

PUBLIC

Code Assessment

of the ETH B2C Staking

Smart Contracts

August 17, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 6

4 Limitations and use of report 11

5 Terminology 12

6 Findings 13

7 Resolved Findings 15

8 Informational 33

9 Notes 34

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Everstake team,

Thank you for trusting us to help Everstake with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of ETH B2C Staking according
to Scope to support you in forming an opinion on their security risks.

Everstake implements a pooled staking service for Ethereum, where the rewards are reinvested in the
pool and the validators are managed by Everstake.

The most critical subjects covered in our audit are the correctness of the accounting, asset solvency,
access control and functional correctness. During the audit, the most important reported issues were:

• Replacing a Validator Eventually Blocks the System

• Usage of address(this).balance in restake Can Block the System that requires from Everstake to
inject liquidity to correct the accounting in case of necessity.

The issues have been fixed during the second week of the audit.

Security regarding all the aforementioned subjects is satisfactory. Even though the probability of one of
the validators getting slashed is low, slashing could occur. That would require manual, trust-based
intervention, see Slashing is not taken into account and Trust Model.

The general subjects covered are documentation, unit testing, code complexity, and gas efficiency.
Documentation has been greatly improved during the last iteration. Unit testing and testing in general is
basic, a good test suite will help ensure corner cases are considered.

In summary, we find that the codebase provides a satisfactory level of security, provided the Trust Model.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 6

• Code Corrected 5

• Specification Changed 1

Low -Severity Findings 25

• Code Corrected 22

• Acknowledged 3

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the ETH B2C Staking repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 27 June 2023 ddde802c194eecbd1a8670eb3be9629a5e700722 Initial Version

2 05 July 2023 7b10ca452199f5a0e5fbd7596d72334582a48b32 Version 2

3 02 August 2023 8d3c73007da91da2d20dfb66524cedb74d10f80b Version 3

4 08 August 2023 35f9b56b038be82a31946bd6b02533ec16ddd228 Version 4

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

The following contracts are in the scope of the review:

common:
 Errors.sol

interfaces:
 IAccounting.sol
 IDepositContract.sol
 IPool.sol
 IRewardsTreasury.sol
 ITreasuryBase.sol

lib:
 UnstructuredRefStorage.sol
 UnstructuredStorage.sol

structs:
 ValidatorList.sol
 WithdrawRequests.sol

utils:
 Math.sol
 OwnableWithSuperAdmin.sol

Accounting.sol
AutocompoundAccounting.sol
Governor.sol
Pool.sol
RewardsTreasury.sol
TreasuryBase.sol
Withdrawer.sol
WithdrawTreasury.sol

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope
Any contracts not explicitly listed above and third-party libraries are out of the scope of this review.

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Everstake offers a staking service for Ethereum that allows stakers to deposit amounts that can be less
than 32ETH, the beacon amount, in a pool. The system also restakes the staking rewards.

ETH B2C Staking uses a smart way of exchanging incoming liquidity for outgoing liquidity, called
interchange. Upon a withdrawal request from an activated validator that is less than 32ETH, the
requested amount is added to an exchange buffer. Now any incoming liquidity will first be exchanged in
this buffer, allowing the exiting party to withdraw without closing the validator, and the entering party to
have part of its stake instantly active in a validator.

The system works in rounds, the active round indicates the round that is currently being filled, and the
activated round describes the next round for which a validator is expected to be activated. The active
round is filled until the pending amount reaches 32ETH, then a new active round starts. Once a validator
has been activated on the beacon chain, Everstake will increment the activated round in the system.

The amounts that are due to the users are represented by shares. The shares are minted to users only
when their stake becomes active in the beacon chain, either by interchange or by the activation of a new
validator on the beacon chain.

The stakes provided by users can be in three states:

1. Pending: the stake is waiting in the Pool.

2. Deposited: the stake has been sent to a validator, but the validator is not yet active on the beacon
chain.

3. Active: the stake is in a validator and the validator is active on the beacon chain.

The system is divided into three parts:

1. Pool: the main entry point to the system that holds the pending assets.

2. Accounting: takes care of the accounting for the stakers in a pool.

3. Treasuries: the reward treasury receives the staking rewards and the returned stake of closed
validators, the withdraw treasury holds the amount that will be withdrawn.

3.1 Pool
The Pool holds a list of validators that are managed by Everstake and can be used when the pending
amount in the Pool reaches 32ETH. When it does, a validator is consumed from the list and the beacon
deposit contract is called with the validator's public key, signature, and deposit data root along with the
address of the rewards treasury encoded in the withdrawal credentials.

The Pool contract is the main entry point of the system, it offers the following functions for the users:

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• stake: called along with ETH, the msg.value must be at least the minimum stake amount. The
function will first reinvest any rewards (Accounting._autocompound) and deposit the caller's
stake, or part of it, either in the withdraw treasury if some amount can be interchanged, in the
pending buffer if the total pending amount is not sufficient to launch a new validator, or in one or
more yet inactive validators if the sum of the user's value and the pending amount can cover the
beacon amount or more. If some of the stake can be interchanged, the associated shares are
instantly minted to the new staker. Can only be called when staking is not paused.

• unstakePending: a staker whose stake is still pending (not sent to a validator) can use this
function to reduce its stake. This function will first update the internal accounting for the rewards
treasury (Accounting._update), then reduce the pending stake of the caller and send back the
requested value. Can only be called when withdrawals are not paused.

• unstake: a staker who has shares can use this function to initiate a withdrawal of their active stake.
The function will first reinvest any rewards (Accounting._autocompound), then if some pending
amount is available it will be interchanged as much as possible and the remaining value, if any, will
be added to a withdrawal request. The withdrawal request will request the closing of one or more
validators if the requested amount exceeds one or more beacon amounts and Everstake will be
notified. The remaining amount will be made available for interchange, and the request will be added
to a withdrawal request queue. The user can claim the withdrawal as soon as the requested amount
is available in the withdraw treasury. If a user initiates the withdrawal of at least 32ETH, a validator
will be closed even if it could be that interchange could be covered to avoid closing one or several
validators.

The privileged roles owner, governor, and superAdmin can call the following functions:

• setPendingValidators: add a new validator in the validators list. Everstake is trusted to
regularly add new validators to the list to keep the system running.

• replacePendingValidator: replace a pending validator in the validators list.

• markValidatorsAsExited: marks one or several validators as exited so their slots in the
validators list can be reused.

• pauseStaking: pause/unpause the staking.

