PUBLIC

Code Assessment

of the ETH B2C Staking
Smart Contracts

August 17, 2023

Produced for

€O everstake

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

© 00 N o 0o A~ W DN PP

Notes

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG

11
12
13
15
33
34

https://chainsecurity.com

1 Executive Summary

Dear Everstake team,

Thank you for trusting us to help Everstake with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of ETH B2C Staking according
to Scope to support you in forming an opinion on their security risks.

Everstake implements a pooled staking service for Ethereum, where the rewards are reinvested in the
pool and the validators are managed by Everstake.

The most critical subjects covered in our audit are the correctness of the accounting, asset solvency,
access control and functional correctness. During the audit, the most important reported issues were:

* Replacing a Validator Eventually Blocks the System

« Usage of address(this).balance in restake Can Block the System that requires from Everstake to
inject liquidity to correct the accounting in case of necessity.

The issues have been fixed during the second week of the audit.

Security regarding all the aforementioned subjects is satisfactory. Even though the probability of one of
the validators getting slashed is low, slashing could occur. That would require manual, trust-based
intervention, see Slashing is not taken into account and Trust Model.

The general subjects covered are documentation, unit testing, code complexity, and gas efficiency.
Documentation has been greatly improved during the last iteration. Unit testing and testing in general is
basic, a good test suite will help ensure corner cases are considered.

In summary, we find that the codebase provides a satisfactory level of security, provided the Trust Model.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings e
()-Severity Findings 2
Y Code Corrected 2
(Medium)-Severity Findings 6
N Goisicasiis) 5
N Gicircatsr Chaniei 1
(Low)-Severity Findings 25
Y Code Corrected 22
W Acknowidged! 3
@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the ETH B2C Staking repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note
1 | 27 June 2023 ddde802c194eecbd1a8670eb3be9629a5e700722 Initial Version
2 | 05 July 2023 7b10ca452199f5a0e5fbd7596d72334582a48hb32 Version 2
3 | 02 August 2023 8d3c73007da91da2d20dfb66524cedb74d10f80b Version 3
4 | 08 August 2023 35f9b56b038be82a31946bd6b02533ec16ddd228 Version 4
For the solidity smart contracts, the compiler version 0. 8. 19 was chosen.
The following contracts are in the scope of the review:
conmmon:
Errors. sol
i nterfaces:
| Accounti ng. sol
| Deposi t Contract . sol
| Pool . sol
| Rewar dsTr easury. sol
| Treasur yBase. sol
l'ib:
Unst ruct ur edRef St or age. sol
Unstruct uredSt or age. sol
structs:
Val i dat or Li st. sol
W t hdr awRequest s. sol
utils:
Mat h. sol
Ownabl eW t hSuper Admi n. sol
Accounti ng. sol
Aut oconpoundAccount i ng. sol
Gover nor . sol
Pool . sol
Rewar dsTr easury. sol
Tr easur yBase. sol
W t hdr awer . sol
W t hdr awTr easury. sol
@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope

Any contracts not explicitly listed above and third-party libraries are out of the scope of this review.

3 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Everstake offers a staking service for Ethereum that allows stakers to deposit amounts that can be less
than 32ETH, the beacon amount, in a pool. The system also restakes the staking rewards.

ETH B2C Staking uses a smart way of exchanging incoming liquidity for outgoing liquidity, called
interchange. Upon a withdrawal request from an activated validator that is less than 32ETH, the
requested amount is added to an exchange buffer. Now any incoming liquidity will first be exchanged in
this buffer, allowing the exiting party to withdraw without closing the validator, and the entering party to
have part of its stake instantly active in a validator.

The system works in rounds, the active round indicates the round that is currently being filled, and the
activated round describes the next round for which a validator is expected to be activated. The active
round is filled until the pending amount reaches 32ETH, then a new active round starts. Once a validator
has been activated on the beacon chain, Everstake will increment the activated round in the system.

The amounts that are due to the users are represented by shares. The shares are minted to users only
when their stake becomes active in the beacon chain, either by interchange or by the activation of a new
validator on the beacon chain.

The stakes provided by users can be in three states:
1. Pending: the stake is waiting in the Pool .

2. Deposited: the stake has been sent to a validator, but the validator is not yet active on the beacon
chain.

3. Active: the stake is in a validator and the validator is active on the beacon chain.

The system is divided into three parts:
1. Pool: the main entry point to the system that holds the pending assets.
2. Accounting: takes care of the accounting for the stakers in a pool.

3. Treasuries: the reward treasury receives the staking rewards and the returned stake of closed
validators, the withdraw treasury holds the amount that will be withdrawn.

