _addInterest(), since sqrtBalance will be overestimated both the utility rate and the interest
rate will be underestimated.

• in _currentUtilityRate(), since sqrtBalance will be overestimated, the utility rate will be
underestimated.

• In liquidate(), the computation of lpTokenToLiquidity and sqrtToLiquidity also do not
account for the fee.

This means for example that it is more beneficial for a BAMM liquidity provider to mint() BAMM tokens
when the fee hasn't been minted for a long time, and to redeem() when the fee has been minted
recently.

Code corrected

The pair's fees are now accrued in Bamm._addInterest() which is called at the beginning of each
external function and after each action that could have changed the reserves or the supply of the pair.

6.3 Contract Does Not Implement Interface
Design Low Version 1 Code Corrected

CS-FRAX_BAMM-013

The BAMM contract uses IFraxswapOracle to call the FraxswapOracle contract. However, the
FraxswapOracle contract does not implement IFraxswapOracle. Such separation of interface and

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

implementation is not a good practice as changing in implementation may break the contract that uses
the old interface and the compiler would not be able to catch such errors.

Code corrected

The FraxswapOracle contract now implements the IFraxswapOracle interface.

Additionally, changes were made such that BAMM, BAMMFactory and BAMMERC20 now implement their
respective interfaces. Similarly VariableInterestRate implements IVariableInterestRate
instead of IRateCalculatorV2 as done previously.

6.4 Floating Dependencies Versions
Design Low Version 1 Code Corrected

CS-FRAX_BAMM-004

The versions of the contract libraries in package.json are not fixed. Please consider the following
example:

"@openzeppelin/contracts": "^5.0.2",

The caret ^version will accept all future minor and patch versions while fixing the major version. With
new versions being pushed to the dependency registry, the compiled smart contracts can change. This
may lead to incompatibilities with older compiled contracts. If the imported and parent contracts change
the storage slot order or change the parameter order, the child contracts might have different storage
slots or different interfaces due to inheritance.

In addition, this can lead to issues when trying to recreate the exact bytecode.

Code corrected

package.json has been updated to fix the versions of the contract libraries.

6.5 Floating Pragma
Design Low Version 1 Code Corrected

CS-FRAX_BAMM-005

Frax Finance uses floating pragmas in the various contracts and foundry.toml does not fix a Solidity
version. Contracts should be deployed with the same compiler version and flags that have been used
during testing and audit. Locking the pragma helps to ensure that contracts do not accidentally get
deployed using, for example, an outdated compiler version that might introduce bugs that affect the
contract system negatively
(https://github.com/SmartContractSecurity/SWC-registry/blob/b408709/entries/SWC-103.md).

Code corrected

The floating pragma versions have been replaced by fixed pragmas in the contracts, and the Solidity
version has been set to 0.8.23 in foundry.toml file.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 16

https://github.com/SmartContractSecurity/SWC-registry/blob/b408709/entries/SWC-103.md
https://chainsecurity.com

6.6 Rounding Direction When Minting
Design Low Version 1 Code Corrected

CS-FRAX_BAMM-008

Given the following code snippet from the BAMM.mint() function:

uint256 sqrtBalance = (balance * sqrtReserve) / pairTotalSupply;
uint256 sqrtRentedReal = (uint256(sqrtRented) * rentedMultiplier) / PRECISION;
bammOut = (sqrtAmount * totalSupply_) / (sqrtBalance + sqrtRentedReal);

The sqrtRentedReal and sqrtBalance are calculated using divisions that truncate the result. Thus,
the bammOut is effectively rounded up, since the sqrtBalance + sqrtRentedReal is rounded down.
For the sake of BAMM solvency, the value that leaves the pool should be rounded down and the value that
enters the pool should be rounded up.

Code corrected

The two variables are now computed using mulDiv() from OpenZeppelin, which performs the
computation with the Expand rounding direction (rounds away from zero).

6.7 BAMM._addTokensToVault() Permit When
Closing the Vault Can Cause Reverts
Design Low Version 1 Code Corrected

CS-FRAX_BAMM-009

Consider the scenario where a user plans to add a token to their vault, repay the debt and close the vault.