• pauseWithdraw: pause/unpause the withdrawals.

• setMinStakeAmount: set a minimum staking amount.

3.2 Accounting
The Accounting contract holds all the logic related to internal accounting, rewards reinvestment,
rounds management, deposits, interchange and withdrawals operations.

3.2.1 Exit stakes and rewards auto-compounding
The functions responsible for closed validators' stake management and rewards reinvestment are:

• update() / _update(): sends the stake returned by closed validators from the reward treasury
to the withdraw treasury and computes the rewards and associated fees if any amount is left, then
updates the internal accounting of the cached rewards treasury balance, as well as the fees and
rewards balances held by the rewards treasury.

• autocompound() / _autocompound(): calls _update() first, if the rewards balance of the
rewards treasury is above the minimum restake amount, the rewards are accounted for, and
interchanged if possible. The rewards are added to the total deposited amount but no shares are
minted. If the total pending amount is sufficient to launch one or more validators, the Accounting
will trigger a restake which will deposit to new validators.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3.2.2 Internal accounting
The internal accounting tracks for each staker the amount they deposited in every current and past active
rounds that are not yet activated, as well as the active stake in the form of shares. At the end of each
active round, a snapshot of the user's part of the deposited beacon amount is taken, so that shares can
be minted when the round becomes activated (when the validator they have their stake in is activated in
the beacon chain). When the validator for a round is activated, Everstake will call
activateValidators, which will take a snapshot of the current total deposited amount and the current
supply of shares, mint the shares related to that round, and update the total deposited amount, as well as
the total supply of shares. Users will claim their already minted shares for an activated round whenever
they stake again or unstake, this is done within _autocompoundAccount.

Upon withdrawal of the active stake, the associated shares will be burned. The exiting amount will first be
interchanged as much as possible with the pending stakers and the pending rewards to be restaked, if
the pending amount cannot cover the withdrawal amount, the difference will be added in a withdrawal
request that can be claimed when enough liquidity has been accrued in the withdraw treasury.

Note that the accounting functions deposit, withdraw, and withdrawPending are expected to be
called for msg.sender by the superAdmin of the Accounting, which is the Pool, but they can also
be called by the owner for arbitrary addresses.

3.3 Treasuries
The treasuries are contracts used by the Accounting to store the funds obtained from the validators
(rewards or returned stake of closed validators) and the funds to be withdrawn by users.

Both treasuries have a function sendEth, this function sends Eth to some arbitrary address given as a
parameter and can only be called by the rewarder of the contract.

3.3.1 Reward Treasury
In addition to sendEth, the RewardTreasury defines reStake, a function used to call the pool's
restake function together with sending some amount of ETH.

The address of the RewardTreasury is given as part of the withdrawal_credentials parameter to
the call to the deposit function of the beacon deposit contract done by the pool. This means that
rewards and returned stakes from every validator will be sent to the treasury. The balance of the treasury
is then used in the following ways by the accounting contract using sendEth and reStake:

• Funds from a closing validator are sent to the withdraw treasury.

• Funds from rewards are split in two by the accounting:

• Rewards fees stay in the RewardsTreasury, but are accounted for in the Accounting so
that the owner of the Accounting contract can claim them.

• The rest of the rewards are sent to the pool using restake or to the withdraw treasury
depending on if they get interchanged or not during the auto-compounding.

3.3.2 Withdraw Treasury
The withdrawTreasury can receive ETH in the following ways:

• From the RewardTreasury as mentioned above (either a closing of validator or by interchanging
the rewards).

• From the Pool when a user is staking and part of his stake is interchanged.

The funds in the treasury are then used by _claimWithdrawRequest to send the ETH to a user
claiming a withdrawal request.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3.4 Changes in Version 3
• The fee can be up to 100%.

• The two treasuries (RewardsTreasury, WithdrawTreasury), are now behind an upgradeable
proxy.

• The owner of the RewardsTreasury contract can call the sendEth function as well, not only the
rewarder.

• The owner of the RewardsTreasury contract can call the reStake function as well, not only the
rewarder.

• When calling the function Pool.unstake, users can choose to use the interchange feature or not.

• A new feature has been added for users. They can now use the function Pool.activateStake to
forcibly interchange their pending stake with the interchangeable amount.

• The governor, owner, and superAdmin can reorder the list of validators (_values) following the
index of their public key in _validatorsPubKeys, starting from
_activePendingElementIndex.

• The owner of the Accounting contract can pause the rewards update. This feature is meant to be
used in the case of a validator getting slashed, so the incoming remaining stake is not consumed as
a reward.

• When the shares are minted to the user, the activated amount is readjusted by being recomputed
based on the newly minted shares in the user's deposited amount, this is done in the favor of the
system.

• In Accounting.withdraw, the interchange is now done with the pending restake rewards first,
and then with the pending stakers.

• In addition to markValidatorsAsExited, Pool.markValidatorAsExited can now be used to
mark one validator as exited given its index in _validatorsPubKeys.

3.5 Trust Model
Users of the system are generally untrusted and expected to behave unpredictably.

The following roles are fully trusted and expected to behave honestly and correctly.

• The owner, the superAdmin and the governor of the Pool.

• The owner and the governor of the Accounting.

• The owner of the RewardTreasury.

• The owner of the WithdrawTreasury.

More specifically, the owner of the RewardTreasury and Withdraw are allowed to send ETH from
those contracts and are trusted to use this functionality only in case of emergency. The owner of
Accounting can make calls inside the Accounting contract in the name of arbitrary addresses and is
trusted to use this functionality only in case of emergency.

The superAdmin of the Accounting is assumed to be the address of the Pool. The rewarder of both
the RewardTreasury and the WithdrawTreasury are assumed to be the address of the
Accounting.

Everstake is trusted in providing and managing the validators correctly by avoiding slashing, claiming the
rewards when it is needed and closing the validators when the contract requires it.

Everstake is trusted in providing liquidity to facilitate stake and unstake demand.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The exact procedure in case of slashing is not known. Everstake provided us with the following flow in
case of slashing:

1. Wait the closest time until the validator exit

2. Stop rewards update

3. Update Pool balances

4. Activate a new validator

The exact manner of how point 3. will be executed is not fixed, see Slashing is not taken into account.
We expect Everstake to document it well for potential users and users to be aware of this. Moreover,
Everstake added that 3. is:

still under consideration due to business model finalization:

 - Slashing coverage within pool with higher fee rate in collaboration of Insurance services.
 - Pool without slashing coverage with lower fee rate, that will require in case of emergency
 to deploy changes that could help to update pool balances.