3.1 Pool

The Pool holds a list of validators that are managed by Everstake and can be used when the pending
amount in the Pool reaches 32ETH. When it does, a validator is consumed from the list and the beacon
deposit contract is called with the validator's public key, signature, and deposit data root along with the
address of the rewards treasury encoded in the withdrawal credentials.

The Pool contract is the main entry point of the system, it offers the following functions for the users:

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

« st ake: called along with ETH, the nmsg. val ue must be at least the minimum stake amount. The
function will first reinvest any rewards (Account i ng. _aut oconpound) and deposit the caller's
stake, or part of it, either in the withdraw treasury if some amount can be interchanged, in the
pending buffer if the total pending amount is not sufficient to launch a new validator, or in one or
more yet inactive validators if the sum of the user's value and the pending amount can cover the
beacon amount or more. If some of the stake can be interchanged, the associated shares are
instantly minted to the new staker. Can only be called when staking is not paused.

e unst akePendi ng: a staker whose stake is still pending (not sent to a validator) can use this
function to reduce its stake. This function will first update the internal accounting for the rewards
treasury (Accounti ng. _updat e), then reduce the pending stake of the caller and send back the
requested value. Can only be called when withdrawals are not paused.

» unst ake: a staker who has shares can use this function to initiate a withdrawal of their active stake.
The function will first reinvest any rewards (Account i ng. _aut oconpound), then if some pending
amount is available it will be interchanged as much as possible and the remaining value, if any, will
be added to a withdrawal request. The withdrawal request will request the closing of one or more
validators if the requested amount exceeds one or more beacon amounts and Everstake will be
notified. The remaining amount will be made available for interchange, and the request will be added
to a withdrawal request queue. The user can claim the withdrawal as soon as the requested amount
is available in the withdraw treasury. If a user initiates the withdrawal of at least 32ETH, a validator
will be closed even if it could be that interchange could be covered to avoid closing one or several
validators.

The privileged roles owner , gover nor, and super Adni n can call the following functions:

eset Pendi ngVal i dat ors: add a new validator in the validators list. Everstake is trusted to
regularly add new validators to the list to keep the system running.

*r epl acePendi ngVal i dat or : replace a pending validator in the validators list.

«mar kVal i dat or sAsExi t ed: marks one or several validators as exited so their slots in the
validators list can be reused.

* pauseSt aki ng: pause/unpause the staking.
* pauseW t hdr aw. pause/unpause the withdrawals.

*set M nSt akeAnount : set a minimum staking amount.

3.2 Accounting

The Accounti ng contract holds all the logic related to internal accounting, rewards reinvestment,
rounds management, deposits, interchange and withdrawals operations.

3.2.1 Exit stakes and rewards auto-compounding

The functions responsible for closed validators' stake management and rewards reinvestment are:

eupdate() / _update(): sends the stake returned by closed validators from the reward treasury
to the withdraw treasury and computes the rewards and associated fees if any amount is left, then
updates the internal accounting of the cached rewards treasury balance, as well as the fees and
rewards balances held by the rewards treasury.

eaut oconpound() / _autoconpound(): calls _update() first, if the rewards balance of the
rewards treasury is above the minimum restake amount, the rewards are accounted for, and
interchanged if possible. The rewards are added to the total deposited amount but no shares are
minted. If the total pending amount is sufficient to launch one or more validators, the Account i ng
will trigger a r est ake which will deposit to new validators.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3.2.2 Internal accounting

The internal accounting tracks for each staker the amount they deposited in every current and past active
rounds that are not yet activated, as well as the active stake in the form of shares. At the end of each
active round, a snapshot of the user's part of the deposited beacon amount is taken, so that shares can
be minted when the round becomes activated (when the validator they have their stake in is activated in
the beacon chain). When the validator for a round is activated, Everstake will call
acti vat eVal i dat or s, which will take a snapshot of the current total deposited amount and the current
supply of shares, mint the shares related to that round, and update the total deposited amount, as well as
the total supply of shares. Users will claim their already minted shares for an activated round whenever
they stake again or unstake, this is done within _aut oconpoundAccount .

Upon withdrawal of the active stake, the associated shares will be burned. The exiting amount will first be
interchanged as much as possible with the pending stakers and the pending rewards to be restaked, if
the pending amount cannot cover the withdrawal amount, the difference will be added in a withdrawal
request that can be claimed when enough liquidity has been accrued in the withdraw treasury.

Note that the accounting functions deposi t, wi t hdr aw, and wi t hdr awPendi ng are expected to be
called for nsg. sender by the super Admi n of the Account i ng, which is the Pool , but they can also
be called by the owner for arbitrary addresses.

