

PUBLIC

Code Assessment

of the Frankencoin

Smart Contracts

October 30, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Findings 13

6 Resolved Findings 17

7 Informational 34

8 Notes 37

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Frankencoin Team,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Frankencoin according to
Scope to support you in forming an opinion on their security risks.

The Frankencoin system is a set of smart contracts that issue the Frankencoin (ZCHF) on-chain, a
stablecoin that is supposed to be pegged to the Swiss Franc. Each Frankencoin minted is backed either
by collateral assets or other trusted Swiss Franc stablecoins. The governance of the system is based on
veto rights of shareholders that control at least 2% of the total voting power.

The most critical subjects covered in our audit are asset solvency, functional correctness, and access
control. Security regarding functional correctness and access control is high, while security regarding
asset solvency is improvable, see No Functionality to Recover From Bridge Failure.

The general subjects covered are code complexity, upgradeability, trustworthiness, documentation, and
gas efficiency. Contracts in scope of this assessment are not upgradeable and have limited privileged
roles. The code is well written. The documentation is improvable and the codebase could be more gas
efficient, see Findings.

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 3

• Code Corrected 2

• Risk Accepted 1

Medium -Severity Findings 11

• Code Corrected 8

• Specification Changed 2

• Risk Accepted 1

Low -Severity Findings 16

• Code Corrected 8

• Specification Changed 3

• Specification Partially Changed 1

• Risk Accepted 2

• Acknowledged 2

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Frankencoin repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1 07 Aug 2023 e7b7e379ba20c0e4ce0a3ce90db6ef46a0e56f89 Version 1

2 04 Sep 2023 851487f2221ed170b9e7be25eb833ec89375eb39 Version 2

3 18 Sep 2023 03a88fc298bd1ea886bd6f3b7c707946f6004fbc Version 3-Dutch Auctions

4 27 Oct 2023 4605fe28ebdda9833dff200b0700e00393c16532 Version 4

For the solidity smart contracts, the compiler version 0.8.20 was chosen.

The following files in the folder contracts were in the scope of this review:

• Equity.sol

• ERC20.sol

• ERC20PermitLight.sol

• Frankencoin.sol

• MathUtil.sol

• MintingHub.sol

• Ownable.sol

• Position.sol

• PositionFactory.sol

• StablecoinBridge.sol

2.1.1 Excluded from scope
Any file not listed above is excluded from the scope. Furthermore, external token contracts used as
collateral or in the StablecoinBridge in the system were not in the scope of this code assessment. Finally,
this assessment was focused on the correctness of the code implementation. The soundness of the
financial model was not evaluated.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 5

https://github.com/Frankencoin-ZCHF/FrankenCoin/tree/e7b7e379ba20c0e4ce0a3ce90db6ef46a0e56f89
https://github.com/Frankencoin-ZCHF/FrankenCoin/tree/851487f2221ed170b9e7be25eb833ec89375eb39
https://github.com/Frankencoin-ZCHF/FrankenCoin/tree/03a88fc298bd1ea886bd6f3b7c707946f6004fbc
https://github.com/Frankencoin-ZCHF/FrankenCoin/tree/4605fe28ebdda9833dff200b0700e00393c16532
https://chainsecurity.com

At the end of this report section we have added subsections that document changes made in subsequent
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Frankencoin is an extendable stablecoin system, which aims to be self-governing and oracle-free.

2.2.1 Frankencoin
The Frankencoin (ZCHF) contract implements an ERC20 token, which can be minted by the minter role
or by positions, which have been registered by minters. When minting, a reserve and fee amount can
be specified, which will be sent to the Equity contract.

Initially, there will be only 2 minters: The MintingHub and the StablecoinBridge. Additional minters can be
suggested by anyone that pays a 1000 ZCHF fee. If the suggested minter is not vetoed by governance
within the applicationPeriod, they will gain the minter role. It is expected that any new minter will be
vetoed, unless there is broad prior offchain consensus that the minter with the specified parameters
should be added to Frankencoin. Minters should not be upgradeable, as they can never be removed
once they have become active.

An unlimited allowance to spend any address's Frankencoin is given to minters and positions, as these
are fully trusted roles which have the ability to mint an unlimited number of Frankencoin according to their
code.

2.2.2 MintingHub
The MintingHub contract will be one of the initial minters of Frankencoin. It is used to open and challenge
positions, which are used to mint/borrow Frankencoin against collateral.

Anyone can open a position, using any parameters they like, such as collateral asset, interest rate,
liquidation price, limit and more. In particular, they can use a liquidation price that is much higher than
the current price. This should lead to the position being challenged or vetoed. To do this, they must pay a
1000 ZCHF fee and deposit a minimum amount of collateral. Before this position is able to mint ZCHF, it
must wait for the initPeriod of at least 3 days to pass. During this period, the position may be vetoed
by governance, if it is found to have unacceptable parameters. A vetoed position cannot mint ZCHF.

At any point, during or after the initPeriod, a position can be challenged by anyone that is willing to
put down the same type of collateral as is used in the position. Starting a challenge means "I think this
position should be liquidated, the collateral is worth less than the liquidation price". A challenged position
cannot mint ZCHF. During the challenge, anyone can make a bid on the collateral, saying how many
ZCHF they are willing to pay to buy it. The challenge has an end time, which is increased to be at least
30 minutes in the future each time that a new bid is made. If a bidder is outbid by another bidder, they
receive their full ZCHF bid amount back.

A challenge can end in two ways:

1. Challenge successful: The end time passes without the bid surpassing the position's liquidation
price. This means the challenge was correct, the position's collateral was not able to fetch a price
over the liquidation price, so it should be liquidated. Anyone can call the end() function, which
transfers the collateral to the bidder and burns the ZCHF bid to close the position. The challenger
receives 2% of the bid as a reward. If the bid amount was high enough that some of the position's
buffer is remaining (it was still overcollateralized), the excess amount goes to the Equity as
liquidation profit. If the position was undercollateralized, the Equity takes the loss. There can be
multiple challenges in parallel, potentially with a combined size larger than the total collateral of the
position. In this case, the challenges that end first will receive collateral until there is none left.

2. Challenge averted: Someone makes a bid that is greater or equal to the position's liquidation price.
This means the challenge was incorrect. The position's collateral is able to fetch more than the
liquidation price, so it should not be liquidated. In this case, the challenger is punished by being
forced to sell his collateral at this price to the bidder. As the market price is higher, this leads to a

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

loss for the challenger. They also do not receive a challenge reward. When a challenge is averted,
the position is restricted from minting for 1 day. This leaves enough time to start another challenge,
in case the challenge was maliciously averted by the position owner. Averting a challenge
maliciously by bidding above market price leads to a loss for the bidder and a profit for the
challenger, as they are able to sell their collateral above market price. A challenge on a position
that is expired cannot be averted.

A challenge can also be split into smaller pieces, in case a bidder does not want to bid on the full
collateral amount in the challenge.

Instead of opening a new position and waiting for the initPeriod to pass, a user can also clone a
position that is already active and is not being challenged. This will allow the user to immediately mint
ZCHF at the same terms as the other position. The user may choose to set a shorter expiry, which will
lead to a reduction in the fee (they pay the same interest rate, but for a shorter time). The limit, which
is the maximum amount of ZCHF mintable, of the original position will be reduced by the amount of ZCHF
minted in the cloned position. Positions that are clones can be re-cloned and split further, if they have
unused limit (which happens after a position has been partially or fully repaid). Closed or expired
positions cannot be cloned.

2.2.3 Position
Positions are used to mint/borrow ZCHF against collateral. They are created and registered as minters
with the Frankencoin contract by the MintingHub. Each position has an owner. Ownership can also be
transferred. The collateral is stored in the position contract.

While a position is not challenged, denied, expired, or on cooldown, the owner can mint new
Frankencoin. The claimed liquidation value of the collateral must always be higher than the value of
Frankencoin minted in the position. When minting, the new ZCHF are split into three parts:

• usableMint: This amount is sent to the position owner, who can use it for any purpose they desire.

• reserve: This amount is sent to the Equity contract, but the owner receives it back when repaying.
It represents the overcollateralization of the position. If the position is liquidated through a challenge,
any excess reserve will go to the Equity as profit.

• fees: This amount is sent to the Equity contract and is a profit for the governance shareholders.
Together with the expiry, it represents an interest rate. For example, if there is a position with a
reserve of 20%, a fee of 5%, and an expiry in two years, the effective interest rate on the usableMint
will be 0.05 / 0.75 / 2 = 3.3% per year. The fee is deducted upfront and is not returned in
case the position is paid back before expiry. In order to fully close the position, the owner will need to
acquire the fee amount of ZCHF from another source, such as buying it on a market.

An owner can repay their position partially or fully at any time. They can also increase the collateral
deposited. While there is no challenge, they can also withdraw collateral, as long as the collateral value
remains higher than the minted amount. They can also adjust the liquidation price of the collateral. The
price can be reduced, given the collateral value is still enough. It can always be increased, but in this
case, there will be a cooldown of 3 days before the position can mint ZCHF again. This gives enough
time to start a challenge on the new price.

2.2.4 StablecoinBridge
The StablecoinBridge contract will be one of the initial minters of Frankencoin.

It is configured with the following immutable variables:

• chf: The source CHF stablecoin. This coin should be trusted to hold its value and not be
upgradeable or contain functions like pause or freeze unless the admin with access to these
functions "is known and enjoys an outstanding reputation with regards to respecting the token
holders' rights".

