

PUBLIC

Code Assessment

of the Firetoken

Smart Contracts

August 15, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Informational 10

7 Notes 12

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Fire Group Ltd. with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Firetoken according to
Scope to support you in forming an opinion on their security risks.

Fire Group Ltd. implements an ERC-20 and ERC-1404 compliant FireToken, which is governed by the
owner and features restricted token transfers.

The most critical subjects covered in our audit are functional correctness, access control and standard
compliance. Security regarding all the aforementioned subjects is high.

The general subjects covered are code complexity and quality of specification documentation. Fire Group
Ltd. did not provide any specifications, test cases, git commits or the framework setup.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Firetoken repository based on the
documentation files.

The scope consists of the following solidity smart contracts:

1. contracts/FireToken.sol

2. contracts/IERC1404.sol

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 07 Jul 2023 zip File no Commit provided Initial Version

For the solidity smart contracts, the compiler version 0.5.17 was chosen.

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Fire Group Ltd. offers an ERC-20 and ERC-1404 compliant FireToken, which features restricted token
transfers.

2.2.1 FireToken
The FireToken contract is governed by an owner which is set to msg.sender upon deployment. The
owner has the privileges of:

• addUserListToKycRole() - grant a KYC-ed role to a list of addresses.

• removeUserFromKycRole() - revoke a KYC-ed role from an address.

• addTransferBlock() - add a transfer block to an address.

• removeTransferblock() - remove the transfer block from an address.

• mintTo() - mint any amount of FireToken to an address.

• burn() - burn any amount of FireToken of an address.

• setParent() - Set the parent's address of a child's address.

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• Update the mapping of a code to a human-readable string explaining an execution result by:
setRestrictionCode(), setBurnCode(), setMintCode(), setBlockCode(),
removeRestrictionCode(), removeBurnCode(), removeMintCode() and
removeBlockCode.

FireToken functions as a normal ERC-20 token with 5 decimals, while the token transfers are restricted in
the following cases:

• The sender has insufficient balance.

• The sender or the recipient does not have _kyc role.

• The sender or the recipient has _transferblock role.

In case the call to transfer() or transferFrom() reverts, the user can retrieve the restriction code
by detectTransferRestriction(). For admin's operations to burn, mint, and update transfer
blocks, users can retrieve a human-readable strings by querying the following functions with the
execution code from the emitted events:

• messageForTransferRestriction() - returns a human-readable message for a given
restrictioncode

• messageForBurnCode() - returns a human-readable message for a given burncode.

• messageForMintCode() - returns a human-readable message for a given mintcode.

• messageForBlockCode() - returns a human-readable message for a given blockcode.

Note the human-readable message for a given code can be changed by the owner of the contract by
removing the code and re-adding again. In addition, the human-readable message of a given code may
not exist upon users' query. Though the contract enforces that the code must exist at the time of the
owner's privileged operation, the owner can easily remove the code after the operation.

A view function getParent() is provided to retrieve the parent address of a child address.

2.2.2 Roles and Trust Model
The owner role is the only admin of FireToken contract. We assume the owner is always trusted and
never acts against the interest of the legitimate token users, otherwise it can:

• Manipulate the account balance by minting or burning tokens.

• Add a KYC-ed role to any address or revoke it from any address.

• Block any address to restrict all incoming or outgoing transfers.

• Modify or remove any operation code.

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Gas Optimizations
Informational Version 1

CS-FRTK-001

• The state variables _name, _symbol and _decimals could be declared as constants. As a result,
the compiler does not reserve a storage slot for these variables, and every occurrence is replaced
by the respective value. Compared to regular state variables, the gas costs of constant and
immutable variables are much lower. For a constant variable, the expression assigned to it is copied
to all the places where it is accessed and also re-evaluated each time. This allows for local
optimizations. Immutable variables are evaluated once at construction time and their value is copied
to all the places in the code where they are accessed. For these values, 32 bytes are reserved, even
if they would fit in fewer bytes. Due to this, constant values can sometimes be cheaper than
immutable values. (see Solidity docs)

• _transfer() does not need to use safeMath when modifying the _balances of the sender and
the recipient. Because the sender's balance has already been checked in
detectTransferRestriction() to ensure sufficient funds for the transfer. And the recipient's
balance is always less or equal to totalSupply, in case totalSupply does not overflow during
minting, the recipient's balance will never overflow.

• _mint() does not need to use safeMath when updating _balances[account]. The balance of
any account is always less or equal to totalSupply.In case the previous update to
_totalSupply does not overflow, _balances[account] will not overflow as well. This applies to
the updates of _totalSupply in _burn() as well.

• The check of onlyOwner is redundant for internal function _mint(), because _mint() is only
called by the external function mintTo(), which is already marked with modifier onlyOwner. This
applies to the internal function _burn() as well.

6.2 Indexed Fields of Events
Informational Version 1

CS-FRTK-002

The events Burn, Mint, Block and Unblock do not mark the field code as indexed. Indexing fields in
events allows to easily search for certain events. code is not a random number but is a limited set and
could be indexed.

Fire Group Ltd. states:

The field code is more an add-on-info for the reason of events. At the time of
writing the contract, searching based on codes seemed not to be a requirement.
Thus, it was decided to not index the code part of the event.

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 10

https://docs.soliditylang.org/en/latest/contracts.html#constant-and-immutable-state-variables
https://chainsecurity.com

6.3 Missing Events of KYC Roles Updates
Informational Version 1

CS-FRTK-003

The contract owner's call to addUserListToKycRole() and removeUserFromKycRole() will
update the KYC roles, nevertheless, no events will be emitted to reflect the storage modification.

Fire Group Ltd. states:

KYC data is stored off-chain while executing the KYC processes. Thus, it was
decided to not emit events for adding and removing KYC roles as this information
is available off-chain.

6.4 Redundant Transfer Restriction
Informational Version 1

CS-FRTK-004

Without specifications it is unclear if address(0) is an address that has transfer restrictions in the _kyc
set or not. In case it does have transfer restrictions and is not part of the set, the requires in _transfer
are redundant.

6.5 Unused Variable _propertyAmountLocks
Informational Version 1

CS-FRTK-005

The contract defines a state variable called _propertyAmountLocks but it is not used.

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 No Way to Recover ETH or Token Sent to the
Contract
Note Version 1

The contract has no functionality to recover ETH or token sent to the contract. All funds sent to the
contract will be locked forever.

7.2 Reserve Code <100 for Contract Internal Use
Note Version 1

When the owner inserts a new code into the mapping, the code is required to be larger than 100.
Whereas only less than 6 are used in the constructor, the rest are unused.

7.3 Unusual Decimals
Note Version 1

The token has only 5 decimals. Most contracts have 18 decimals which is the standard base in the
Ethereum network. Many issues can arise when a token with other than 18 decimals shall be included in
third party protocols. Hence, Fire Group Ltd. should carefully evaluate if it is necessary to use 5 decimals
and state this very clearly everywhere (in-line documentation, online documentation, website and if other
protocols are using the token) to mitigate future issues.

Fire Group Ltd. - Firetoken - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 FireToken
	2.2.2 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Informational
	6.1 Gas Optimizations
	6.2 Indexed Fields of Events
	6.3 Missing Events of KYC Roles Updates
	6.4 Redundant Transfer Restriction
	6.5 Unused Variable _propertyAmountLocks

	7 Notes
	7.1 No Way to Recover ETH or Token Sent to the Contract
	7.2 Reserve Code <100 for Contract Internal Use
	7.3 Unusual Decimals