3.3 Treasuries

The treasuries are contracts used by the Account i ng to store the funds obtained from the validators
(rewards or returned stake of closed validators) and the funds to be withdrawn by users.

Both treasuries have a function sendEt h, this function sends Eth to some arbitrary address given as a
parameter and can only be called by the r ewar der of the contract.

3.3.1 Reward Treasury

In addition to sendEt h, the Rewar dTr easury defines r eSt ake, a function used to call the pool's
r est ake function together with sending some amount of ETH.

The address of the Rewar dTr easury is given as part of the wi t hdr awal _cr edent i al s parameter to
the call to the deposit function of the beacon deposit contract done by the pool. This means that
rewards and returned stakes from every validator will be sent to the treasury. The balance of the treasury
is then used in the following ways by the accounting contract using sendEt h and r eSt ake:

* Funds from a closing validator are sent to the withdraw treasury.
* Funds from rewards are split in two by the accounting:

* Rewards fees stay in the Rewar dsTr easury, but are accounted for in the Accounti ng so
that the owner of the Account i ng contract can claim them.

* The rest of the rewards are sent to the pool using r est ake or to the withdraw treasury
depending on if they get interchanged or not during the auto-compounding.

3.3.2 Withdraw Treasury

The wi t hdr awTr easur y can receive ETH in the following ways:

* From the Rewar dTr easur y as mentioned above (either a closing of validator or by interchanging
the rewards).

« From the Pool when a user is staking and part of his stake is interchanged.

The funds in the treasury are then used by _cl ai MW t hdr awRequest to send the ETH to a user
claiming a withdrawal request.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3.4 Changes in Version 3

* The fee can be up to 100%.

* The two treasuries (Rewar dsTreasury, Wt hdrawTreasury), are now behind an upgradeable
proxy.

* The owner of the Rewar dsTr easury contract can call the sendEt h function as well, not only the
rewarder.

* The owner of the Rewar dsTr easury contract can call the r eSt ake function as well, not only the
rewarder.

* When calling the function Pool . unst ake, users can choose to use the interchange feature or not.

* A new feature has been added for users. They can now use the function Pool . act i vat eSt ake to
forcibly interchange their pending stake with the interchangeable amount.

* The gover nor, owner, and super Adm n can reorder the list of validators (_val ues) following the
index of their public key in _val i dat or sPubKeys, starting from
_acti vePendi ngEl enent | ndex.

* The owner of the Account i ng contract can pause the rewards update. This feature is meant to be
used in the case of a validator getting slashed, so the incoming remaining stake is not consumed as
a reward.

* When the shares are minted to the user, the activated amount is readjusted by being recomputed
based on the newly minted shares in the user's deposited amount, this is done in the favor of the
system.

*In Accounti ng. wi t hdr aw, the interchange is now done with the pending restake rewards first,
and then with the pending stakers.

« In addition to mar kVal i dat or sAsExi t ed, Pool . mar kVal i dat or AsExi t ed can now be used to
mark one validator as exited given its index in _val i dat or sPubKeys.

3.5 Trust Model

Users of the system are generally untrusted and expected to behave unpredictably.
The following roles are fully trusted and expected to behave honestly and correctly.
* The owner, the super Adni n and the gover nor of the Pool .
* The owner and the gover nor of the Account i ng.
* The owner of the Rewar dTr easury.

* The owner of the Wt hdr awTr easury.

More specifically, the owner of the Rewar dTr easury and Wt hdr aw are allowed to send ETH from
those contracts and are trusted to use this functionality only in case of emergency. The owner of
Account i ng can make calls inside the Account i ng contract in the name of arbitrary addresses and is
trusted to use this functionality only in case of emergency.

The super Admi n of the Account i ng is assumed to be the address of the Pool . The r ewar der of both
the RewardTreasury and the Wt hdrawlreasury are assumed to be the address of the
Account i ng.

Everstake is trusted in providing and managing the validators correctly by avoiding slashing, claiming the
rewards when it is needed and closing the validators when the contract requires it.

Everstake is trusted in providing liquidity to facilitate stake and unstake demand.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The exact procedure in case of slashing is not known. Everstake provided us with the following flow in
case of slashing:

1. Wait the closest time until the validator exit
2. Stop rewards update
3. Update Pool balances

4. Activate a new validator

The exact manner of how point 3. will be executed is not fixed, see Slashing is not taken into account.
We expect Everstake to document it well for potential users and users to be aware of this. Moreover,
Everstake added that 3. is:

still wunder consideration due to business nodel finalization:

- Slashing coverage within pool with higher fee rate in collaboration of |Insurance services.
- Pool without slashing coverage with |lower fee rate, that will require in case of energency
to depl oy changes that could help to update pool bal ances.