• zchf: The Frankencoin contract.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• horizon: The expiry time of the bridge, after which it cannot be used to mint more Frankencoin, but
Frankencoin can still be burned to retrieve the chf stablecoin.

• limit: The maximum amount of Frankencoin that may be minted through this bridge at any time. In
the worst-case scenario where the chf stablecoin is malicious, losses to the Frankencoin system
should not exceed limit.

Users can deposit another stablecoin, chf, to the bridge and mint Frankencoin at a 1:1 ratio. This is
intended to help keep the peg of Frankencoin. Frankencoin can be minted as long as there are less than
limit coins outstanding from this bridge. Frankencoin can be burned to redeem chf as long as the
StablecoinBridge has a balance of chf. Aside from this mechanism, a correct choice of interest rates for
minting Frankencoin should be used to incentivize bringing the Frankencoin valuation to be equal to that
of the Swiss Franc, according to the documentation. However, this does not guarantee a 1:1 peg at all
times. Also note that it is not possible to choose a negative interest rate.

Once the horizon has passed, no more coins can be minted and it is expected that a new bridge with a
new horizon will be proposed as a Frankencoin minter. The limit should be chosen such that a total
failure of the chf coin does not lead to a failure of Frankencoin. For this case, see also No Functionality
to Recover From Bridge Failure.

2.2.5 Equity
The Equity contract implements an ERC20 token. It contains the governance functionality of the
Frankencoin system.

Anyone can mint Frankencoin pool shares (FPS) by depositing ZCHF to the equity using the invest
function. The price is calculated such that the Market Cap of FPS is always exactly 3 times the equity
capital. The following formula is used to compute new shares that are issued:

Δθ(ΔK) = θ(3
√ K + ΔK

K − 1)

where is the number of existing shares, is the equity capital, and is the number of new shares
corresponding to the investment of .

Equity capital is the amount of ZCHF that belongs to the system, not including the Position reserves,
which are also held on the Equity contract. For example, if the equity contains 1000 ZCHF and the supply
of FPS is 1000, the price is 3. This leads to a Market Cap of 3000. If the system made profits and the
equity was now 2000, the price would increase to 6. FPS can be minted at this price, but they can also be
burned at this price. In return, the burner will receive ZCHF from the equity. Each mint or burn is subject
to a 0.3% fee, which goes to the equity.

FPS holders accrue voting power over time. The voting power is calculated as
balance * averageTimeHeld. So an address with 2 FPS that has held for one week will have the
same voting power as another user with 1 FPS that has held for two weeks. If an FPS is transferred, the
time held will be reset. The address receiving the FPS will not immediately receive more voting power,
but they will accrue it more quickly in the future.

Votes are used to exercise veto power. Anyone with at least 2% of the total voting power can veto newly
proposed minters or positions. Votes can also be delegated. If an address has received a delegation from
addresses that have a summed voting power of 2% (including themselves), they can also veto. Someone
who has delegated their votes can still exercise their veto power themselves. Delegations are transitive,
so if A delegates to B and B delegates to C, C can use the combined vote power of A, B and C.

In order to avoid a malicious party vetoing everything (even legitimate proposals), there is the kamikaze
function. Using this, an FPS holder can choose to destroy the votes of another address, while destroying
the same amount of their own votes. Once the target has less than 2% (including delegation), they can
no longer veto. The FPS balance is unaffected, only held time is lost. The consequence of this is that in
the extreme case, the veto system falls back to a majority rule. If a group owns 51% of all votes, they can
kamikaze() everyone else, bringing the voting power of all other holders below 2%. Now nobody else
can veto, so the group can propose any minter or position they like, without recourse. After the

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

initPeriod ends, they could mint an unlimited number of ZCHF. However, this would cause severe
losses to the equity, of which the group likely owns a significant share to have accrued so much voting
power.

Finally, there is a function restructureCapTable. This is intended to be used in the worst-case
scenario where the system has taken such severe losses that the equity is negative. Anyone with at least
2% of votes can call this function and burn the FPS balances of other addresses. This is intended to be
used when someone wants to restore the system, taking the loss for the system by paying in ZCHF to the
Equity (including covering socialized position reserve losses) until the equity capital is back to a positive
amount. In this case, they should be able to own all FPS tokens, as the other tokens were worthless until
the system was saved by this user.

2.3 Roles and Trust Model
The minter role is privileged in the system. Any minter in the Frankencoin contract is assumed to be
fully trusted, with the power to mint unlimited Frankencoin. Initially, only the MintingHub and
StablecoinBridge contracts should have the minter role. Frankencoin does not implement functionality
to remove existing minters, hence we assume only non-upgradeable contracts that are carefully
evaluated by the governance get the minter role.

We assume FPS holders that own 51% of the total voting power in the Equity contract always behave in
the best interests of the system. FPS holders are trusted to continuously monitor and veto proposals for
adding untrusted minters in Frankencoin or opening positions with unfair parameters in the MintingHub.
In case a minority of FPS holders block the system by vetoing all proposals, the majority of shareholders
should act and reduce their voting power.

It is assumed that markets are sufficiently efficient, and a sufficient number of challengers and bidders
continuously monitor opened positions and efficiently liquidate unhealthy positions. Additionally, the size
of positions should be limited such that liquidation of the full collateral amount is possible without
affecting the market price so significantly that there is a loss for the system. It is also assumed that gas
costs are low enough that they do not prevent positions from being liquidated without causing losses for
the system.

The external stablecoins supported in StablecoinBridge are considered to be non-malicious, behave
according to the specifications and maintain their peg to the Swiss Franc. These stablecoins should be
ERC20-compliant with no special features (e.g., rebasing, fees on transfer, etc.) and revert on failed
transfers.

Collateral assets are assumed to be compliant with the ERC20 standard, implement the decimals
function, use less than 24 decimals and be non-malicious. Only ERC20-compliant tokens without special
behavior (e.g., rebasing, fees on transfer) are supported. The collateral should be a liquid asset and
easily available, as the overall health of the system depends on the ability to efficiently liquidate
undercollateralized positions. The collateral token should not implement a whitelisting mechanism. The
collateral token should revert on failed transfers. We also assume that governance limits the exposure of
the system to collateral tokens that are upgradeable, by vetoing proposals for tokens that are
untrustworthy or pose risks to the system. Collateral tokens should not have transfer hooks (e.g.
ERC-777).

2.4 Changes in Version 2
• The Equity contract now also has an unlimited allowance to spend any address's ZCHF, just like

minters do.

• The function onTokenTransfer has been removed from the Equity contract, hence the only way to
mint new shares is by calling the function invest.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.5 Changes in Version 3
Version 3 introduces a change to the auction mechanism. Instead of using an ascending auction with an
end-time that can be increased, a dutch auction mechanism is now used. The dutch auction is split into 2
phases. In the first phase, the price stays constant at the liquidationPrice of the position. If nobody
bids on the collateral at that price by the end of the first phase, the second phase starts. In the second
phase, the price starts at liquidationPrice and linearly decreases over time, reaching a price of zero
at the endTime of phase 2. The auction ends immediately once the full amount of challenged collateral
has been bid on. Bidders receive the collateral they bid on immediately, without needing to wait until the
auction ends. In the current implementation, phase 1 and phase 2 have the same length, which can be
freely chosen when creating a new position. Governance should veto any position created with an
auction length that is too long or too short.

Positions that are clones of clones can now extend the expiration time up to the original position's
expiration time if the previous clone had shortened the expiration. Clones must now always pay the
interest of at least 4 weeks when minting, no matter how long the position is valid. Previously, a position
with an expiry in 1 second would only pay interest for 1 second.

Additionally, the governance veto threshold was adjusted from 3% to 2%.

2.6 Changes in Version 4
Version 4In , a position is closed if it has less than minCollateral when a challenge is successful or

averted. Previously this only happened on successful challenges. Additionally, a fee was introduced that
is paid when a repaid position is liquidated. Previously, a challenged position could be repaid by the
borrower at no cost while a challenge is ongoing, which would allow the borrower to avoid the liquidation
loss by repaying.

The specification has also been updated to clarify that tokens with transfer hooks, such as ERC-777
tokens, are not supported as collateral.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Risk AcceptedNo Functionality to Recover From Bridge Failure

Medium -Severity Findings 1

• Risk AcceptedRestructuring Equity Shares Does Not Enforce Payment

Low -Severity Findings 5

• Risk AcceptedChallenge Can Leave Dust Amount

• Risk AcceptedRounding Error in _calculatePrice

• AcknowledgedCloned Positions Can Have Arbitrary Expiration

• Specification Partially ChangedMismatch of Natspec With Implementation in ERC20

• AcknowledgedMissing Sanity Checks

5.1 No Functionality to Recover From Bridge
Failure
Design High Version 1 Risk Accepted

CS-ZCHF-002

The documentation states:

"In order to protect the Frankencoin from a crash of the connected stablecoins,
 the bridge contract is limited in time and volume."

However, there is no functionality to recover from such a situation.

Suppose there are 10 million Frankencoin minted in total. 3 million of them are equity. 1 million were
minted through the stablecoin bridge.