The executeActions() function is called with the following steps:

1. BAMM._addTokensToVault() is called to add tokens to the vault

2. BAMM._repay() is called to repay the debt

3. BAMM._addTokensToVault() is called again if the user has added not enough tokens during
step 1.

If the tokens in step 1. were added using the permit() of the token, the same permit will be called again
in step 3. Since the nonce of the permits can be consumed only once, the second call will revert.

Code corrected

The function BAMM._addTokensToVault() has been modified and now sets _action.v to 0 after the
permit is called. This forces the second call to the function in the example above to use
BAMM._moveTokenForVault()

6.8 FraxOracle Does Not Handle Potential
Overflows in Pairs
Design Low Version 1 Code Corrected

CS-FRAX_BAMM-012

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

The FraxswapPair contracts are built with certain overflows considered as possible:

1. The timestamp is tracked as uint32 and can overflow after 82 years.

2. price0CumulativeLast and price1CumulativeLast are tracked as uint256 and can
potentially overflow, depending on reserve ratios and decimals difference between the tokens.

The function FraxOracle.getPrice() does not support such overflows and for example will revert in
this case, if any of the above-mentioned overflows happen:

(lastObservation.price0CumulativeLast - foundObservation.price0CumulativeLast) /
 (lastObservation.timestamp - foundObservation.timestamp)

While this issue is possible in theory, in practice it can happen only after a very long time. The problem
will persist only when the price lookup window overlaps the block, where the overflow happened.

Code corrected

Unchecked blocks are now used to allow the computations to overflow.

6.9 Contract Still Has TODOs
Informational Version 1 Code Corrected

CS-FRAX_BAMM-014

The contracts BAMM and FraxswapOracle still have TODOs in the code. This is not a security issue, but
it is a good practice to address all TODOs from the code before deployment.

Code corrected

All TODOs have been removed from the codebase.

6.10 Gas Savings
Informational Version 1 Code Corrected

CS-FRAX_BAMM-016

The following gas savings were found in the BAMM contract.

1. In _syncVault(), rentedMultiplier is read twice from storage, a SLOAD could be saved.

2. In liquidate(), rentedMultiplier is read twice from storage, in the case where
liquidationMath.partialLiquidationOut > 0, a SLOAD could be saved.

3. variableInterestRate is a storage variable, but is only set in the constructor, it could be an
immutable variable.

4. In calcRent(), rentedMultiplier is read twice from storage, a SLOAD could be saved.

5. In _addInterest(), sqrtRented is read 6 times from storage, 5 SLOAD could be saved.
Additionally, rentedMultiplier is read twice from storage before being updated and then once
again, 2 SLOAD could be saved.

6. In _currentUtilityRate(), sqrtRented is read twice from storage, a SLOAD could be
saved.

In other parts of the project following gas savings were found:

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

1. The function BAMMFactory.createBamm() is defined as public but is never called internally, it
could be made external.

Code corrected

All gas savings were applied to the code.

6.11 Incorrect NatSpecs
Informational Version 1 Code Corrected

CS-FRAX_BAMM-017

The NatSpec of the function BAMM._calcMintedSupplyFromPairMintFee() is incorrect:

@notice public view function to view the calculated interest rate at a given utilization

Additionally, the following functions are missing some NatSpec fields:

• _calcMintedSupplyFromPairMintFee() is missing the totalSupply parameter.

• _solvent() is missing the solvencyThreshold parameter.

• executeActions(), executeActionsAndSwap() and _currentUtilityRate() are missing
the NatSpec return field.

Code corrected

All mentioned NatSpecs have been corrected.

6.12 Misleading Comments
Informational Version 1 Code Corrected

CS-FRAX_BAMM-018

The following comments appear to be misleading:

• In BAMM._repay(), a comment is duplicated and does not match the code in the second instance.

// token0Amount and token1Amount are negative as they subtracted balances from the vault, so we need to convert positive
token0ToAddToLp = uint256(-token0Amount);
token1ToAddToLp = uint256(-token1Amount);

// token0Amount and token1Amount are negative as they subtract balances from the vault
if ((token0ToAddToLp < _token0AmountMin) || (token1ToAddToLp < _token1AmountMin)) {
 revert InsufficientAmount();
}

• In BAMM.liquidate(), the following comment is misleading as in the case of a partial liquidation,
the liquidator's fee is a percentage of the liquidated amount, not the total amount.