In order to mitigate users' loss in case of slashing, Everstake plans to deploy a special emergency
treasury fund, where part of the fee can be used to refund the users, see also Users May Not Be Fully
Refunded in Case of Slashing.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings =

« Pausing Auto-Compounding Can Be UnfairtoUsers (=)
« Interchanging Is Not Performed in Order When Withdrawing (=~)

 Minimum Stake Consistency (-~)

6.1 Pausing Auto-Compounding Can Be Unfair to
Users
[Low] [Version 3](]

CS-EVERSTKB2C-001

The flag PAUSE_REWARDS_POSI Tl ON introduced in the Accounti ng allows for pausing rewards
auto-compounding. This led to the following:

1. During the period rewards auto-compounding is disabled, all users joining the protocol and having
their stake activated will collect the same amount of rewards independently of the time their stake
became active.

2. Provided that enough interchanging is available, a user who wants to begin staking can monitor the
mempool and frontrun the Everstake's transaction that reenables reward auto-compounding to
keep its ETH liquid for the largest amount of time possible while maximizing its rewards.

Acknowledged:

Everstake is aware of this issue and responded that, depending on their SOP for each edge case,
staking may be manually paused along with the pausing of the rewards.

6.2 Interchanging Is Not Performed in Order When
Withdrawing
(Low] [Version 1][]

CS-EVERSTKB2C-004

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Because of the implementation of Addr essSet, when interchanging with pending deposits during a
withdrawal, the interchanges are not done in the order the stakers deposited. This means that some
users might have to wait for their deposit to become active longer than another user who deposited after
them, hence missing the rewards that were distributed during this time.

This issue can be taken advantage of by a user who wants to stake x ETH but does not wish to wait for
their deposit to become active. By looking at the mempool, the user can spot transactions withdrawing
from the contract. If he finds a withdrawal greater than or equal to x + y where y is the amount that
could be interchanged with _sl ot Pendi ngSt akers()[activeRound][O0], frontrunning the
transaction with his call to Pool . st ake will guarantee him to be interchanged with the withdrawal,
overtaking all the users in _sl ot Pendi ngSt aker s() [acti veRound] .

Acknowledged:

Everstake responded that this behavior is known and kept as it is to save gas since using the proper
order would be costly given OpenZeppelin's AddressSet implementation.

6.3 Minimum Stake Consistency
[Low] (Version 1) [)
CS-EVERSTKB2C-005

The Pool forces stakers to stake at least M N_STAKE_AMOUNT per deposit, but it is possible to
circumvent this by calling st ake() and then either unst akePendi ng() or unst ake() to have a final
deposited amount smaller than M N_STAKE_AMOUNT.

Acknowledged:

Everstake acknowledged this behavior and explained that this check is more about excluding cases
when the fees of the transaction would be relatively large compared to the actual deposited amount.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

» Replacing a Validator Eventually Blocks the System
« Usage of address(this).balance in restake Can Block the System

(Medium)-Severity Findings 6
« renounceOwnerShip Leaves the _pendingOwner Pending

* Missing Input Sanitization (EuSK i
» Pausing Withdrawing Is Ineffective (SRSl

» Slashing Is Not Taken Into Account
» _simulateAutocompound's Computation of pendingRestaked Is Incorrect
« _simulateAutocompound's Computation of totalShare Is Incorrect

(Low)-Severity Findings 22
 Wrong Address in Event upon acceptOwnership
« RewardsTreasury Overrides SendETH With Identical Implementation
» ValidatorList.get Might Not Represent the Reality
» _simulateAutocompound Ignores Paused Rewards
« Batch Deposit in First Round Skips Shortcut
* Events Missing
» Inconsistent Event Emission Order
« Interchanged Part of a Deposit Is Not Added to depositBalance
» Interfaces Not Implemented
« Missing Documentation

» Missing Indexing of Events
» Status of Replaced Validators Is Not Reset

« Unnecessary Function Parameter

» Variables and Functions Names Are Not Representative
« View Functions Are Incorrect for Round 0

« Withdrawing May Fail Due to Underflow

« Wrong Restake Condition

« InterchangeDeposit Emitted When No Interchange

» activatedRound Cached Value Not Updated

» activeRound==0 Shortcut Breaks Semantics

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

« onlyGovernor Not Used
« unstakePending Does Not Update _slotPendingStakers

7.1 Replacing a Validator Eventually Blocks the

System
(Correctness | HIgHI(ZEITEY Code Corrected

The function Val i dat or Li st . r epl ace does not set the status of the new validator to Pendi ng. This
will make Val i dat or Li st. shi ft () revert when the next pending validator will be the new validator as
its status will be Unknown. If this happens, staking and withdrawing will be blocked. The funds can only
be unlocked if the validators are closed and the r ewar der on the Rewar dsTr easur y can be changed.