Now the other stablecoin loses peg and becomes worthless. So there is no value in burning any
Frankencoin using the bridge. There is more than enough equity in the Equity contract to cover the loss,
but there is no mechanism to update the accounting such that the Equity can take the loss. Governance
cannot vote to burn 1 million ZCHF that are in equity. There would be 1 million "unbacked" Frankencoins
in circulation, with no way of changing the accounting so that they are backed again.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

This should cause Frankencoin to depeg, falling below a price of 1 CHF, even though the loss in the
bridge was relatively small and could be covered by equity.

Risk accepted:

Frankencoin understands and accepts the risk.

Frankencoin responded:

The purpose of the StablecoinBridge is to help with bootstrapping the system. In the
long run, we would provide swap facilities on decentralized exchanges along the following
lines: https://github.com/Frankencoin-ZCHF/FrankenCoin/issues/10

5.2 Restructuring Equity Shares Does Not
Enforce Payment
Design Medium Version 1 Risk Accepted

CS-ZCHF-009

In case the system suffers losses and its equity goes below MINIMUM_EQUITY (1000 ZCHF), any user
with at least 3% of the voting power should be able to receive 100% of the equity shares if they pay for the
losses. For that, the function restructureCapTable allows the caller to wipe equity shares for any
address. As noted in restructureCapTable May Take Multiple Blocks, depending on the number of
shareholders, restructureCapTable can take more than one block to complete.

The function does not enforce that the surviving FPS shareholder actually pays for the losses. Therefore,
it is possible that a user with 3% of the voting power calls restructureCapTable quickly to remove
other shareholders but do not bootstrap the system as expected by paying for the losses.

Risk accepted:

Frankencoin is aware about this behavior of the restructuring functionality but has decided to keep the
code unchanged given that pool shares do not have any value when restructuring conditions are met.

5.3 Challenge Can Leave Dust Amount
Design Low Version 3 Risk Accepted

CS-ZCHF-033

When a challenge is started, it is checked that the challenged amount is larger than minCollateral.

However, the amount remaining in the position is not considered. The challenge could be for an amount
that leaves a dust amount of collateral in the position after the challenge is successful. If the dust amount
is not worth the gas of holding an auction, it won't be liquidated.

Having unliquidated dust collateral can lead to small losses for the system.

Risk accepted:

Frankencoin is aware of this issue but has decided to keep the respective code unchanged.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5.4 Rounding Error in _calculatePrice
Correctness Low Version 3 Risk Accepted

CS-ZCHF-040

The function _calculatePrice in MintingHub performs a division before multiplication which
introduces a rounding error:

return (liqPrice / phase2) * timeLeft;

The rounding error is in favor of the bidder against the position's owner or the system (equity pays slightly
more if the position causes a loss).

Risk accepted:

Frankencoin is aware of this issue but has decided to keep the function unchanged.

5.5 Cloned Positions Can Have Arbitrary
Expiration
Design Low Version 1 Acknowledged

CS-ZCHF-006

MintingHub implements two functions for cloning a position:

- function clonePosition(address position, uint256 _initialCollateral,
 uint256 _initialMint) public returns (address);

- function clonePosition(address position, uint256 _initialCollateral,
 uint256 _initialMint, uint256 expiration) public returns (address);

The second function takes expiration as a user input and does not perform any check if it is in the
future. The function reduceLimitForClone enforces that expiration of the clone is between start
and expiration of the original position. However, one can still create a clone that has expiration in
the past if current timestamp has passed start of the original timestamp.

The position will be able to mint tokens in the initializeClone function even though it is expired,
circumventing the alive check, hence minting ZCHF from an expired position.

Acknowledged:

Frankencoin is aware of the possibility to clone positions that are expired at creation time but considers it
to be an expected behavior.

Version 3In , a clone of a position can have an expiry that is at most the expiry of the original position that
was created. In particular, if cloning reduces the expiry but then that cloned position is cloned again, the
expiry of the second clone can be equal to the original position.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5.6 Mismatch of Natspec With Implementation in
ERC20
Correctness Low Version 1 Specification Partially Changed

CS-ZCHF-012

The natspec of the function approve states:

- `spender` cannot be the zero address.

This restriction is not implemented in the function approve and it is possible to call the function with
spender being the zero address.

Similar statements are present in natspec comments of functions _approve, and _burn but the
respective checks are not implemented.

Specification partially changed:

The stated restrictions have been removed from the natspec of _burn() and _approve().

The natspec for approve() still incorrectly states that spender cannot be the zero address. However,
this should not be relevant in practice, as the zero address should never have a non-zero balance.

5.7 Missing Sanity Checks
Design Low Version 1 Acknowledged

CS-ZCHF-015

The following functions set or update important state variables but do not implement any sanity check on
the inputs:

1. kamikaze() could check that target address is not msg.sender.

2. Frankencoin.constructor() could enforce a minimum value for
MIN_APPLICATION_PERIOD to prevent deployments with wrong parameters.

3. MintingHub.constructor() does not check for address(0) on the input parameters.

4. Position's parameters reserveContribution and yearlyInterestPPM (deciding the interest
rate of the loan) should not exceed 100%, to avoid underflows in the function getUsableMint.

5. Position.constructor() should enforce that challengePeriod is at least 30 minutes to
ensure that a new challenge does not end before ongoing challenges in which bids postpone end
time by 30 minute.

6. StablecoinBridge.constructor() does not check for zero values in the inputs.

Acknowledged:

Frankencoin is aware of the missing sanity checks but and has decided to add checks only for point 4.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedSuccessfully Challenged Positions May Not Close

High -Severity Findings 2

• Code CorrectedBidding After Challenge Ends Adds No Time

• Code CorrectedPosition Limits Can Be Used for Free

Medium -Severity Findings 10

• Code CorrectedChallenges of Expired Loans Can Be Averted

• Specification ChangedDouble Entry Point Protection Can Be Insufficient

• Code CorrectedPossible to DoS Minting Functionalities

• Specification ChangedReentrant Collateral Could Mint During Liquidation

• Code CorrectedredeemFrom Does Not Reduce Allowance

• Code CorrectedBids Could Be Reverted by Frontrunning

• Code CorrectedBridge's Risk Exposure Limit Can Be Circumvented

• Code CorrectedIncorrect Comparison in Function _mulDiv

• Code CorrectedMinimum Collateral Can Be Partially Withdrawn

• Code CorrectedParallel Challenges Are Expensive to Bid on

Low -Severity Findings 11

• Code CorrectedInconsistent Value Formats Emitted in Events

• Code CorrectedChallenge State Treated Inconsistently

• Specification ChangedIncorrect Documentation for Denied Positions

• Specification ChangedIncorrect Natspec Regarding Allowances in Frankencoin

• Code CorrectedLow Precision on Cubic Root Approximation

• Code CorrectedMissing Event for New Positions

• Specification ChangedMissing Implementation of Described Functions

• Code CorrectedPool Shares Limit Not Enforced

• Code CorrectedWrong Liquidation Price Emitted in Event

• Code Corrected_cubicRoot Returns 0 for Large Inputs

• Code CorrectedcalculateSharesInternal Can Return Large Numbers

Informational Findings 3

• Code CorrectedUnused Import

• Code CorrectedMisleading Function Name isPosition

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

• Code CorrectedIncorrect Decimals Comments

6.1 Successfully Challenged Positions May Not
Close
Security Critical Version 3 Code Corrected

CS-ZCHF-034

When a position is below its liquidation price, one or multiple successful challenges should sell all its
collateral, and the position should be closed.

However, positions do not get closed if there is still an open challenge.

if (balance < minimumCollateral && challengedAmount == 0) {
 _close();
 }

Consider the following situation:

1. Attacker Alice creates a new position with normal parameters and deposits minCollateral + 1
of collateral.

2. After the initPeriod has passed (can no longer be vetoed), Alice increases the
liquidationPrice to a very high price. This restricts minting for 3 days.

3. Alice immediately challenges herself, with a size of minCollateral. It is not worth the gas for
anyone else to challenge the remaining 1 wei of unchallenged collateral.

4. Alice waits until phase 2 of the first challenge starts, then starts another challenge with size of 1.

5. Someone bids the true price of the collateral in the first auction and buys all the collateral except 1
wei. notifyChallengeSucceeded() is called on the position, but the challengedAmount is
still more than 0, so the position is not closed. The minting restriction is reset to 3 days.

6. Alice bids on her second challenge before it enters phase 2. This averts the challenge and reduces
challengedAmount to 0. There is still 1 wei of collateral in the position, but it is not worth the gas
for anyone to challenge it. The position is not closed, as the challenge was not successful.

7. Alice waits until the 3 day minting restriction is over.

8. Alice deposits collateral and immediately mints the limit amount of the position at the very high
(above market) price that she had set in step 2. She passes the noChallenge and noCooldown
checks. The minted tokens are undercollateralized, leading to losses for the system.

This attack can be repeated multiple times. The tokens minted in the first attack will be challenged
successfully, which will reset the minted amount of the position to zero. Alice can again start a second
challenge as soon as the other challenge is about to enter phase 2, which avoids the position from being
closed. After averting the second challenge and waiting 3 days, she can once again deposit collateral
and mint limit amount of tokens. This can be repeated infinitely.