// Give the liquidation fee to the liquidator as a percentage of the total vaults value

• In BAMM._borrow(), the following comment is incorrect as the tokens are being sent to the
borrower if action.token0Amount and/or action.token1Amount is negative and not positive.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

// The tokens will be given to the borrower later, assuming action.token0Amount and/or action.token1Amount is positive

Code corrected

The comments have been updated to match the code.

6.13 Project Uses a Deprecated Library
Informational Version 1 Code Corrected

CS-FRAX_BAMM-019

The package @rari-capital/solmate is deprecated and no longer maintained. The successor is
@transmissions11/solmate. However, the only used library from this package is SSTORE2, which is
identical to the one in the successor package.

Code corrected

@raricapital/solmate has been replaced by @transmissions11/solmate.

6.14 Initializable Used for Non-Upgradeable
Contract
Informational Version 1 Code Corrected

CS-FRAX_BAMM-021

BAMMFactory contract extends Initializable and is used for creating new BAMM contracts. The
code of the BAMM contract is set using setCreationCode() which has the initializer modifier.
While Initializable technically fulfills the goal in this contract and prevents calling
setCreationCode() multiple times, it is not necessary to use it in this case. Given that the variable
contractAddress1 is always 0x0 before the first call to setCreationCode() and can never be set to
0x0 again, the use of Initializable is not necessary in this contract.

Code corrected

Initializable was removed and the following check was added at the beginning of
setCreationCode():

require(contractAddress1 == address(0));

6.15 calcRent() Missing Reentrancy Modifier
Informational Version 1 Code Corrected

CS-FRAX_BAMM-022

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 20

https://www.npmjs.com/package/@rari-capital/solmate
https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol
https://chainsecurity.com

The function BAMM.addInterest() calls _addInterest() and is protected against reentrancy,
however, the function BAMM.calcRent() which also calls _addInterest() is not. No security
implications were found from this behavior.

Code corrected

The function calcRent() was moved to an external BAMMUIHelper contract that calls the function
BAMM.addInterest(), triggering the reentrancy check.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Denial of Service Against Liquidations
Informational Version 1 Acknowledged

CS-FRAX_BAMM-015

The function BAMM.liquidate() ensures that the underlying pool is not being manipulated using
BAMM.ammPriceCheck(). This check can fail in two cases:

• the TWAP is too far from the spot price

• The FraxswapOracle.getPrice() function reverts due to price outliers in the lookup period

If any of those cases happen, the liquidate() function will revert. This means that a fast price change
or a malicious actor could prevent liquidations from happening. As a position can only be insolvent if
interest accrued too much and liquidations are independent of the underlying asset prices, this behavior
is not a critical issue and only results in a delay of liquidations.

Acknowledged

Frax Finance answered:

There is enough time to liquidate and TWAP manipulations are expensive and risky.

7.2 Migration Issues in Libraries Due to Solidity
Version Upgrade
Informational Version 1 Acknowledged

CS-FRAX_BAMM-007

Some libraries were initially implemented in Solidity 0.6 and later the compiler version was updated to
0.8. Due to built-in SafeMath checks in solc 0.8, some libraries are not working as expected.

• The function UQ112x112.uqdiv(uint224 x, uint112 y) will revert if y is 0.

• UQ112x112.encode(uint112 y) performs a checked multiplication but the multiplication would
never overflow.

• FixedPoint.mul() performs an overflow check, which is not required. It can never be triggered
as it happens after the default SafeMath checks. In addition, if y is 0, it will revert, due to SafeMath
division by zero check.

• FixedPoint.muluq() performs multiplication that would never overflow, with default SafeMath
checks.

• FixedPoint.divuq(), reciprocal() and fraction() functions perform checked divisions by
a number which is required to be non-zero.