CS-EVERSTKB2C-034

Code corrected:
The function has been updated and the new validator' status is now set to Pendi ng.

7.2 Usage of address(thi s). bal ance in
rest ake Can Block the System

Design | High {(LZZBY Code Corrected)

The function r est ake defined in the pool contract is called when auto-compounding is performed and
tries to deposit to the beacon deposit contract with fresh validators as much as possible given the
balance of the contract.

CS-EVERSTKB2C-025

As this function relies on the balance of the contract and not the balance computed by the accounting the
following is possible:

« If ETH is forced into the pool contract (using sel f dest ruct for example), one can increase the
balance of the contract such that any subsequent function call triggers a deposit to the beacon
deposit contract via _aut oconpound when it would not without the extra ETH. As accounting's
pending amount will now be much greater than the actual balance of the pool, any call to deposi t
or wi t hdr awwill eventually revert as it will try to send to the beacon deposit contract ETH that is no
longer in the pool.

* When a user stakes, _aut oconpound() is called by deposi t () before the deposit is accounted
forin _deposi t () and after the deposit of the user has been added to the contract's balance. If the
balance of the contract, upon transferring the rewards from the treasury to the pool contract, is
greater than 32 ETH, r est ake will deposit to the beacon deposit contract. As part of the user's
deposit will be gone, the accounting performed by _deposi t () will not match the actual balance of
the contract and the call will revert as _st ake cannot send BEACON_AMOUNT to the beacon deposit
contract.

Code corrected:

A parameter act i vat edSl| ot s to indicate how many validators must be deposited to has been added in
the r est ake functions, and the Pool does not rely on its internal balance anymore.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7.3 renounceOmner Shi p Leaves the

_pendi ngOwmner Pending
D) (Misdium) (Version 3) (RXTX D)

The functions Treasur yBase. r enounceOaner shi p and
Ownabl eW t hSuper Adm n. r enounceOaner shi p delete the _owner, but not the _pendi ngOaner .
When renouncing ownership, there may be still a pending owner. The goal of renouncing ownership is to
leave the contract without an owner forever, but if the current owner does initiate ownership transfer and
then renounces, the pending owner can still claim ownership of the contract.

CS-EVERSTKB2C-033

Code corrected:
The two functions have been updated to delete the _owner and the _pendi ngOmer .

7.4 Missing Input Sanitization

(D) (Miedium) (Version 1) (SR

Some function inputs are not sanitized:

CS-EVERSTKB2C-031

1.Pool .initialize():the parameters r ewar dsTr easury and pool Gover nor are not checked
for addr ess(0) .

2. Accounting.initialize(): the parameter accounti ngCGovernor is not checked for
addr ess(0), and pool Fee is not checked to be smaller than FEE_DENOM NATOR.

3. Treasur yBase. set Rewar der () : r ewar der is not checked for addr ess(0) .
4. Tr easur yBase. set Oaner () : owner is not checked for addr ess(0) .
5. Pool . set Gover nor () : newGover nor is not checked for addr ess(0) .

Code corrected:
1. Zero address checks are done.
2. Zero address and fee sanitization checks are done.
3. Zero address check is done.
4. the function has been removed and replaced by a transfer-and-accept pattern.

5. Zero address check is done.

7.5 Pausing Withdrawing Is Ineffective

(D (Miedium) (Version 1) (SR

The function pauseW t hdr aw can be called by a privileged role to (un)pause the withdrawals. While the
function unst akePendi ng has the modifier whenW t hdr awAct i ve to ensure that it can only be called

CS-EVERSTKB2C-039

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

only when withdrawals are allowed, unst ake() is not and can be called independently of the pausing of
withdrawals.

Code corrected:
The function Pool . unst ake has been updated with the whenW t hdr awAct i ve modifier.

7.6 Slashing Is Not Taken Into Account
Design [CTXTTNZEEITBY Specification Changed)

The protocol assumes that slashing will never happen for any of its validators. While the risk of slashing
can be greatly reduced by good infrastructure maintenance and monitoring, it can never be zero, in this
case, the slashing of a validator could result in putting the protocol in unexpected states and a potential
loss of funds for users. All implementations of nodes can potentially have bugs that might lead to
undesired slashing.

CS-EVERSTKB2C-003

For example, any transfer of less than 32 ETH from the validator is considered as an incoming reward,
while if slashed this can be an entire stake of the validator. Thus, if slashed just before unstaking, the
wrong accounting can lead to unexpected results.