In order to mitigate users' loss in case of slashing, Everstake plans to deploy a special emergency
treasury fund, where part of the fee can be used to refund the users, see also Users May Not Be Fully
Refunded in Case of Slashing.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• AcknowledgedPausing Auto-Compounding Can Be Unfair to Users

• AcknowledgedInterchanging Is Not Performed in Order When Withdrawing

• AcknowledgedMinimum Stake Consistency

6.1 Pausing Auto-Compounding Can Be Unfair to
Users
Design Low Version 3 Acknowledged

CS-EVERSTKB2C-001

The flag PAUSE_REWARDS_POSITION introduced in the Accounting allows for pausing rewards
auto-compounding. This led to the following:

1. During the period rewards auto-compounding is disabled, all users joining the protocol and having
their stake activated will collect the same amount of rewards independently of the time their stake
became active.

2. Provided that enough interchanging is available, a user who wants to begin staking can monitor the
mempool and frontrun the Everstake's transaction that reenables reward auto-compounding to
keep its ETH liquid for the largest amount of time possible while maximizing its rewards.

Acknowledged:

Everstake is aware of this issue and responded that, depending on their SOP for each edge case,
staking may be manually paused along with the pausing of the rewards.

6.2 Interchanging Is Not Performed in Order When
Withdrawing
Design Low Version 1 Acknowledged

CS-EVERSTKB2C-004

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Because of the implementation of AddressSet, when interchanging with pending deposits during a
withdrawal, the interchanges are not done in the order the stakers deposited. This means that some
users might have to wait for their deposit to become active longer than another user who deposited after
them, hence missing the rewards that were distributed during this time.

This issue can be taken advantage of by a user who wants to stake x ETH but does not wish to wait for
their deposit to become active. By looking at the mempool, the user can spot transactions withdrawing
from the contract. If he finds a withdrawal greater than or equal to x + y where y is the amount that
could be interchanged with _slotPendingStakers()[activeRound][0], frontrunning the
transaction with his call to Pool.stake will guarantee him to be interchanged with the withdrawal,
overtaking all the users in _slotPendingStakers()[activeRound].

Acknowledged:

Everstake responded that this behavior is known and kept as it is to save gas since using the proper
order would be costly given OpenZeppelin's AddressSet implementation.

6.3 Minimum Stake Consistency
Design Low Version 1 Acknowledged

CS-EVERSTKB2C-005

The Pool forces stakers to stake at least MIN_STAKE_AMOUNT per deposit, but it is possible to
circumvent this by calling stake() and then either unstakePending() or unstake() to have a final
deposited amount smaller than MIN_STAKE_AMOUNT.

Acknowledged:

Everstake acknowledged this behavior and explained that this check is more about excluding cases
when the fees of the transaction would be relatively large compared to the actual deposited amount.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedReplacing a Validator Eventually Blocks the System

• Code CorrectedUsage of address(this).balance in restake Can Block the System

Medium -Severity Findings 6

• Code CorrectedrenounceOwnerShip Leaves the _pendingOwner Pending

• Code CorrectedMissing Input Sanitization

• Code CorrectedPausing Withdrawing Is Ineffective

• Specification ChangedSlashing Is Not Taken Into Account

• Code Corrected_simulateAutocompound's Computation of pendingRestaked Is Incorrect

• Code Corrected_simulateAutocompound's Computation of totalShare Is Incorrect

Low -Severity Findings 22

• Code CorrectedWrong Address in Event upon acceptOwnership

• Code CorrectedRewardsTreasury Overrides SendETH With Identical Implementation

• Code CorrectedValidatorList.get Might Not Represent the Reality

• Code Corrected_simulateAutocompound Ignores Paused Rewards

• Code CorrectedBatch Deposit in First Round Skips Shortcut

• Code CorrectedEvents Missing

• Code CorrectedInconsistent Event Emission Order

• Code CorrectedInterchanged Part of a Deposit Is Not Added to depositBalance

• Code CorrectedInterfaces Not Implemented

• Code CorrectedMissing Documentation

• Code CorrectedMissing Indexing of Events

• Code CorrectedStatus of Replaced Validators Is Not Reset

• Code CorrectedUnnecessary Function Parameter

• Code CorrectedVariables and Functions Names Are Not Representative

• Code CorrectedView Functions Are Incorrect for Round 0

• Code CorrectedWithdrawing May Fail Due to Underflow

• Code CorrectedWrong Restake Condition

• Code CorrectedInterchangeDeposit Emitted When No Interchange

• Code CorrectedactivatedRound Cached Value Not Updated

• Code CorrectedactiveRound==0 Shortcut Breaks Semantics

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• Code CorrectedonlyGovernor Not Used

• Code CorrectedunstakePending Does Not Update _slotPendingStakers

7.1 Replacing a Validator Eventually Blocks the
System
Correctness High Version 1 Code Corrected

CS-EVERSTKB2C-034

The function ValidatorList.replace does not set the status of the new validator to Pending. This
will make ValidatorList.shift() revert when the next pending validator will be the new validator as
its status will be Unknown. If this happens, staking and withdrawing will be blocked. The funds can only
be unlocked if the validators are closed and the rewarder on the RewardsTreasury can be changed.

Code corrected:

The function has been updated and the new validator' status is now set to Pending.

7.2 Usage of address(this).balance in
restake Can Block the System
Design High Version 1 Code Corrected

CS-EVERSTKB2C-025

The function restake defined in the pool contract is called when auto-compounding is performed and
tries to deposit to the beacon deposit contract with fresh validators as much as possible given the
balance of the contract.

As this function relies on the balance of the contract and not the balance computed by the accounting the
following is possible:

• If ETH is forced into the pool contract (using selfdestruct for example), one can increase the
balance of the contract such that any subsequent function call triggers a deposit to the beacon
deposit contract via _autocompound when it would not without the extra ETH. As accounting's
pending amount will now be much greater than the actual balance of the pool, any call to deposit
or withdraw will eventually revert as it will try to send to the beacon deposit contract ETH that is no
longer in the pool.

• When a user stakes, _autocompound() is called by deposit() before the deposit is accounted
for in _deposit() and after the deposit of the user has been added to the contract's balance. If the
balance of the contract, upon transferring the rewards from the treasury to the pool contract, is
greater than 32 ETH, restake will deposit to the beacon deposit contract. As part of the user's
deposit will be gone, the accounting performed by _deposit() will not match the actual balance of
the contract and the call will revert as _stake cannot send BEACON_AMOUNT to the beacon deposit
contract.