• BitMath.mostSignificantBit() and BitMath.leastSignificantBit() perform several
checked additions and subtractions that cannot overflow.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

Acknowledged

Frax Finance answered:

UQ112x112.uqdiv(uint224 x, uint112 y) will never have y = 0 as the reserves of a pair
can never be 0. The other comments only imply reduced safety requirements as safe math is built-in.
No changes needed.

7.3 Utilization Rate Can Be Greater Than 0.9
Informational Version 1 Acknowledged

CS-FRAX_BAMM-020

The BAMM enforces a maximum utilization rate of 0.9. This is done by ensuring that the utilization rate is
not above this value after calling redeem(), executeActions or executeActionsAndSwap.
However, due to interests accruing, it might be possible that the utilization rate becomes greater than this
value, for example by calling mint() after some time passed with the utilization rate being 0.9. In this
case, the function _getVariableInterestRate() will call VariableInterestRate's
getNewRate() with a utilScaled greater than 1. The interest rate might hence be greater than the
MAX_FULL_UTIL_RATE defined in the VariableInterestRate.

Acknowledged

Frax Finance answered:

Not a problem, utilization cap is there to limit slippage during liquidations. Utilization will not remain
above the cap for long, because the interest rate will spike and borrowers will repay the rented LP.

7.4 BAMM._addTokensToVault() Two Tokens
and Permit Fail
Informational Version 1 Acknowledged

CS-FRAX_BAMM-010

The function BAMM._addTokensToVault() can be used to transfer both token1 and token0 in a
single call. For that, it relies on the transferFrom function of the token contract and approval from the
user. The approval on a token can be set by providing a signature to BAMM._addTokensToVault() to
be verified by the permit function. However, if both tokens are transferred in a single call, the permit will
default to the token0. Thus, setting permit on a token1, when both tokens need to be transferred, will
not work.

Acknowledged

Frax Finance answered:

Normal use is to only transfer one token per action. A user could use two transactions or do a
separate approval when it wants to transfer in two tokens.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Oracle Manipulation on FIFO L2s
Note Version 1

The liquidations rely on an oracle to ensure that the underlying pool's price is accurate. If the oracle price
is not accurate, BAMM users could be liquidated at a lower price and lose assets.

On Ethereum mainnet, the cost of manipulating such a TWAP oracle is high as this requires manipulating
the pool at the end of multiple blocks and controlling each time the next blocks to ensure that the
manipulation can be safely reverted without being arbitraged. The following shows that on L2s using a
FIFO ordering, the cost of manipulating the oracle is significantly lower.

Price oracles must be robust and manipulation-resistant. It must be expensive to manipulate the markets
which are used as price sources.

Usually, the factor that makes price manipulation expensive is arbitrage. If a manipulator pushes the
price of an asset too high or too low, arbitrageurs will see this and make a profit by moving the price back
to the "true price". Any profit made by arbitrageurs will be a loss to the manipulator.

This "arbitrage assumption" breaks down in two cases:

1. All markets for the token are manipulated simultaneously, so it is difficult to determine the "true
price". There is no other market to arbitrage against.

2. Arbitrageurs are not able to see the manipulated price quickly enough, so they cannot take
advantage of it.

Attacks that target condition 2. are known as "Multi-block MEV" attacks. The idea is that a manipulator
could control the order of transactions in a block, which allows the following:

• In block n, the manipulator sends a transaction (through a private mempool like Flashbots) that
manipulates the price of an asset.

• In block n+1, the manipulator ensures that the first transaction in the block is one where they
revert the price back to the original value.

As a result, arbitrageurs will have no chance of reacting to the manipulation, as it will already be over by
the time they can get a transaction included in the block. However, if there is an Oracle that reads the
price at the beginning of block n+1, it will see the manipulated price.

This attack is well-known on Ethereum, but is generally deemed expensive to execute, as it requires
being or having an agreement with the ETH staker that is chosen to propose block n+1. If the attack
should be repeated multiple times, it requires being chosen as block proposer multiple times within a
short time frame, which requires a significant amount of ETH staked.