Code corrected:

Everstake added the feature to stop the update of rewards in case of emergency. When it comes to
updating the user's balance and refunding the users, see Trust Model and Users may not be fully
refunded in case of slashing.

7.7 _si mul at eAut oconpound’'s Computation of
pendi ngRest aked Is Incorrect

(Medium] [Version 1] Code Corrected

When simulating the activation of rounds in _si nul at eAut oconpound(), for each round being
activated, pendi ngRest aked is decremented by BEACON _AMOUNT. As it might be the case that
pendi ngAnount / BEACON_AMOUNT > pendi ngRest aked/ BEACON_AMOUNT, a call to the function
could revert after trying to underflow the variable pendi ngRest aked.

CS-EVERSTKB2C-017

Code corrected:

_si mul at eAut oconpound no longer makes the assumption that
pendi ngAnount / BEACON_AMOUNT > pendi ngRest aked/ BEACON_AMOUNT and correctly decrement
pendi ngRest aked.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7.8 _sinul at eAut oconpound’'s Computation of
t ot al Shar e Is Incorrect

[Medium] [Version 1] Code Corrected

When _deposit is called by _autoconpound(), the total amount deposited
(AUTO_COVPOUND_TOTAL_SHARE _POCSI Tl ON) is incremented with the rewards (both the part that has
been interchanged and the part that will be deposited). On the other side,
__sinul at eAut oconpound() increments t ot al Shar e by uncl ai redRewar d which, at this point,
only includes the part of the rewards that is not interchanged. The t ot al Share returned by
_si mul at eAut oconpound() will hence not always match the result of an autocompounding.

CS-EVERSTKB2C-018

Code corrected:

_si mul at eAut oconpound now matches _aut oconpound() behavior and takes into account the
interchanged amounts when computing the total pool's balance.

7.9 Wrong Address in Event upon

accept Omnership
7D (Low) (Version 3) CYSIRTD)

The functions TreasuryBase. _transfer Omership and
Ownabl eW t hSuper Admi n. _transf er Omer shi p emit the event the addresses of _owner and
newOmer , which are the same at that point.

CS-EVERSTKB2C-043

Code corrected:

The two functions have been updated to emit the event with the previous owner and the new owner.

7.10 Rewar dsTreasury Overrides SendETH With
Identical Implementation

(D (Low) (Version 3) SR

Rewar dsTr easur y overrides SendETH with the same implementation as Tr easur yBase.

CS-EVERSTKB2C-035

Code corrected:

Everstake revised the inheritance between the contracts and their interface to allow for
Rewar dsTr easur y not to have to override sendETH.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7.11 Val i datorlList.get Might Not Represent

the Reality
7D (Low) (Version 3) (AL

Given a set of Validators with the status Deposi t ed, they may be not closed in the same order they
appear in _val i dat or sPubKeys. In such case, calling mar KAsExi t ed will mark the n first Deposi t ed
validator of the list as excited, without caring about which exact validator was closed. This may lead the
function Val i dat or Li st. get to return a status that is not representative of reality in the case
Everstake did not close validators in the order they appear in _val i dat or sPubKeys (e.g. in case of
slashing or leaked private key).

CS-EVERSTKB2C-002

Code corrected:

Everstake added the function mar kVal i dat or AsExi t ed and a corresponding internal function to the
Pool and to ValidatorList to allow for marking as closed validators given its index in
_val i dat or sPubKeys. Provided that Everstake always uses the right method between
mar kVal i dat or sAsExi ted and markVal i dat or AsExi ted to close the validators that have
effectively been closed, Val i dat or Li st. get should return the correct status.

7.12 _simul at eAut oconpound Ignores Paused
Rewards

(Correctness YRR Code Corrected)

Accounti ng. _si rmul at eAut oconpound does not take the pausing of rewards into account, and thus
does not mirror what autocompound would do when the rewards are paused.

CS-EVERSTKB2C-036

Code corrected:

The function _sinmul at eAut oconpound has been wupdated to reflect the behavior of
_aut oconpound() when the rewards are paused.

7.13 Batch Deposit in First Round Skips Shortcut
7D (Low) (Version 1) CXNSIZET)

If the first round (activeRound==0) is closed within a batch deposit, the shortcut in
Accounti ng. _acti vat eRound() will be skipped as acti veRound > 0. In this case, round 0 will
have to be activated as any other round by calling acti vat eVal i dat or s.

CS-EVERSTKB2C-022

Code corrected:

The special handling of the case act i veRound==0 has been removed from _act i vat eRound() .

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7.14 Events Missing
7D (Low) (Version 1) (XTI

Even though many events are emitted by the protocol, several important state changes do not emit
events:

1. Ownabl eW t hSuper Adm n. __Oanabl eW t hSuper Admi n_i ni t _unchai ned() does not emit
Set Super Admi n after setting the super admin.