Anyone (for example an FPS share holder with an interest in avoiding system losses) can delay the
attack by challenging the position even when it has no collateral. This has a capital cost
(minCollateral required for challenge) and a gas cost. The attacker can counter this by starting
another challenge afterwards, just before the first challenge enters phase 2. This also has the same
capital and gas cost for the attacker as for the "defender". The attacker has a direct incentive to pay this
cost (the value of the minted tokens if the attack is successful), while the defender is being altruistic and
just avoids a loss for the system without any direct reward for themselves. Each time the defender starts
a challenge, they delay the attack by at least 3 days. However, they can never stop it entirely if the
attacker always answers with a challenge of their own.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Ultimately, the issue is that there can be open positions with small amounts of collateral that are not
worth challenging. This can lead to attacks that require altruistic users to pay costs forever to delay them,
or that can lead to unlimited losses if not answered.

Code corrected:

The issue has been fixed by adding a check that closes a position if it has less than minCollateral
when a challenge is averted (not just when a challenge is successful).

6.2 Bidding After Challenge Ends Adds No Time
Design High Version 1 Code Corrected

CS-ZCHF-001

When Frankencoin's bid() is called, the challenge endTime will be extended such that it is at least 30
minutes in the future.

uint256 earliestEnd = block.timestamp + 30 minutes;
if (earliestEnd >= endTime && block.timestamp < endTime) {
 challenge.end = earliestEnd;
}

However, if the endTime has already passed, the time will not be extended.

It is intentionally possible to bid after the end of a challenge by frontrunning the execution of end().
However, as the time will not be extended in this case, a bidder can guarantee that they win the auction
by bidding after endTime and then immediately calling end(). This will make it so that no other bidders
can overbid him. If all the bidders follow this strategy, the one with the first transaction in the block after
endTime will win the auction. This changes the auction mechanism to a gas bidding war, instead of the
intended auction design, which could increase the losses of the system significantly.

Code corrected:

The function bid has been revised to always push the auction deadline with at least 30 minutes when a
new bid is recorded. This change mitigates the frontrunning issue described above as it is not possible
anymore to call functions bid and end in the same block. The code implementation is revised as follows:

uint256 earliestEnd = block.timestamp + 30 minutes;
if (earliestEnd >= endTime) {
 challenge.end = earliestEnd;
}

Note that bids that are submitted after the endTime will not be considered if they are executed after the
function end was called to close the auction.

6.3 Position Limits Can Be Used for Free
Design High Version 1 Code Corrected

CS-ZCHF-003

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Opening a new position through the MintingHub requires users to pay a fee of 1000 ZCHF and wait for at
least 3 days for the initialization period to pass. Users cannot clone positions during the initialization
period and position owners cannot mint Frankencoin during this time.

Once the initialization period is complete, users can clone the original position which reduces its limit.
When minting, they pay interest fees to the Equity. The system allows users to freely choose the
expiration of the cloned position and the yearly interest rate is applied such that interest is only paid for
the loan duration. Cloning a position that is expired or with a short loan duration (a few seconds), results
in zero or very small fees for the interest. However, the minting limit of the original position gets
consumed anyway. As new positions should wait for the initialization period (+3 days) to complete before
they become usable, one could consume the limit of all positions by cloning positions for a very short
amount of time (paying nearly no fees) and cause a denial-of-service, while also wasting the 1000 ZCHF
fee that was paid for opening the position.

The issue is even easier to be exploited in the current codebase due to Cloned Positions Can Have
Arbitrary Expiration. An attacker can set the expiration of cloned position into the past or
block.timestamp to have zero interest fees. This way, the attacker can reduce the limit of a position to
zero by cloning, repaying, and withdrawing the collateral in the same transaction. Flashloans can also be
used for the required collateral to consume large positions.

Code partially corrected:

Version 2The functionality for creating and cloning positions has been re-organized in such that the
amount of ZCHF for which the owner has already deposited collateral is "reserved" and cannot be used
by clones. This logic is enforced in function reduceLimitForClone which relies on the new function
limitForClones:

function limitForClones() public view returns (uint256) {
 uint256 backedLimit = (_collateralBalance() * price) / ONE_DEC18;
 if (backedLimit >= limit) {
 return 0;
 } else {
 // due to invariants, this is always below (limit - minted)
 return limit - backedLimit;
 }
}

This approach only mitigates the problem for position owners, and only for those owners which deposit
the full amount of collateral they will want to use upfront.

For other users, the issue is still present. An attacker can consume from the limit of positions without
paying any fees, until only the owner-reserved amount is left. Hence, nobody else will be able to clone
and the position cloning functionality can be rendered useless. According to the documentation it is
supposed to be the main way for ordinary users to mint ZCHF:

[Cloning] is the standard way to obtain Frankencoins against a collateral.
Unlike creating an entirely new position, which takes a lot of time, borrowing
by cloning an established position can be done immediately.

Code corrected:

Version 3The Position contract in introduces a minimum interest fee that is applied to all new positions
independently of their duration. Therefore, creating a new position that is already expired or has a short

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

duration (a few seconds), as described above, now incurs a cost that corresponds to the interest rate for
a duration of 4 weeks.

6.4 Challenges of Expired Loans Can Be Averted
Correctness Medium Version 3 Code Corrected

CS-ZCHF-035

Version 3

Each position has an expiration which is used to compute the interest fee when minting new
frankencoins. The system assumes that users will pay their loan on time as expired positions should be
challenged and then liquidated with the auctioning mechanism. However, in users can
postpone repayments indefinitely as long as the position's liquidation price remains below the market
price. Any challenge initiated for such positions would be averted, hence challengers make a loss.

In earlier versions, it was not possible to avert challenges on expired positions.

Code corrected:

Version 4The liquidation process has been adjusted in such that the duration of the phase 1 (when a
challenge can be averted) is capped by the position's expiration. Therefore, launching a challenge for an
expired position immediately triggers phase 2 (dutch auction) of the liquidation. This change is
implemented in the following function:

function challengeData(uint256 challengeStart) external view returns (uint256 liqPrice, uint64 phase1, uint64 phase2) {
 uint256 timeToExpiration = challengeStart >= expiration ? 0 : expiration - challengeStart;
 return (price, uint64(_min(timeToExpiration, challengePeriod)), challengePeriod);
}

Note that position owners should always withdraw their collateral from expired positions, otherwise they
will be liquidated, even if the position is over-collateralized.

6.5 Double Entry Point Protection Can Be
Insufficient
Correctness Medium Version 3 Specification Changed

CS-ZCHF-036

In Position, the withdraw function looks as follows:

function withdraw(address token, address target, uint256 amount) external onlyOwner {
 if (token == address(collateral)) {
 withdrawCollateral(target, amount);
 } else {
 uint256 balance = _collateralBalance();
 IERC20(token).transfer(target, amount);
 require(balance == _collateralBalance()); // guard against double-entry-point tokens
 }
}

The comment states that this should protect from double-entry-point tokens. That is, a token that
supports multiple addresses through which transfers can happen.

However, it could be possible that the double-entry-point token has a transfer hook that calls the target
address. In this case, there could be a reentrant call to adjust(), which deposits an equal amount of
tokens as are being withdrawn. The second require statement would pass, even though there was a
double-entry-point token used to incorrectly withdraw collateral.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

If there is a pre-transfer hook, the attacker could deposit and mint tokens using reentrancy, then withdraw
collateral using the second entry-point (that is not considered to be the collateral address) after the
reentrant call returns, circumventing the _checkCollateral check that usually happens upon
withdrawing collateral. This could leave the position undercollateralized, leading to losses for the system.

Consider the following example:

1. A position has a collateral that has a pre-transfer hook to the receiver and has two entry points.
1000 collateral tokens are deposited. Each token has a value of 1 ZCHF. 1000 ZCHF are already
minted.

2. The position owner calls withdraw(), using the address of the token's second entry point (which
is not the collateral address). The _collateralBalance of 1000 is saved and the transfer call
happens. Now, the pre-transfer hook is executed and gives execution control to the attacker.

3. The attacker calls adjust(2000,2000,1). 1000 additional collateral are deposited, then
mint() is called to mint an additional 1000 ZCHF. There are 2000 collateral tokens, so the
collateral check in mint() passes.

4. The adjust() call returns, then the pre-transfer hook returns.

5. The transfer of the second entry-point of the collateral happens.

6. Now, the saved _collateralBalance of 1000 is compared to the current
_collateralBalance, which is also 1000, as that additional amount was deposited. The check
passes.

7. Now, there are 2000 ZCHF minted against a position with 1000 ZCHF worth of collateral.

The undercollateralized minting can only happen if there is a collateral that has a double-entry-point AND
a pre-transfer hook that calls the recipient (ERC-777 tokens are not an example, they only call the
recipient after a transfer, not before). This combination of traits does not seem to appear in commonly
used tokens.

Specification changed:

Frankencoin has decided to revise the criteria of acceptable tokens that can be used as collateral. More
specifically, tokens that implement transfer hooks (such as ERC-777) should not be used as collateral
and governance should deny any position with such collateral tokens.

6.6 Possible to DoS Minting Functionalities
Security Medium Version 3 Code Corrected

CS-ZCHF-037

Version 3In , the system allows any user to launch a challenge for any position and immediately avert it in
the same transaction. Besides gas costs, there are no other costs for such behavior. However, the side
effect of the challenge/avert operations is that the victim position is set in cooldown for 1 day:

function notifyChallengeAverted(uint256 size) external onlyHub { ...
 _restrictMinting(1 days);
}

An attacker can exploit this behavior to disrupt the system by putting specific positions on cooldown,
therefore blocking cloning and minting functionalities in victim positions.