Code corrected:

A parameter activatedSlots to indicate how many validators must be deposited to has been added in
the restake functions, and the Pool does not rely on its internal balance anymore.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7.3 renounceOwnerShip Leaves the
_pendingOwner Pending
Design Medium Version 3 Code Corrected

CS-EVERSTKB2C-033

The functions TreasuryBase.renounceOwnership and
OwnableWithSuperAdmin.renounceOwnership delete the _owner, but not the _pendingOwner.
When renouncing ownership, there may be still a pending owner. The goal of renouncing ownership is to
leave the contract without an owner forever, but if the current owner does initiate ownership transfer and
then renounces, the pending owner can still claim ownership of the contract.

Code corrected:

The two functions have been updated to delete the _owner and the _pendingOwner.

7.4 Missing Input Sanitization
Design Medium Version 1 Code Corrected

CS-EVERSTKB2C-031

Some function inputs are not sanitized:

1. Pool.initialize(): the parameters rewardsTreasury and poolGovernor are not checked
for address(0).

2. Accounting.initialize(): the parameter accountingGovernor is not checked for
address(0), and poolFee is not checked to be smaller than FEE_DENOMINATOR.

3. TreasuryBase.setRewarder(): rewarder is not checked for address(0).

4. TreasuryBase.setOwner(): owner is not checked for address(0).

5. Pool.setGovernor(): newGovernor is not checked for address(0).

Code corrected:

1. Zero address checks are done.

2. Zero address and fee sanitization checks are done.

3. Zero address check is done.

4. the function has been removed and replaced by a transfer-and-accept pattern.

5. Zero address check is done.

7.5 Pausing Withdrawing Is Ineffective
Design Medium Version 1 Code Corrected

CS-EVERSTKB2C-039

The function pauseWithdraw can be called by a privileged role to (un)pause the withdrawals. While the
function unstakePending has the modifier whenWithdrawActive to ensure that it can only be called

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

only when withdrawals are allowed, unstake() is not and can be called independently of the pausing of
withdrawals.

Code corrected:

The function Pool.unstake has been updated with the whenWithdrawActive modifier.

7.6 Slashing Is Not Taken Into Account
Design Medium Version 1 Specification Changed

CS-EVERSTKB2C-003

The protocol assumes that slashing will never happen for any of its validators. While the risk of slashing
can be greatly reduced by good infrastructure maintenance and monitoring, it can never be zero, in this
case, the slashing of a validator could result in putting the protocol in unexpected states and a potential
loss of funds for users. All implementations of nodes can potentially have bugs that might lead to
undesired slashing.

For example, any transfer of less than 32 ETH from the validator is considered as an incoming reward,
while if slashed this can be an entire stake of the validator. Thus, if slashed just before unstaking, the
wrong accounting can lead to unexpected results.

Code corrected:

Everstake added the feature to stop the update of rewards in case of emergency. When it comes to
updating the user's balance and refunding the users, see Trust Model and Users may not be fully
refunded in case of slashing.

7.7 _simulateAutocompound's Computation of
pendingRestaked Is Incorrect
Correctness Medium Version 1 Code Corrected

CS-EVERSTKB2C-017

When simulating the activation of rounds in _simulateAutocompound(), for each round being
activated, pendingRestaked is decremented by BEACON_AMOUNT. As it might be the case that
pendingAmount/BEACON_AMOUNT > pendingRestaked/BEACON_AMOUNT, a call to the function
could revert after trying to underflow the variable pendingRestaked.

Code corrected:

_simulateAutocompound no longer makes the assumption that
pendingAmount/BEACON_AMOUNT > pendingRestaked/BEACON_AMOUNT and correctly decrement
pendingRestaked.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7.8 _simulateAutocompound's Computation of
totalShare Is Incorrect
Correctness Medium Version 1 Code Corrected

CS-EVERSTKB2C-018

When _deposit is called by _autocompound(), the total amount deposited
(AUTO_COMPOUND_TOTAL_SHARE_POSITION) is incremented with the rewards (both the part that has
been interchanged and the part that will be deposited). On the other side,
__simulateAutocompound() increments totalShare by unclaimedReward which, at this point,
only includes the part of the rewards that is not interchanged. The totalShare returned by
_simulateAutocompound() will hence not always match the result of an autocompounding.

Code corrected:

_simulateAutocompound now matches _autocompound() behavior and takes into account the
interchanged amounts when computing the total pool's balance.

7.9 Wrong Address in Event upon
acceptOwnership
Design Low Version 3 Code Corrected

CS-EVERSTKB2C-043

The functions TreasuryBase._transferOwnership and
OwnableWithSuperAdmin._transferOwnership emit the event the addresses of _owner and
newOwner, which are the same at that point.

Code corrected:

The two functions have been updated to emit the event with the previous owner and the new owner.

7.10 RewardsTreasury Overrides SendETH With
Identical Implementation
Design Low Version 3 Code Corrected

CS-EVERSTKB2C-035

RewardsTreasury overrides SendETH with the same implementation as TreasuryBase.

Code corrected:

Everstake revised the inheritance between the contracts and their interface to allow for
RewardsTreasury not to have to override sendETH.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7.11 ValidatorList.get Might Not Represent
the Reality
Design Low Version 3 Code Corrected

CS-EVERSTKB2C-002

Given a set of Validators with the status Deposited, they may be not closed in the same order they
appear in _validatorsPubKeys. In such case, calling markAsExited will mark the n first Deposited
validator of the list as excited, without caring about which exact validator was closed. This may lead the
function ValidatorList.get to return a status that is not representative of reality in the case
Everstake did not close validators in the order they appear in _validatorsPubKeys (e.g. in case of
slashing or leaked private key).

Code corrected:

Everstake added the function markValidatorAsExited and a corresponding internal function to the
Pool and to ValidatorList to allow for marking as closed validators given its index in
_validatorsPubKeys. Provided that Everstake always uses the right method between
markValidatorsAsExited and markValidatorAsExited to close the validators that have
effectively been closed, ValidatorList.get should return the correct status.

7.12 _simulateAutocompound Ignores Paused
Rewards
Correctness Low Version 3 Code Corrected

CS-EVERSTKB2C-036

Accounting._simulateAutocompound does not take the pausing of rewards into account, and thus
does not mirror what autocompound would do when the rewards are paused.

Code corrected:

The function _simulateAutocompound has been updated to reflect the behavior of
_autocompound() when the rewards are paused.