CS-EVERSTKB2C-029

2. Accounting.w t hdraw() does not emit | nt er changeDeposit when interchanging with the
pending restaked amount.

3. No event is emitted by Accounti ng. acti vat eVal i dat or s() when one or several validators
are activated.

4.No event is emitted when the minimum amount to restake is set using
Account i ng. set M nRest akeAnount ().

5.In Account i ng, deposi t (), w t hdrawPendi ng() and wi t hdr aw() could emit events as they
are not necessarily respectively called by Pool . st ake(), Pool . unstakePendi ng() and
Pool . unst ake() .

6. Pool . unst ake() emits no event when no amount is withdrawn from the pending value of the
pool.

7. Pool . rest ake(), Pool . set Pendi ngVal i dat or s(),
Pool . r epl acePendi ngVal i dat or (), Pool . markVal i dat or sAsExi ted() emit no event
while they perform important state changes.

8. Gover nor Changed is emitted when setting the governor in Pool.initialize() and
Accounting.initialize(), similarly, FeeUpdat ed is not emitted when setting the pool fee in
initialize().

(Version 3

9. Ownabl eW t hSuper Adm n. r enounceOwner shi p emits an event but
Tr easur yBase. renounceOaner shi p does not.

10. mar kVal i dat or sAsExi t ed is defined and emitted in the library Val i dat or Li st , meaning that
it won't be part of the Pool 's ABI as it is not redefined there.

Code corrected:
The points 1., 2., 3., 4., 6., 7. (all but set Pendi ngVal i dat or s), 8., 9., 10. have been fixed.
For 7., Everstake states:

Pool.setPendingValidators() - not important state changes. It's internal processing which can be
indexed without events.

For point 5. :

Everstake answered that the concerned functions of the accounting can be called either by the pool or by
the owner. In the former case, the pool emits relevant events. For the latter case, Everstake states that
the owner should call these functions only in an emergency and thus, Everstake claims that no events
are needed in those cases as observers would anyway know that this is the owner's actions.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7.15 Inconsistent Event Emission Order

(D (Low) (Version 1) (ST

1. While most of the functions emit events after calling functions that might themselves emit an event,
Pool . _deposi t emits St akeDeposi t ed before calling deposi t which will itself emit events.

CS-EVERSTKB2C-024

2. Additionally, in the codebase, the rule seems to be doing storage change first and then emitting
events, however, some functions do not follow this pattern:

* Omabl eW t hSuper Adm n. transf er Omer ship
e Gover nor. _updat eGover nor

Code corrected:
1. The event has been moved after the call to deposi t.
2. The events have been moved after the state changes.

7.16 Interchanged Part of a Deposit Is Not Added
to deposi t Bal ance

(Correctness Y CTREERTBY Code Corrected)

When staking, the part of the deposit that is interchanged with withdrawals is not added to
sour ceSt aker . deposi t Bal ance.

CS-EVERSTKB2C-026

Code corrected:

The function Aut oconpoundAccounti ng. deposit Aut oconpound has been updated to add the
interchanged amount to the sour ceSt aker . deposi t Bal ance.

7.17 Interfaces Not Implemented

(D (Cow) (Version 1) G

Some of the contracts do not implement their interfaces (FooBar is | FooBar). This would be a
guarantee for integrators that the contracts carry the same functions signatures as the interfaces. Such
contracts are listed below:

CS-EVERSTKB2C-027

e Treasur yBase

* Rewar dsTr easury

Code corrected:

The contracts TreasuryBase and RewardsTreasury have been updated to implement their
respective interfaces.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7.18 Missing Documentation

(D (Cow) (Version 1) ST

Most of the functions are poorly documented or have no NatSpec description at all.

CS-EVERSTKB2C-028

Code corrected:

Extensive documentation has been added for ext er nal and publ i ¢ functions.

7.19 Missing Indexing of Events
D) (Low) (Version 1) (XL

All events defined in Accounting, Governor, Pool, RewardTreasury, TreasuryBase and
W t hdr awer contain no indexed fields. Indexing some relevant fields will help for searching events
quicker.

CS-EVERSTKB2C-030

Code corrected:

The relevant fields have been indexed.

7.20 Status of Replaced Validators Is Not Reset
D (Low) (Version 1) (YRR

In the function Val i dat or Li st . repl ace, the status of the replaced validator is not assigned (=), but
compared (==) to Val i dat or St at us. Unknown. This line of code will have no effect, and it will not be
possible to add again the replaced validator at a later stage.

CS-EVERSTKB2C-037

Code corrected:

The status of the replaced validator is correctly reset to Unknown.