However, on L2s block production works differently. Instead of a different proposer being chosen in each
block, there is typically a single sequencer that decides on a block ordering policy. One commonly used
policy used by chains such as Arbitrum, Optimism and Base is "FIFO" (First In, First Out), where
transactions are included in the order they were received.

In FIFO ordering, the order of transactions is determined by time, not by the price a user is willing to pay.
This can be taken advantage of to fulfill condition 2. above, without needing to be a block producer.

The FIFO attack looks as follows:

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com/oracle-manipulation-after-merge/
https://chainsecurity.com

1. The manipulator experiments to figure out their latency to the sequencer (and ideally minimizes
it).

2. The manipulator sends a manipulation transaction at a time such that it will arrive at the
sequencer towards the end of the period in which it is building block n.

3. The manipulator sends a second transaction just before the end of block n, so that it reaches
the sequencer at the beginning of the period in which it is building block n+1.

Arbitrageurs are only able to see the manipulated price once block n is published by the sequencer. By
that time, the manipulator has already sent the second transaction that reverts the price back to the
original value. As time is the only relevant factor, it is impossible for a transaction that is created later to
be included in the block first (unless the arbitrageur has significantly lower latency to the sequencer).

The only cost to the attacker is the trading fees paid. As the attack cannot use a flashloan, they must also
have sufficient capital available to manipulate the price by the percentage they aim for. The attack can be
repeated as many times as the attacker wants, although repeated attacks could be speculatively frontrun
by arbitrageurs if they detect a pattern. Repeated attacks can be used to circumvent outlier-detection
mechanisms and TWAPs.

A policy that modifies transaction ordering to be based on a payment in addition to timing would make the
attack significantly more expensive. For example, "Arbitrum time-boost" has been proposed, but not yet
implemented. See Time Boost Medium post.

Note that in the case of BAMM, such an attack should hence be repeated multiple times to have a
significant impact on the TWAP and circumvent checks performed by the FraxswapOracle, allowing
the attacker to liquidate users at a lower price than the true price.

In summary, Multi-block MEV attacks are likely much more realistic to execute on FIFO L2s than on
Ethereum, as they are possible without needing to be a block producer. They can affect on-chain TWAPs
as well as any off-chain oracles that use L2 on-chain markets as a primary price source. This must be
considered when deciding which assets have an oracle that is robust enough to allow lending.

Frax Finance - BAMM - ChainSecurity - © Decentralized Security AG 25

https://web.archive.org/web/20240120133947/https://medium.com/offchainlabs/time-boost-a-new-transaction-ordering-policy-for-arbitrum-5b3066382d62
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 BAMM
	2.2.1.1 Liquidity providers:
	2.2.1.2 Borrowers:
	2.2.1.3 Liquidators:
	2.2.1.4 Utilization and interest rates:

	2.2.2 BAMM Factory
	2.2.3 FraxswapOracle
	2.2.4 Trust Model
	2.2.5 Changes in and

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Denial of Service Against Redeeming and Executing Actions
	5.2 BAMMFactory Does Not Support Contracts Smaller Than 20500 Bytes

	6 Resolved Findings
	6.1 Incorrect Fee Computation
	6.2 BAMM Does Not Always Account for Potential Pair Fees
	6.3 Contract Does Not Implement Interface
	6.4 Floating Dependencies Versions
	6.5 Floating Pragma
	6.6 Rounding Direction When Minting
	6.7 BAMM._addTokensToVault() Permit When Closing the Vault Can Cause Reverts
	6.8 FraxOracle Does Not Handle Potential Overflows in Pairs
	6.9 Contract Still Has TODOs
	6.10 Gas Savings
	6.11 Incorrect NatSpecs
	6.12 Misleading Comments
	6.13 Project Uses a Deprecated Library
	6.14 Initializable Used for Non-Upgradeable Contract
	6.15 calcRent() Missing Reentrancy Modifier

	7 Informational
	7.1 Denial of Service Against Liquidations
	7.2 Migration Issues in Libraries Due to Solidity Version Upgrade
	7.3 Utilization Rate Can Be Greater Than 0.9
	7.4 BAMM._addTokensToVault() Two Tokens and Permit Fail

	8 Notes
	8.1 Oracle Manipulation on FIFO L2s