7.13 Batch Deposit in First Round Skips Shortcut
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-022

If the first round (activeRound==0) is closed within a batch deposit, the shortcut in
Accounting._activateRound() will be skipped as activeRound > 0. In this case, round 0 will
have to be activated as any other round by calling activateValidators.

Code corrected:

The special handling of the case activeRound==0 has been removed from _activateRound().

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7.14 Events Missing
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-029

Even though many events are emitted by the protocol, several important state changes do not emit
events:

1. OwnableWithSuperAdmin.__OwnableWithSuperAdmin_init_unchained() does not emit
SetSuperAdmin after setting the super admin.

2. Accounting.withdraw() does not emit InterchangeDeposit when interchanging with the
pending restaked amount.

3. No event is emitted by Accounting.activateValidators() when one or several validators
are activated.

4. No event is emitted when the minimum amount to restake is set using
Accounting.setMinRestakeAmount().

5. In Accounting, deposit(), withdrawPending() and withdraw() could emit events as they
are not necessarily respectively called by Pool.stake(), Pool.unstakePending() and
Pool.unstake().

6. Pool.unstake() emits no event when no amount is withdrawn from the pending value of the
pool.

7. Pool.restake(), Pool.setPendingValidators(),
Pool.replacePendingValidator(), Pool.markValidatorsAsExited() emit no event
while they perform important state changes.

8. GovernorChanged is emitted when setting the governor in Pool.initialize() and
Accounting.initialize(), similarly, FeeUpdated is not emitted when setting the pool fee in
initialize().

Version 3 :

9. OwnableWithSuperAdmin.renounceOwnership emits an event but
TreasuryBase.renounceOwnership does not.

10. markValidatorsAsExited is defined and emitted in the library ValidatorList, meaning that
it won't be part of the Pool's ABI as it is not redefined there.

Code corrected:

The points 1., 2., 3., 4., 6., 7. (all but setPendingValidators), 8., 9., 10. have been fixed.

For 7., Everstake states:

Pool.setPendingValidators() - not important state changes. It's internal processing which can be
indexed without events.

For point 5.:

Everstake answered that the concerned functions of the accounting can be called either by the pool or by
the owner. In the former case, the pool emits relevant events. For the latter case, Everstake states that
the owner should call these functions only in an emergency and thus, Everstake claims that no events
are needed in those cases as observers would anyway know that this is the owner's actions.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7.15 Inconsistent Event Emission Order
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-024

1. While most of the functions emit events after calling functions that might themselves emit an event,
Pool._deposit emits StakeDeposited before calling deposit which will itself emit events.

2. Additionally, in the codebase, the rule seems to be doing storage change first and then emitting
events, however, some functions do not follow this pattern:

• OwnableWithSuperAdmin.transferOwnership

• Governor._updateGovernor

Code corrected:

1. The event has been moved after the call to deposit.

2. The events have been moved after the state changes.

7.16 Interchanged Part of a Deposit Is Not Added
to depositBalance
Correctness Low Version 1 Code Corrected

CS-EVERSTKB2C-026

When staking, the part of the deposit that is interchanged with withdrawals is not added to
sourceStaker.depositBalance.

Code corrected:

The function AutocompoundAccounting._depositAutocompound has been updated to add the
interchanged amount to the sourceStaker.depositBalance.

7.17 Interfaces Not Implemented
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-027

Some of the contracts do not implement their interfaces (FooBar is IFooBar). This would be a
guarantee for integrators that the contracts carry the same functions signatures as the interfaces. Such
contracts are listed below:

• TreasuryBase

• RewardsTreasury

Code corrected:

The contracts TreasuryBase and RewardsTreasury have been updated to implement their
respective interfaces.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7.18 Missing Documentation
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-028

Most of the functions are poorly documented or have no NatSpec description at all.

Code corrected:

Extensive documentation has been added for external and public functions.

7.19 Missing Indexing of Events
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-030

All events defined in Accounting, Governor, Pool, RewardTreasury, TreasuryBase and
Withdrawer contain no indexed fields. Indexing some relevant fields will help for searching events
quicker.

Code corrected:

The relevant fields have been indexed.

7.20 Status of Replaced Validators Is Not Reset
Correctness Low Version 1 Code Corrected

CS-EVERSTKB2C-037

In the function ValidatorList.replace, the status of the replaced validator is not assigned (=), but
compared (==) to ValidatorStatus.Unknown. This line of code will have no effect, and it will not be
possible to add again the replaced validator at a later stage.

Code corrected:

The status of the replaced validator is correctly reset to Unknown.

7.21 Unnecessary Function Parameter
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-038

The function AutocompoundAccounting._activatePendingBalance(), is always called with the
parameter minPresentedAmount set to true, thus the parameter and logic related to it should be
removed from the codebase.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Code corrected:

The unnecessary function parameter minPresentedAmount and its related logic have been removed
from the codebase.

7.22 Variables and Functions Names Are Not
Representative
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-040

Having self-explanatory names for variables and functions greatly help the understanding of the code.
The names of some of the variables and functions in the codebase are misleading. Here is a
non-exhaustive list:

• all the functions named with autocompound, except autocompound() and _autocompound()
have nothing to do with autocompounding.

• AUTO_COMPOUND_TOTAL_SHARE_POSITION represents the total amount of ETH currently
deposited in the validators, not a share. Moreover, the amount is not only from auto-compounded
rewards.

• ShareState.totalShare represent the total deposited amount at some period, not a share.

• ShareState.shareIndex represent the total minted shares at some period, not an index.

• STAKER_AUTOCOMPOUND_BALANCES_POSITION and the struct AutocompoundStakerMining
have nothing to do with autocompounding.

Code corrected:

The functions and variables names have been changed.

7.23 View Functions Are Incorrect for Round 0
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-041

The special case for activeRound==0 in _activateRound() sets activatedRound to 1 although
the validator is not necessarily active yet.

This means that the following functions might return incorrect results relative to the semantics of
pendingDeposited and active:

• pendingDepositedBalance()

• pendingDepositedBalanceOf()

• depositedBalanceOf()

• autocompoundBalanceOf()

Code corrected:

The special handling of the case activeRound==0 has been removed from _activateRound().

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

7.24 Withdrawing May Fail Due to Underflow
Correctness Low Version 1 Code Corrected

CS-EVERSTKB2C-042

When computing _shareToAmount(totalShare, autoCompoundShareIndex, autoCompound
TotalShare) - originActiveDepositedBalance in _withdrawFromAutocompound, amounts
deposited by the user are compared with amounts obtained from shares using _shareToAmount(), as
there might have been a rounding error in the computation of the latter, their comparison might result in
an underflow, leading the call to revert.