This was not possible in earlier versions.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

Code corrected:

The function _avertChallenge now checks that the challenge has not been launched in the same
block (based on timestamps):

function _avertChallenge(Challenge memory _challenge, uint32 number, uint256 liqPrice, uint256 size) internal {
 require(block.timestamp != _challenge.start);
 ...
}

A challenger can still challenge a position with a correct liquidation price (below market price) to put it on
cooldown for one day. However, the challenger's collateral can then be sold to other bidders in future
blocks, as the challenge cannot be immediately cancelled. The challenger will still be able to cancel their
challenge in a later block if their cancellation transaction is included in the chain before a bid from another
bidder. However, this will likely require the challenger to incur a high gas cost.

6.7 Reentrant Collateral Could Mint During
Liquidation
Security Medium Version 3 Specification Changed

CS-ZCHF-038

When a challenge is successful, notifyChallengeSucceeded() is called on Position.

This function does the following 3 things in order:

1. reduce challengedAmount

2. send collateral to bidder

3. restrict minting for 3 days

Step 2. can cause a reentrancy during an inconsistent state (minting not yet restricted) if the collateral is
reentrant (e.g. ERC-777).

Consider the following attack:

1. Attacker Alice creates a new position with normal parameters and deposits an ERC-777 collateral.

2. After the initPeriod has passed (can no longer be vetoed), Alice increases the
liquidationPrice to a very high price. This restricts minting for 3 days.

3. A challenge is started. Assume the duration of phase 1 + phase 2 is more than 3 days.

4. When the auction price gets close to the value of the collateral, Alice calls bid().

5. notifyChallengeSucceeded() is called, which reduces the challengedAmount to 0.

6. The Position's collateral is sent to Alice, which allows her to reenter. She deposits additional
collateral to the position and mints limit tokens at the high price she set in step 2. The
noChallenge modifier passes, as the challengedAmount is 0. The noCooldown modifier
passes as 3 days have passed since the price was adjusted and
notifyChallengeSucceeded() has not yet restricted minting. The tokens are minted at an
incorrectly high price, which leads to losses for the system.

If the auction duration is less than 3 days but more than 1 day, Alice could start the challenge herself and
avert it for free before it reaches phase 2. This will set the cooldown to 1 day. While Alice has an open
challenge for the full collateral amount, nobody else is incentivized to start another challenge.

Specification changed:

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Frankencoin has decided to revise the criteria of acceptable tokens that can be used as collateral. More
specifically, tokens that implement transfer hooks (such as ERC-777) should not be used as collateral
and governance should deny any position with such collateral tokens.

Futhermore, the function notifyChallengeSucceeded has been updated to set the cooldown to 3
days first, and later withdraw the collateral:

function notifyChallengeSucceeded(address _bidder, uint256 _size)
 external onlyHub returns (address, uint256, uint256, uint32) {
 ...
 _restrictMinting(3 days);

 _withdrawCollateral(_bidder, _size); // transfer collateral to the bidder and emit update
 ...
}

6.8 redeemFrom Does Not Reduce Allowance
Correctness Medium Version 2 Code Corrected

CS-ZCHF-026

Version 2In , the redeemFrom function is added to Equity. It allows redeeming FPS tokens on behalf of
other users if the user has given an approval.

The approved amount is checked, but it is not reduced.

require(_allowance(owner, msg.sender) >= shares);

As a result, if an approval of 1 share is given, it can be reused to redeem an unlimited number of shares.

Code corrected:

The allowance is now reduced when calling redeemFrom().

6.9 Bids Could Be Reverted by Frontrunning
Design Medium Version 1 Code Corrected

CS-ZCHF-004

The MintingHub's bid function contains the following check:

if (expectedSize != challenge.size) revert UnexpectedSize();

This exists so that a bidder does not accidentally bid a wrong amount on a challenge that was split using
splitChallenge(). However, this can also be used as a DoS vector.

Consider the following situation:

There is a position of 1 million ZCHF with 200 * minCollateral of collateral that should be
liquidated. A challenger creates a challenge for the full amount and immediately bids 1 ZCHF for the
collateral. There are no bids until 30 minutes before the end of the auction, as bidders want to limit the
risk of the collateral losing value after their bid is placed. Starting from 31 minutes before the end, the
challenger calls splitChallenge(challengeNumber, minCollateral + R), where R is a small
random number, in each block with a relatively high amount of gas, such that they expect their
transaction to happen in the block before any bids. Now, any bid will revert, as the position no longer has

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

the expected size. The end time is not increased, as there is no new bid. At the end time, the challenger
can buy the collateral worth over 1 million ZCHF for 1 ZCHF. The system takes a massive loss.

As there are only about 150 Ethereum blocks per 30 minutes, the attacker has the ability to split their
challenge once every block without hitting the minCollateral limitation.

In case the attacker fails to split early enough in one of the blocks and a bid comes through, they have
only lost gas and incur no other cost. The bidders have little incentive to pay a lot of gas to avoid being
frontrun, as they are not guaranteed to win the auction by making a single bid. They may be outbid by
someone else, which would make their high gas bid worthless.

The challenger could also use more sophisticated frontrunning methods, where they only split their
challenge if they really expect a bid in that block.

A bidder could work around the reverts by deploying a contract that reads the current size of the
challenge on-chain and places a bid of the correct size. This cannot revert, as the size will always be up
to date. It requires the bidder to have considered this situation already and have the infrastructure in
place beforehand, as it is unlikely they will be able to set it up within 30 minutes.

Code corrected:

Version 2When splitting a challenge in , it is now required that the resulting bid on both resulting
challenges is at least 2500 CHF, so no very small bids can be made. It is still possible to cause bids to
revert by splitting a challenge, but it now requires a higher bid on the initial challenge to do so.

Version 3In the splitChallenge function has been removed with the change to dutch auctions.

6.10 Bridge's Risk Exposure Limit Can Be
Circumvented
Security Medium Version 1 Code Corrected

CS-ZCHF-005

The StablecoinBridge contract implements a mechanism to restrict the exposure towards an external
stablecoin that might lose value or get compromised, e.g., due to a malicious implementation upgrade.
The immutable variable limit sets an upper limit on the amount of Frankencoin that can be minted from
the bridge. The limit is enforced in the internal function mintInternal:

require(chf.balanceOf(address(this)) <= limit, "limit");

The correctness of the protecting mechanism relies on the external contract returning a correct balance
when the balanceOf function is called. However, if the chf contract becomes malicious it could return
arbitrary values as balanceOf. For example, the contract could be upgraded to return 0 balance, or it
could have an admin function that allows burning of a specific address's balance.

As a result, limit can be circumvented and the maximum exposure of the Frankencoin system to the
external stablecoin is not bounded by limit. Instead, there could be an infinite number of Frankencoin
minted through the bridge.

Code corrected:

Version 3Internal accounting for the number of tokens minted by the bridge has been added in . This
means limit is now correctly enforced without relying on any functions of the chf contract.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.11 Incorrect Comparison in Function _mulDiv
Correctness Medium Version 1 Code Corrected

CS-ZCHF-032

The internal function _mulDiv checks if the computation x * factor fits in a uint256 before
performing the multiplication. If the result is larger than type(uint256).max, the function performs the
division first to avoid the potential overflow of the multiplication.

The implementation incorrectly does the opposite, dividing first when the result of x * factor fits in
uint256, and overflowing otherwise:

function _mulDiv(uint256 x, uint256 factor, uint256 divisor) internal pure returns(uint256) {
 if (...){
 ...
 } else if (type(uint256).max / factor > x){
 ...
 return x > factor ? x / divisor * factor : factor / divisor * x;
 } else {
 return x * factor / divisor;
 }
}

Code corrected:

The function has been revised to perform the division first only when the result of x * factor does not
fit in a uint256.

6.12 Minimum Collateral Can Be Partially
Withdrawn
Design Medium Version 1 Code Corrected

CS-ZCHF-007

The documentation states:

[...]if the minimum collateral is 1 WETH, one cannot reduce the collateral to
 0.9 WETH even if there is no outstanding Frankencoins.

However, this is not enforced in the Position contract.

This may lead to leftover collateral amounts that are too small to be effectively liquidated, due to gas
costs. This can lead to losses for the system.

Code corrected:

The public function withdrawCollateral has been updated to revert if a dust amount of collateral
remains in a position after a withdrawal:

function withdrawCollateral(address target, uint256 amount) public onlyOwner noChallenge {
 ...
 uint256 balance = _withdrawCollateral(target, amount);
 ...

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

 if (balance < minimumCollateral && balance > 0) revert InsufficientCollateral();
}

6.13 Parallel Challenges Are Expensive to Bid on
Design Medium Version 1 Code Corrected

CS-ZCHF-008

There can be many parallel challenges for the same position, each with their own end time. In case the
sum of challenged collateral is higher than the position collateral, only the first ended challenges will be
able to receive collateral, until there is none left.