An easy way to obtain this behavior is to have the user deposit a very low amount of ETH x (10 wei for
example) by calling stake() with some large value before calling unstakePending() to leave in the
pending deposit of the user x ETH. Supposing now that the price of a share is high at the moment of the
activation of the validator, it is possible that _shareToAmount(_amountToShare(x)) < x as
_amountToShare() might have done some rounding.

Code corrected:

When only a portion of the user's shares are burned, the accounting subtracts the deposited balance to
whatever is larger between the deposited balance and the amount obtained from the shares to be burned
to avoid underflow.

When all the shares are burned, no such comparison is done and the deposited amount is updated to be
the user's pending amount.

7.25 Wrong Restake Condition
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-044

The condition for the Pool to deposit on a restake is balance > BEACON_AMOUNT. If
balance == BEACON_AMOUNT the active round would have been incremented and the pending amount
updated accordingly during _autocompound() because the system expects a new validator to be
provisioned. But in that case, the validator will not be provisioned because of the strict inequality above.
Moreover, the internal accounting of the pending amount will not be representative of the true pending
value until the next deposit or reward auto-compounding.

Code corrected:

The restake condition has been modified and relies on activatedSlots instead of balance.

7.26 InterchangeDeposit Emitted When No
Interchange
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-023

In the function withdraw, InterchangeDeposit is emitted even if no interchange happened for the
given pending staker (activatedAmount==0).

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Code corrected:

The withdraw function has been updated so the InterchangeDeposit event is emitted only when
some amount is interchanged.

7.27 activatedRound Cached Value Not Updated
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-020

At the beginning of the function Accounting._depositBalance, activatedRound is cached in
memory and later used when calling _depositAccount(). If activeRound==0 and enough ETH is
deposited so that _activateRound() is called, activatedRound is set to 1 in the storage but its
cached value is not updated. Because of this, if _depositBalance was to call _depositAccount()
after _activateRound's call (the user deposited enough to activate two or more rounds),
_autocompoundAccount() would cache the user's deposit for the round 0 in
pendingDepositedBalances although the deposit should be active at this time and shares should be
minted.

Code corrected:

The special handling of the case activeRound==0 has been removed from _activateRound().

7.28 activeRound==0 Shortcut Breaks
Semantics
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-021

The implemented shortcut in _activateRound(), the shortcut that marks the round 0 activated breaks
the semantics of the activatedRound, which should only represent the number of validators that have
been effectively activated.

Code corrected:

The special handling of the case activeRound==0 has been removed from _activateRound().

7.29 onlyGovernor Not Used
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-032

The modifier onlyGovernor defined in the Governor is never used in the code base and thus should
be removed.

Moreover, as the check ensuring that the msg.sender is the governor is performed after the function's
call the modifier is applied to, if the modifier was to be used on a function updating the governor, it could
be that the function is not protected and could be called by anyone providing themselves as the new
governor.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

Code corrected:

The modifier onlyGovernor has been removed from the Governor contract.

7.30 unstakePending Does Not Update
_slotPendingStakers
Design Low Version 1 Code Corrected

CS-EVERSTKB2C-019

When a user withdraws his full pending stake using unstakePending,
_slotPendingStakers[activeRound] is not updated to remove the staker.

Code corrected:

The Accounting.withdrawPending function has been updated such that the staker is removed from
_slotPendingStakers[activeRound] if they remove all of their pending stakes.

7.31 Deleting a struct With a Mapping Has No
Effect
Informational Version 1 Code Corrected

CS-EVERSTKB2C-008

In Solidity, if a struct contains a mapping and one deletes the struct, the mapping will not be deleted.
In the codebase, Accounting._activateRound() deletes
_slotPendingStakers()[activeRound], an AddressSet, but only the _values field of the Set
will be defaulted.

Code corrected:

The deletion of _slotPendingStakers()[activeRound] has been removed.

7.32 Event Reentrancy
Informational Version 1 Code Corrected

CS-EVERSTKB2C-009

In several functions, an event is emitted after an external call to some address, in the case that the call
would reenter the contract, it would be possible to have events emitted out of order.

The list of such patterns is shown below.

• Pool.unstake() with _safeEthSend() and the event Unstake.

• Pool.unstakePending() with _safeEthSend() and the event StakeCanceled.

• Withdrawer._claimWithdrawRequest() with ITreasuryBase.sendEth() and the event
ClaimWithdrawRequest.

• Accounting.claimPoolFee() with IRewardsTreasury.sendEth() and the event
ClaimPoolFee.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:

All the patterns above have been updated to emit the event first, and then transfer ETH.

7.33 Gas Optimizations
Informational Version 1 Code Corrected

CS-EVERSTKB2C-011

1. The type casting from address to address is not required in Pool.initialize(), removing it
might save gas during initialization depending on the compiler's optimization setting.

2. pendingValidatorPubKey is read twice from storage in Pool._deposit(), the value could be
cached in memory to avoid one SLOAD.

3. The checks of the form a != b && a != c can be modified following De Morgan's law
(!(a == b || a == c)) to leverage the lazy evaluation of the condition and save gas on
runtime.

4. Some function arguments on call can be replaced by constants. Some examples are:

• Accounting._activateRound(): the variable activeRound can be replaced by 0 in
the call _makeAutocompoundRoundCheckpoint(activeRound).

• Accounting._depositBalance(): in the call to _activateRound() of the branch
if (pendingAmount > 0), the parameter
pendingTotalShare + closeCurrentRoundAmount can be replaced by
BEACON_AMOUNT.

• Accounting._depositBalance(): in the call to _depositAccount() of the branch
if (depositToPendingAmount > 0), the parameter interchangedAmount will
always be 0.

• Accounting._depositBalance(): in the call
AUTO_COMPOUND_PENDING_SHARE_POSITION.setStorageUint256() of the branch
if (depositToPendingAmount > 0), the parameter pendingTotalShare will
always be 0.

5. The activatedSlots in the branch if (pendingTotalShare > 0) of the function
Accounting._depositBalance() can be set to 1 instead of incrementing the variable to save
gas on runtime.

6. The while loop and multiple stack variables increments in the branch
if (depositToPendingAmount >= BEACON_AMOUNT) of the function
Accounting._depositBalance can be replaced by one update for each involved variable. If the
while loop was to stay, a do-while construct could save gas. The same applies in
_simulateAutocompound().