Consider the following situation:

There is a position that should be liquidated, where challenges will likely not be averted. This may be due
to the market price being significantly below the liquidation price, or because the position was expired.
Now, a challenger starts many challenges (e.g. 100) on the same position within the same block,
meaning they have the same end time. The challenger will need at least 100x minCollateral to do
this, but they know the challenge will not be averted, so they are not risking their collateral. Assume the
total challenged amount is significantly more than the position collateral. Assume there are not many bids
before the final 30 minutes of the auction (this seems likely as the bidders take the risk of the collateral
value falling before the end of the auction). With 29 minutes left, a bidder bids a competitive price on one
of the auctions. This extends the auction time by 30 minutes. However, the end time of the other 99
auctions is not increased. This means that if nothing else happens, the full collateral will be sold to the
auctions with no or small bids, instead of the competitively priced one. To change this, someone will need
to bid a small amount (or a competitive amount, but this has capital costs) on each of the other 99
positions before they end, paying gas fees. Whenever this happens, the current highest bidder of the
non-competitive positions has the option of making a bid on the competitive auction to extend the end
once again and force someone else to bid on all the 99 other positions once again.

Overall, creating multiple challenges with more collateral in total than the position collateral can
massively increase the gas costs of auctions at a relatively small cost to the attacker. The cost consists of
the gas for opening the challenges plus the capital cost of locking the challenge collateral, though for a
common collateral like ETH this may not be a big hurdle.

If nobody is willing to pay the gas to extend the time of the uncompetitively priced auctions, the collateral
could be sold massively under its market value, leading to losses for the system.

Code corrected:

Version 3The issue has been resolved by changing the auction type to a dutch auction in . There is no
longer a moving end time.

6.14 Inconsistent Value Formats Emitted in
Events
Design Low Version 3 Code Corrected

CS-ZCHF-039

The format of parameters in events Loss and Profit is not consistent. Specifically, the variables
included in the event Loss represent raw frankencoin amounts, while the variables in Profit are in E6
format (multiplied by 1e6).

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:

The codebase has been updated to emit events with parameters in frankencoin amounts. Events now
include only the reporting minter and the realized loss or profit Here is one example from function
burnWithoutReserve:

emit Profit(msg.sender, reserveReduction / 1000_000);

6.15 Challenge State Treated Inconsistently
Correctness Low Version 2 Code Corrected

CS-ZCHF-027

Function isChallengeOpen returns true if challenge.end is in the future, otherwise it returns
false. However, this is not in line with the bid function, which accepts new bids until a challenge has
been either averted or settled by the function end.

Code corrected:

Version 3The function was removed in

6.16 Incorrect Documentation for Denied
Positions
Correctness Low Version 1 Specification Changed

CS-ZCHF-010

The documentation states:

In case a new position is both challenged and vetoed, the challenge cannot be
 averted any more and the collateral is simply auctioned off to the highest bidder.

However, this is not correct. Challenges can be averted in this situation. They can only not be averted
when the position is expired.

Specification changed:

The documentation has been updated to reflect the code.

6.17 Incorrect Natspec Regarding Allowances in
Frankencoin
Correctness Low Version 1 Specification Changed

CS-ZCHF-011

The natspec comment for function openPosition states:

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

* For a successful call, you must set allowances for both ZCHF and the collateral token,
 allowing the minting hub to transfer the initial collateral amount to the newly
 created position and to withdraw the fees.

This sentence is partially incorrect as the user does not need to provide allowance to the minting hub for
ZCHF (Frankencoin). MintingHub has the minter role in Frankencoin and has infinite approval transfer
on behalf of any account.

The same incorrect information is also present in the documentation.

Specification changed:

The inline code comments have been revised. They no longer state that the user must provide allowance
for ZCHF to the minting hub.

6.18 Low Precision on Cubic Root Approximation
Design Low Version 1 Code Corrected

CS-ZCHF-031

The function _cubicRoot implements the Halley approximation to compute the value x**(1/3). The
returned value has a maximum error of 0.01 shares. Given that this function is used to compute the
number of pool shares an LP receives after investing, the rounding error might be significant if the pool
shares have a high value (e.g., thousands of ZCHF).

Code corrected:

Function _cubicRoot has been updated to use a more efficient starting value for the approximation
instead of 10**18 that was used in the previous iteration:

// Good first guess for _v slightly above 1.0, which is often the case in the Frankencoin system
uint256 x = _v > ONE_DEC18 ? (_v - ONE_DEC18) / 3 + ONE_DEC18 : ONE_DEC18;

This enables the approximation algorithm to converge faster than before, which allows using a higher
precision threshold, namely 10**(-12).

6.19 Missing Event for New Positions
Design Low Version 1 Code Corrected

CS-ZCHF-013

The contract PositionFactory does not emit any event when a new position is opened or cloned. No event
is emitted by MintingHub either. Deploying a new position is an important update for the system. An
event helps challengers and liquidators to easily learn about existing positions.

In general, it is recommended to emit events for important state updates and index the relevant
parameters in events to allow integrators and dApps to quickly search for these and simplify UIs.

Code corrected:

The event PositionOpened is now emitted by the minting hub whenever a new position is created or
cloned.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

6.20 Missing Implementation of Described
Functions
Correctness Low Version 1 Specification Changed

CS-ZCHF-014

The comment in the contract ERC20 states that functions decreaseAllowance and
increaseAllowance are implemented:

* Finally, the non-standard `decreaseAllowance` and `increaseAllowance`
* functions have been added to mitigate the well-known issues around setting
* allowances. See `IERC20.approve`.

However, none of the above functions have been implemented by the contract. The frontrunning attack
against approve() is therefore still applicable as it always overwrites the current value without checking
if the allowance has been consumed or not.

Specification changed:

The comment has been removed.

6.21 Pool Shares Limit Not Enforced
Correctness Low Version 1 Code Corrected

CS-ZCHF-030

Inline comments in the Equity contract suggest that a limit in the total pool shares is enforced in the code:

In fact, a limit of about 2**30 shares (that's 2**90 Bits when taking into account the
decimals) is imposed when minting.

However, the contract does not implement such a restriction.

Code corrected:

The updated function invest now implements the following check that restricts the total number of pool
shares minted:

require(totalSupply() <= type(uint96).max, "total supply exceeded");

6.22 Wrong Liquidation Price Emitted in Event
Correctness Low Version 1 Code Corrected

CS-ZCHF-016

Function initializeClone emits the variable existing.price in the event PositionOpened
which matches the price of the original position. The liquidation price of the cloned position is stored in
the state variable pos.price and may be smaller than existing.price.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Code corrected:

The event is now emitted by the minting hub using the correct price.

6.23 _cubicRoot Returns 0 for Large Inputs
Correctness Low Version 1 Code Corrected

CS-ZCHF-028

The function _cubicRoot computes incorrect results for inputs larger than 1e28 due to _mulDiv()
rounding down as described in Possible Rounding to 0 in Function _mulDiv. Therefore, for input values
_v larger than 1e28, the function always computes 0 in the following line:

uint256 xnew = _mulDiv(x, (powX3 + 2 * _v), (2 * powX3 + _v));

The consequences of this issue in the current codebase are limited given that _cubicRoot() is called
with values slightly larger than 1 (10**18):

_cubicRoot(_divD18(capitalBefore + investmentExFees, capitalBefore))

Version 3In the codebase , a check is added on the input value _v, however it only impacts the initial
guess of the approximation algorithm. For large inputs _v, the function _cubicRoot still returns
incorrect results.

Code corrected:

Version 4The function mulDiv is removed from the codebase to avoid rounding down to 0, hence the
function now fails for large inputs due to arithmetic overflows. This behavior is preferred by Frankencoin
as the codebase calls _cubicRoot() only with limited values (slightly larger than 10**18).

6.24 calculateSharesInternal Can Return Large
Numbers
Correctness Low Version 1 Code Corrected

CS-ZCHF-017

In Equity, calculateSharesInternal() is mostly expected to be called with a capitalBefore of
more than 1000E18. However, there are edge cases where it could be called with small numbers, which
lead to large return values.

Consider the following unlikely situation:

The Frankencoin equity has been almost wiped out, but not completely. The equity remaining is 1 wei of
ZCHF. There are more than 1000 FPS shares still in circulation. Now, someone calls invest() with
amount 1000E18 ZCHF. This will call calculateSharesInternal(1,1000E18).

The amount of shares to mint will be calculated using the cubic root of 997E18 / 1E(-18), which is a
much larger number than expected.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Code corrected:

The function calculateSharesInternal has been renamed as _calculateShares and now it
implements a short-circuit that returns 1000 shares whenever equity is below the minimum threshold or
no pool shares are minted. This avoids small inputs:

function _calculateShares(uint256 capitalBefore, uint256 investment) internal view returns (uint256) {
 uint256 totalShares = totalSupply();
 ...
 uint256 newTotalShares = capitalBefore < MINIMUM_EQUITY || totalShares == 0 ? totalShares + 1000 * ONE_DEC18
 : ...;
 return newTotalShares - totalShares;
}

6.25 Incorrect Decimals Comments
Informational Version 3 Code Corrected

CS-ZCHF-041

MintingHub's launchChallenge() and Position's notifyChallengeSucceeded() both have the
following comment:

//@param _size size of the collateral bid for (dec 18)

However, the expected input size should be given as a token amount (in token decimals), not with 18
decimals.

Code corrected:

Version 4The inline comments that described incorrectly the input values are removed in .

6.26 Misleading Function Name isPosition
Informational Version 1 Code Corrected

CS-ZCHF-022

The function isPosition in Frankencoin contract returns the address of the minter if a position has
been registered, and zero address otherwise. However, the name isPosition() hints that the function
also checks if the position exists, which can be misleading. Additionally, the name could be read as
implying that it returns a boolean (true if it is a position with minter role) instead of an address.

Code corrected:

The function has been renamed to getPositionParent.

6.27 Unused Import
Informational Version 1 Code Corrected

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

CS-ZCHF-025

The file MintingHub.sol imports the contract Ownable, which is not used.

Code changed:

The unused import has been removed.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Compiler Version
Informational Version 2 Acknowledged

CS-ZCHF-029

The compiler version used (0.8.20) has the following known bugs.

This is just a note as we do not see any issue applicable to the current code.

The contracts should be deployed using a compiler version they have been thoroughly tested with. Using
a very recent version may not be recommended, as it may not be considered battle-tested yet.

At the time of writing the most recent version is 0.8.21. For more information please refer to the release
notes.

7.2 Event Reentrancy
Informational Version 1 Acknowledged

CS-ZCHF-018

Function end triggers a transfer in the collateral token before emitting the event. If the collateral token
implements callbacks on transfer, one can reenter in the contract and therefore have events emitted out
of order.

Acknowledged:

Frankencoin responded:

External observers are not expected to rely on the order of events within a transaction.

7.3 Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-ZCHF-019

The codebase could be more efficient in terms of gas usage. Reducing the gas costs may improve user
experience. Below is an incomplete list of potential gas inefficiencies:

1. The function adjustRecipientVoteAnchor does not clear the state recorded in the mapping
voteAnchor for users that burn or transfer out all their shares.

2. The function invest could be marked as external.

3. The function calculateShares could be marked as external.

4. The function getUsableMint could be marked as external.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 34

https://github.com/ethereum/solidity/blob/16ae76cad7ca544a183e8340216a4a72d2a08dcd/docs/bugs_by_version.json#L1855
https://github.com/ethereum/solidity/releases
https://github.com/ethereum/solidity/releases
https://chainsecurity.com

5. The field end in struct Challenge could use a smaller type such that it fits into a single storage
slot with another field of type address.

6. The modifier onlyOwner in function adjust is redundant when triggering calls to
withdrawCollateral(), mint() and adjustPrice().

Version 2 :

7. One external call to *.collateral() could be avoided in function clonePosition.

8. The function adjustPrice performs two external calls to read the balance of the position via
_collateralBalance() when price is lowered.

Version 3 :

9. The function StablecoinBridge._mint performs redundant SLOADs when accessing the state
variable minted.

Code partially corrected:

2. The function invest has been marked as external.

3. The function calculateShares has been marked as external.

4. The function getUsableMint has been marked as external.

5. The field end has been removed, a new field start is added which is of type uint64.

7.4 Incomplete Natspec
Informational Version 1 Acknowledged

CS-ZCHF-020

A large number of functions have incomplete Natspec, i.e., do not describe all input parameters and
return values. Natspec descriptions help to more quickly understand the intention of functions, which
improves code readability. Natspec of external functions also helps third-parties that integrate with the
system, e.g., by providing information regarding the format of input values, or assumptions that are made
about them.

Acknowledged:

Frankencoin added natspec comments for some functions.

7.5 Magic Numbers in Codebase
Informational Version 1 Acknowledged

CS-ZCHF-021

Several magic values are used in the codebase that could be declared as constant. For instance,
parameters of positions are stored in 6 decimals (parts-per-million), hence the number 1000_000 is used
frequently. Similarly, voting thresholds are stored in basis points. Such values can be replaced with
constant variables to improve code readability.

Acknowledged:

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

Frankencoin has decided to keep the code unchanged as they prefer to avoid adding new variables for
constants.

7.6 Rounding Errors in Kamikaze Function
Informational Version 1 Acknowledged

CS-ZCHF-023

The kamikaze function burns voting power from a target address and the caller of the function. The
function is designed to burn the same voting power from both accounts as set in votesToDestroy.
However, the internal function reduceVotes introduces errors due to rounding:

function reduceVotes(address target, uint256 amount) internal returns (uint256) {
 ...
 voteAnchor[target] = uint64(anchorTime() -
 (votesBefore - amount) / balanceOf(target));
 ...

In the line above, the rounding error depends on amount (corresponding to the user input
votesToDestroy) and the token balance of the affected address. Hence, the caller can choose
votesToDestroy in such a way that its voting power is reduced slightly less compared to the other
party.

In the worst case, the caller is able to destroy up to 1 second worth of votes more from a target than from
themselves.

Acknowledged:

Frankencoin has acknowledged the issue but has decided to keep the funtion as-is due to the limited
impact of the issue.

7.7 Transfer of Positions' Ownership
Informational Version 1 Acknowledged

CS-ZCHF-024

Positions inherit the Ownable contract which records the address of current owner. Ownable
implements a single-step transfer of ownership with a sanity check for zero address. Accidental
ownership transfers are possible and would lock positions indefinitely, rendering functionalities to mint
and withdraw collateral useless.

A mechanism such as Ownable2Step could be used to mitigate accidental transfers to an incorrect
address.

Acknowledged:

Frankencoin responded:

Worried users can create their own owner contract with arbitrary additional safety measures.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Dutch Auction Duration
Note Version 3

The price of the dutch auction decreases linearly throughout phase 2.

Note that only some prices will be available due to the Ethereum block time being 12 seconds. As a
result, the duration of phase 2 should be chosen long enough such that relevant prices do not fall
inbetween blocks.

For example, if the auction should have a price precision of 0.1%, the duration of phase 2 must be at
least 1000 * 12 seconds.

At the same time, the whole duration (phase 1 and phase 2) should not be too long, as a longer duration
gives more time for the collateral to continue falling in value once the auction starts.

Positions with bad auction duration values should be denied by governance.

8.2 Interest Fees Are Computed on the Gross
Minted Amount
Note Version 1

Users pay an interest fee in Frankencoin (ZCHF) when minting from the positions created by the
MintingHub. The interest is computed on the gross amount of minted ZCHF, which includes the reserves
and the interest fee, not just the amount that the user receives in their wallet.

The relevant code is implemented in the function mint of the Frankencoin contract:

function mint(address _target, uint256 _amount, uint32 _reservePPM,
 uint32 _feesPPM) override external minterOnly {

 uint256 usableMint = (_amount * (1000_000 - _feesPPM - _reservePPM)) / 1000_000;
 _mint(_target, usableMint);
 _mint(address(reserve), _amount - usableMint); // rest goes to equity
 as reserves or as fees
 ...
}

In a scenario where the reserve contribution is set at 20%, the interest fee is 5%, and the expiration is in
one year, the effective interest rate on the usableMint is 0.05 / 0.75 = 6.6% per year, not 5%.

Users should be aware of the effective interest rate that they are paying, which may be unintuitive due to
the way it is calculated.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

8.3 Market Risk Taken by Challengers and
Bidders
Note Version 1

The auction process takes some time depending on the challengePeriod of the position and the
number of bids received. During this time, the price of the collateral could change.

Market risk for challengers:

For instance, if at time t_1 the market price of the collateral is below the liquidation price of a position,
one can start a challenge with the assumption that the challenge will succeed, i.e., the highest bid will be
close to the market price, which is below the liquidation price. However, if the price goes above the
liquidation price at time t_2 while the auction is ongoing, the challenger's collateral will be sold at the
liquidation price, which will likely result in a small loss for them, as a bidder would only bid if they can buy
the asset below market price.

As a result, it should be expected that challengers only start challenges when they think it is likely that it
will not be averted. They will not challenge a position if market price is only a small amount below the
liquidation price.

Market risk for bidders:

Similarly, bidders have exposure to the price change of the collateral when they place their bid. The
exposure will always be at least 30 minutes. In case the price of the collateral drops during this time
window, they may buy the collateral at a higher price than the current market price.

As a result, it should be expected that bids will not be at market price, but instead be at a discount which
compensates for the risk taken (or the cost of hedging it elsewhere).

The reservePPM of positions should be set high enough to cover the loss occurred due to
sub-market-price liquidations caused by the above factors.

Version 3In of the codebase, the liquidation process is based in dutch auctions, which removes the
exposure of bidders to the price change. The auction is now resolved as soon as a bid is placed (the
challenge is either averted or successful), and the bidder receives the collateral immediately.

8.4 Minimum Collateral Is Never Adjusted
Note Version 1

The minimumCollateral for a position is immutable. On creation, it is enforced that the minimum is
>5000 ZCHF. The price of the position can be adjusted up or down, but the minimumCollateral never
changes. If the price is decreased, this could lead to positions with low value, which may not be worth the
gas to liquidate using the auction mechanism.

Consider the following situation:

1. Position is created when collateral is worth a lot.

2. Price falls slowly but owner keeps adjusting liquidation price down. ZCHF limit is still large.

3. Someone clones the position many times using minCollateralAmount (which is significantly under
5000 ZCHF). Each position is not worth liquidating because of gas.

This could result in up to the position's minting limit amount of losses for the system.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

Governance should keep this limitation in mind when evaluating the collateral asset, expiration and
limit of new positions. An asset that may lose significant value before the expiration should likely
not be allowed with a large limit.