7. Setting pendingTotalShare to 0 in the branch
if (depositToPendingAmount >= BEACON_AMOUNT) of the function
Accounting._depositBalance is redundant.

8. The while loop in the function Accounting.withdraw() can be simplified since in the case
isFullyDeposited==false, then the remaining interchangeWithPendingDeposits is
zero.

9. In the branch if (withdrawFromPendingAmount > 0) of the function
Accounting.withdraw, pendingRestakedValue - withdrawFromPendingAmount is
computed twice while it could be done only once.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

10. In the function Accounting.withdraw, the pendingTotalShare is read from storage twice
when it could be cached in the memory.

11. In the return statement of the branch
if (unclaimedReward < MIN_RESTAKE_POSITION.getStorageUint256()) of the
function Accounting._simulateAutocompound(), the constant 0 can be used instead of
unclaimedReward

12. When simulating the withdraw queue filling in Accounting._simulateAutocompound(), the
if/else branches could be unified in the same way it is done in
Withdrawer._interchangeWithdraw().

13. The modifier Governor.onlyGovernor() does the address check after executing the code.
Reverting early would save gas.

14. In the function Pool._stake(), value cannot be zero.

15. The increment i++ can be in an unchecked block in multiple for loops.

16. The function Withdrawer. _calculateValidatorClose can return only one value, as the
two values are linked by a constant factor, one can easily deduce a value from the other one.

17. In the function Withdrawer._calculateWithdrawRequestAmount, the condition
withdrawFromActiveDeposit > 0 will always be true if
withdrawFromActiveDeposit > pendingTotalShare is true and is hence redundant.

18. In the function WithdrawRequests.add, the assignation requests._values[i] = request
can be moved inside the if (requests._values[i].value == 0) block and the function
can return right after.

19. In the functions WithdrawRequests.claim and WithdrawRequests.info,
requests.value[i].afterFilledAmount is read twice from the storage while it could be
cached to avoid one SLOAD.

20. In the functions WithdrawRequests.claim and WithdrawRequests.info, the condition
requests._values[i].afterFilledAmount > actualFilledAmount can be relaxed to
an unstrict comparison since if
requests._values[i].afterFilledAmount == actualFilledAmount their difference is
null.

21. In the function WithdrawRequests.info, requests._values.length is read from the
storage at each iteration of the loop. Caching it in the memory would avoid several SLOAD.

22. In the function ValidatorList.add, set._activeValidatorIndex and
set._activePendingElementIndex are both read three times from the storage when their
value could be cached in the memory.

23. In the function ValidatorList.shift, set._activePendingElementIndex is read two
times from the storage when its value could be cached in the memory.

24. In the functions, _autocompoundAccount,
_autoCompoundUserPendingDepositedBalance, _autoCompoundUserBalance and
_withdrawFromAutocompound of AutocompoundAccounting, the field
pendingDepositedBalances.length of the staker is read from the storage at each iteration of
the loop. Caching it in the memory would avoid several SLOAD.

25. In the first for loop of the function AutocompoundAccounting._autocompoundAccount, both
staker.pendingDepositedBalances[j].period and
staker.activePendingDepositedElementIndex are read twice from the storage and could
be cached.

26. In AutocompoundAccounting._autocompoundAccount(), when updating the pending
status to pendingDeposited, one execution path read three times
staker.activePendingDepositedElementIndex from storage, it could be cached.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

27. In AutocompoundAccounting._autocompoundAccount(), when updating the pending
status to pendingDeposited or to activated, both staker.pendingBalance.balance and
staker.pendingBalance.period are read twice from storage.

28. In AutocompoundAccounting._autoCompoundUserPendingDepositedBalance(),
staker.pendingBalance.period is read twice from storage.

29. In AutocompoundAccounting._autoCompoundUserBalance(), at each iteration of the for
loop, if the condition of the if statement is not met, both
stakerAutocompoundBalance.pendingDepositedBalances[j].balance and
stakerAutocompoundBalance.pendingDepositedBalances[j].period are read twice
from storage.

Version 3 :

30. The calls to _userActiveBalance to get only the depositedBalance could be replaced by a
simple storage read to save gas.

31. At the end of Accounting._simulateAutocompound(),
pendingAmount == pendingRestaked always holds as if if (pendingAmount > 0) is
entered, then they are both set to 0. Otherwise pendingAmount==0 and hopefully one should
always have pendingAmount >= pendingRestaked meaning that there is no need to keep
both var for the while loop.

Code corrected:

The gas optimizations have been applied.

7.34 Governor Is Immutable
Informational Version 1 Code Corrected

CS-EVERSTKB2C-012

While the Governor role of the Pool can be transferred to another address by the Owner, the
SuperAdmin or the governor himself at any time, the Governor of the Accounting contract can only
be set when calling Accounting.initialize.

Code corrected:

The Governor of the Accounting can now be updated using the function setGovernor.

7.35 Unneeded return Statement
Informational Version 1 Code Corrected

CS-EVERSTKB2C-015

When a function signature looks like function foo() external returns(uint a, uint b), the
statement return (a, b) is not necessary when the values to be returned have been assigned earlier
to the returned variables.

Some examples:

• AutocompoundAccounting._withdrawFromAutocompound()

• AutocompoundAccounting._autocompoundAccount()

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Code corrected:

Some of the unnecessary return statements have been removed.

7.36 Unused Imports
Informational Version 1 Code Corrected

CS-EVERSTKB2C-016

The following imports are not used:

1. "./interfaces/IPool.sol" and "./interfaces/ITreasuryBase.sol" in Accounting.

2. "./interfaces/IPool.sol" in WithdrawTreasury.

3. "./interfaces/IRewardsTreasury.sol" in RewardsTreasury.

4. "./ITreasuryBase.sol" in IRewardsTreasury.

Code corrected:

All unused imports have been removed.

7.37 Validator Cannot Be Marked as Exited
Immediately
Informational Version 1 Code Corrected

CS-EVERSTKB2C-010

In ValidatorList, markAsExited() changes the status of num validators from Deposited to
Exited provided that:

• Their status is Deposited.

• They are all stored consecutively in set._validatorsPubKeys.

• The first validator is stored at index set._activeValidatorIndex of
set._validatorsPubKeys.

By the design of the List struct and the functions add and shift, validators that are Deposited are
not always at the "front" of the slice of set._validatorsPubKeys starting at
set._activeValidatorIndex and can be interleaved by validator with another status. A Deposited
validator in such configuration cannot have his status changed to Exited until all previous validators
have the state Deposited or Exited.