8.5 Minters Should Not Change Their Code
Note Version 1

Contracts with the minter role should not be able to change their code.

In particular, they should not be upgradeable and they should also not be able to selfdestruct. Using
create2, it would possible to propose a benign minter that is able to call selfdetruct. As soon as the veto
period has ended, the deployer could selfdestruct the minter and deploy a different contract at the same
address, which would now be able to mint unlimited Frankencoin.

Proposed minters and their related positions should be carefully evaluated during the veto process not to
have any of the code-changing functionality such as the above or others.

8.6 Nested Iterations in Function checkQualified
Note Version 1

The function checkQualified iterates through all addresses included in the array helpers. For each
address in the array, the function canVoteFor is called recursively to verify that a valid delegation path
exists between the FPS holder and msg.sender. The governance address exercising their veto right
should carefully choose addresses in helpers to optimize their gas costs and make sure the transaction
does not exceed gas limitations.

8.7 No Slippage Protection for Mint
onTokenTransfer
Note Version 1

There are two functions that can be used to mint tokens in Equity: invest() and
onTokenTransfer(). The invest() function contains an expectedShares argument, which
provides slippage protection. The onTokenTransfer() function does not have an equivalent.

Users should use the invest() function to mint shares when possible, in order to benefit from the
slippage protection.

Code changed:

Version 2In , the onTokenTransfer function was removed from Equity.

8.8 Non-registered Positions
Note Version 1

The contract PositionFactory does not enforce any access control for its external functions
createNewPosition and clonePosition, hence anyone can deploy arbitrary positions. The UI

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

should filter out such positions and users should validate that the positions they interact with are created
by the correct MintingHub. Only contracts with the minter role in Frankencoin can register positions.

8.9 Position Owners Should Withdraw the Excess
Collateral
Note Version 3

Users should withdraw their excess collateral from positions, especially if they are expired or do not have
any minted amount left. Otherwise, the position risks having its collateral liquidated if the market price
falls below the liquidation price, even if the position itself might be over-collateralized (e.g., zero minted
frankencoins).

8.10 Positions With Quickly Collapsing Collateral
Must Be Challenged
Note Version 1

In MintingHub, the Challenge reward is calculated as follows, where offer is the value that the collateral
has been liquidated for:

uint256 reward = (offer * CHALLENGER_REWARD) / 1000_000;

This becomes problematic in a case where the expected liquidation value is close to zero.

Consider the following situation:

1. A token is accepted as collateral.

2. Positions are created with a price that is valid at the time.

3. Something catastrophic happens, and the value of the collateral declines very quickly towards 0
(e.g. hyperinflation or loss of backing for a wrapped asset).

4. Now, the expectation is that by the time phase1 and phase2 of the dutch auction finish, the
collateral value will be 0. This means the challenger reward will also be 0.

5. If all challengers share this expectation, nobody is incentivized to start a challenge, as the gas cost
of doing so will be larger than the reward.

6. The position goes unchallenged, even when the market price goes below the liquidation price. The
price is unchanged, so the position is not on cooldown. A user can clone the position and deposit
collateral token, which he bought for below liquidation price on the market. He can then profitably
mint up to limit ZCHF, which are undercolalteralized and will lead to a loss to the system.

This situation can be avoided if there is an attentive FPS holder, who is incentivized to avoid losses to the
system. He should immediately challenge the position when it goes below liquidation price, even though
they expect not to receive any challenge reward.

If the collateral value is 0, there is also no incentive for bidders to bid on a challenge once it reaches the
ending price of 0. Someone also needs to call bid() altruistically (paying gas) to update the accounting
and have the Equity take the loss.

In conclusion, FPS holders should monitor positions and challenge them even if they do not expect a
challenge reward, in order to avoid losses to the system (which are absorbed by FPS Equity).

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

8.11 Possible Rounding to 0 in Function _mulDiv
Note Version 2

Function _mulDiv in the library MathUtil stores the intermediate results in uint256, hence it performs
the division before multiplication if the term``x * factor`` does not fit in 256 bits to avoid overflowing. Note,
the result is rounded to 0 for inputs where divisor is larger than both x and factor, e.g.,
_mulDiv(2**250,2**15,2**251).

Version 4The function _mulDiv has been removed in of the codebase to avoid rounding down as in the
example described above.

8.12 Possible to Frontrun Veto Transactions
Note Version 1

FPS holders can delegate their voting power to 3rd parties which can use the delegated votes to veto
new proposals (e.g., opening new positions or adding minters into Frankencoin). A user vetoing a
proposal submits a list of addresses that have delegated voting power to him (referred to as helpers).

The function checkQualified ensures that the total voting power (own voting power plus delegated
votes) of the address exercising the veto right is above 3% and all delegations are still valid. The second
condition enables a frontrunning possibility for a delegator in the list helpers to make the veto
transaction revert by removing the delegation. Therefore, governance should exercise their veto rights as
early as possible and include only trustworthy accounts as helpers.

8.13 Specifics of Modifier minterOnly in
Frankencoin
Note Version 1

The modifier minterOnly passes successfully if either msg.sender is a valid minter or it has been
added in the mapping positions by a valid minter:

modifier minterOnly() {
 if (!isMinter(msg.sender) && !isMinter(positions[msg.sender])) revert NotMinter();
 _;
}

This behavior, among others, should be considered when evaluating proposals for adding new minters in
the Frankencoin contract.

8.14 restructureCapTable May Take Multiple
Blocks
Note Version 1

If the system has incurred losses and equity is less than 1000 ZCHF, the function
restructureCapTable allows existing shareholders to restructure the system. Any shareholder with
more than 3% of the voting power can step in and bootstrap the system by paying for the losses (which

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

can be significantly higher than 1000 ZCHF) and become the only FPS shareholder. As the function
restructureCapTable iterates through all FPS holders given as input and burns their shares, it is
possible that the block gas limit prevents wiping all existing shares in a single block.

Frankencoin - Frankencoin - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Frankencoin
	2.2.2 MintingHub
	2.2.3 Position
	2.2.4 StablecoinBridge
	2.2.5 Equity

	2.3 Roles and Trust Model
	2.4 Changes in Version 2
	2.5 Changes in Version 3
	2.6 Changes in Version 4

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 No Functionality to Recover From Bridge Failure
	5.2 Restructuring Equity Shares Does Not Enforce Payment
	5.3 Challenge Can Leave Dust Amount
	5.4 Rounding Error in _calculatePrice
	5.5 Cloned Positions Can Have Arbitrary Expiration
	5.6 Mismatch of Natspec With Implementation in ERC20
	5.7 Missing Sanity Checks

	6 Resolved Findings
	6.1 Successfully Challenged Positions May Not Close
	6.2 Bidding After Challenge Ends Adds No Time
	6.3 Position Limits Can Be Used for Free
	6.4 Challenges of Expired Loans Can Be Averted
	6.5 Double Entry Point Protection Can Be Insufficient
	6.6 Possible to DoS Minting Functionalities
	6.7 Reentrant Collateral Could Mint During Liquidation
	6.8 redeemFrom Does Not Reduce Allowance
	6.9 Bids Could Be Reverted by Frontrunning
	6.10 Bridge's Risk Exposure Limit Can Be Circumvented
	6.11 Incorrect Comparison in Function _mulDiv
	6.12 Minimum Collateral Can Be Partially Withdrawn
	6.13 Parallel Challenges Are Expensive to Bid on
	6.14 Inconsistent Value Formats Emitted in Events
	6.15 Challenge State Treated Inconsistently
	6.16 Incorrect Documentation for Denied Positions
	6.17 Incorrect Natspec Regarding Allowances in Frankencoin
	6.18 Low Precision on Cubic Root Approximation
	6.19 Missing Event for New Positions
	6.20 Missing Implementation of Described Functions
	6.21 Pool Shares Limit Not Enforced
	6.22 Wrong Liquidation Price Emitted in Event
	6.23 _cubicRoot Returns 0 for Large Inputs
	6.24 calculateSharesInternal Can Return Large Numbers
	6.25 Incorrect Decimals Comments
	6.26 Misleading Function Name isPosition
	6.27 Unused Import

	7 Informational
	7.1 Compiler Version
	7.2 Event Reentrancy
	7.3 Gas Optimizations
	7.4 Incomplete Natspec
	7.5 Magic Numbers in Codebase
	7.6 Rounding Errors in Kamikaze Function
	7.7 Transfer of Positions' Ownership

	8 Notes
	8.1 Dutch Auction Duration
	8.2 Interest Fees Are Computed on the Gross Minted Amount
	8.3 Market Risk Taken by Challengers and Bidders
	8.4 Minimum Collateral Is Never Adjusted
	8.5 Minters Should Not Change Their Code
	8.6 Nested Iterations in Function checkQualified
	8.7 No Slippage Protection for Mint onTokenTransfer
	8.8 Non-registered Positions
	8.9 Position Owners Should Withdraw the Excess Collateral
	8.10 Positions With Quickly Collapsing Collateral Must Be Challenged
	8.11 Possible Rounding to 0 in Function _mulDiv
	8.12 Possible to Frontrun Veto Transactions
	8.13 Specifics of Modifier minterOnly in Frankencoin
	8.14 restructureCapTable May Take Multiple Blocks