Code corrected:

markAsExited() has been updated in such ways that the num validators to be marked as Exited no
longer need to be stored consecutively. Additionally, Pool.reorderPending() can be used to order
pending validators to be deposited to in the order as they appear in _validatorsPubKeys. Depending
on how Pool.reorderPending() is called this can be used to keep _validatorsPubKeys's length
from growing.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

7.38 initializer Used Over
onlyInitializing
Informational Version 1 Code Corrected

CS-EVERSTKB2C-014

The functions __OwnableWithSuperAdmin_init and
__OwnableWithSuperAdmin_init_unchained have the initializer modifier while
onlyInitializing would be more correct.

Code corrected:

The modifier onlyInitializing is used instead of initializer.

7.39 minStake's Value Differs From the
Documentation
Informational Version 1 Code Corrected

CS-EVERSTKB2C-013

In the Pool.initialize, the minimum stake is set to 0.01 ETH while the documentation states that
the minimum users are allowed to stake is 0.1 ETH.

Code corrected:

The minimum stake is now set to 0.1 ETH in Pool.initialize.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

8 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Inconsistent Use of override and virtual
Informational Version 1

CS-EVERSTKB2C-006

In solidity, it is not mandatory to use the override keyword when implementing a function from a parent
interface. For the sake of consistency, either none or all implementations should be annotated with
override.

Additionally, Pool.setGovernor is set as virtual although no contract inherits from Pool.

8.2 The Sum of Shares Can Be Less Than the
Total Shares Supply
Informational Version 1

CS-EVERSTKB2C-007

Due to some rounding errors, the shares distributed to individual stakers for a given round might not
match the total number of shares minted for that round, i.e. _amountToShare(X+Y+Z) >= _amountT
oShare(X) + _amountToShare(Y) + _amountToShare(Z). The difference in value cannot be
claimed by anyone.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

9 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 Deposited Amount Is Gifted if Less Than 1
Share
Note Version 1

Users should be aware that any amount resulting in less than a share will be a donation to the pool. Even
though this should be avoided by the minimum stake constraint, it is possible to stake and unstake
pending, leaving a small amount to be activated, which may result in 0 share.

9.2 Users May Miss Rewards on Closed Validator
Note Version 1

If some validator is expected to close, i.e. EXPECTED_CLOSE_VALIDATORS > 0, any rewards
accumulated in the RewardsTreasury that is above 32ETH will be considered as a stake returned by a
closing validator instead of a reward. So any staker withdrawing when one or more validators are
expected to close and when 32ETH of staking rewards or more are available in the RewardsTreasury
will miss that reward.

9.3 Users May Not Be Fully Refunded in Case of
Slashing
Note Version 1

According to the Trust Model, Everstake plans to deploy an emergency treasury fund, but do not
guarantee all the users to be fully refunded in case of slashing.

Everstake states:

We understand and don't neglect the risks related to slashing and we will have a special Emergency Treasury
Fund - an Ethereum wallet address for Emergency Cases. Emergency Treasury fund will have some amount of Ethereum
to cover at least partly possible unlikely slashing related issues. We also plan to send some defined share of
Ethereum service fee received from the Pool by Everstake, approximately 10%.

Example:
Pool Service fee is 10%
Emergency Treasury Fund share is 10%
If all Validators within the Pool generated 10 000 ETH
Then Everstake will receive 1 000 ETH as a Pool Service Fee
And 100 ETH from Pool Service fee will be send to Emergency Treasury Fund

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Pool
	3.2 Accounting
	3.2.1 Exit stakes and rewards auto-compounding
	3.2.2 Internal accounting

	3.3 Treasuries
	3.3.1 Reward Treasury
	3.3.2 Withdraw Treasury

	3.4 Changes in Version 3
	3.5 Trust Model

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 Pausing Auto-Compounding Can Be Unfair to Users
	6.2 Interchanging Is Not Performed in Order When Withdrawing
	6.3 Minimum Stake Consistency

	7 Resolved Findings
	7.1 Replacing a Validator Eventually Blocks the System
	7.2 Usage of address(this).balance in restake Can Block the System
	7.3 renounceOwnerShip Leaves the _pendingOwner Pending
	7.4 Missing Input Sanitization
	7.5 Pausing Withdrawing Is Ineffective
	7.6 Slashing Is Not Taken Into Account
	7.7 _simulateAutocompound's Computation of pendingRestaked Is Incorrect
	7.8 _simulateAutocompound's Computation of totalShare Is Incorrect
	7.9 Wrong Address in Event upon acceptOwnership
	7.10 RewardsTreasury Overrides SendETH With Identical Implementation
	7.11 ValidatorList.get Might Not Represent the Reality
	7.12 _simulateAutocompound Ignores Paused Rewards
	7.13 Batch Deposit in First Round Skips Shortcut
	7.14 Events Missing
	7.15 Inconsistent Event Emission Order
	7.16 Interchanged Part of a Deposit Is Not Added to depositBalance
	7.17 Interfaces Not Implemented
	7.18 Missing Documentation
	7.19 Missing Indexing of Events
	7.20 Status of Replaced Validators Is Not Reset
	7.21 Unnecessary Function Parameter
	7.22 Variables and Functions Names Are Not Representative
	7.23 View Functions Are Incorrect for Round 0
	7.24 Withdrawing May Fail Due to Underflow
	7.25 Wrong Restake Condition
	7.26 InterchangeDeposit Emitted When No Interchange
	7.27 activatedRound Cached Value Not Updated
	7.28 activeRound==0 Shortcut Breaks Semantics
	7.29 onlyGovernor Not Used
	7.30 unstakePending Does Not Update _slotPendingStakers
	7.31 Deleting a struct With a Mapping Has No Effect
	7.32 Event Reentrancy
	7.33 Gas Optimizations
	7.34 Governor Is Immutable
	7.35 Unneeded return Statement
	7.36 Unused Imports
	7.37 Validator Cannot Be Marked as Exited Immediately
	7.38 initializer Used Over onlyInitializing
	7.39 minStake's Value Differs From the Documentation

	8 Informational
	8.1 Inconsistent Use of override and virtual
	8.2 The Sum of Shares Can Be Less Than the Total Shares Supply

	9 Notes
	9.1 Deposited Amount Is Gifted if Less Than 1 Share
	9.2 Users May Miss Rewards on Closed Validator
	9.3 Users May Not Be Fully Refunded in Case of Slashing