7.21 Unnecessary Function Parameter

Design {(EOVEERY] Code Corrected

The function Aut oconpoundAccounti ng. _acti vat ePendi ngBal ance(), is always called with the
parameter ni nPr esent edAnount set to t rue, thus the parameter and logic related to it should be
removed from the codebase.

CS-EVERSTKB2C-038

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Code corrected:

The unnecessary function parameter m nPr esent edAnount and its related logic have been removed
from the codebase.

7.22 Variables and Functions Names Are Not
Representative

(Desig (EZTZTRY] Code Corrected

Having self-explanatory names for variables and functions greatly help the understanding of the code.
The names of some of the variables and functions in the codebase are misleading. Here is a
non-exhaustive list:

CS-EVERSTKB2C-040

« all the functions named with aut oconpound, except aut oconpound() and _aut oconpound()
have nothing to do with autocompounding.

*« AUTO_COVPOUND_TOTAL_SHARE_POSI TI ON represents the total amount of ETH currently
deposited in the validators, not a share. Moreover, the amount is not only from auto-compounded
rewards.

» Shar eSt at e. t ot al Shar e represent the total deposited amount at some period, not a share.
» Shar eSt at e. shar el ndex represent the total minted shares at some period, not an index.

* STAKER_AUTOCOMPOUND_BALANCES_PGSI TI ON and the struct Aut oconpoundSt aker M ni ng
have nothing to do with autocompounding.

Code corrected:

The functions and variables names have been changed.

7.23 View Functions Are Incorrect for Round 0

(D (Low) (Version 1) ISR

The special case for acti veRound==0 in _acti vat eRound() sets acti vat edRound to 1 although
the validator is not necessarily active yet.

CS-EVERSTKB2C-041

This means that the following functions might return incorrect results relative to the semantics of
pendi ngDeposi t ed and acti ve:

» pendi ngDeposi t edBal ance()
» pendi ngDeposi t edBal anceO ()
e deposi t edBal anceOf ()

e aut oconpoundBal anceO ()

Code corrected:

The special handling of the case act i veRound==0 has been removed from _act i vat eRound() .

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

7.24 Withdrawing May Fail Due to Underflow
(Correctness JETINZIITI) Code Corrected

When computing _shar eToAnmount (t ot al Share, aut oConpoundShar el ndex, autoConpound
Tot al Share) - originActiveDepositedBal ance in _w t hdr awFr omAut oconpound, amounts
deposited by the user are compared with amounts obtained from shares using _shar eToAnount (), as
there might have been a rounding error in the computation of the latter, their comparison might result in
an underflow, leading the call to revert.

CS-EVERSTKB2C-042

An easy way to obtain this behavior is to have the user deposit a very low amount of ETH x (10 wei for
example) by calling st ake() with some large value before calling unst akePendi ng() to leave in the
pending deposit of the user x ETH. Supposing now that the price of a share is high at the moment of the
activation of the validator, it is possible that _shar eToAnmount (_anmount ToShare(x)) < x as
_anmount ToShar e() might have done some rounding.

Code corrected:

When only a portion of the user's shares are burned, the accounting subtracts the deposited balance to
whatever is larger between the deposited balance and the amount obtained from the shares to be burned
to avoid underflow.

When all the shares are burned, no such comparison is done and the deposited amount is updated to be
the user's pending amount.

7.25 Wrong Restake Condition
(Design (T CLTTIRY Code Corrected
CS-EVERSTKB2C-044

The condition for the Pool to deposit on a restake is bal ance > BEACON_AMOUNT. If
bal ance == BEACON_AMOUNT the active round would have been incremented and the pending amount
updated accordingly during _aut oconpound() because the system expects a new validator to be
provisioned. But in that case, the validator will not be provisioned because of the strict inequality above.
Moreover, the internal accounting of the pending amount will not be representative of the true pending
value until the next deposit or reward auto-compounding.

Code corrected:

The restake condition has been modified and relies on act i vat edS| ot s instead of bal ance.

7.26 | nterchangeDeposit Emitted When No
Interchange

(D (Cow) (Version 1) RIS

In the function wi t hdr aw, | nt er changeDeposi t is emitted even if no interchange happened for the
given pending staker (act i vat edAnount ==0).

CS-EVERSTKB2C-023

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Code corrected:

The wi t hdr aw function has been updated so the | nt er changeDeposi t event is emitted only when
some amount is interchanged.

7.27 activat edRound Cached Value Not Updated
7D (Low) (Version 1) (AL

At the beginning of the function Accounti ng. _deposit Bal ance, acti vat edRound is cached in
memory and later used when calling _deposi t Account () . If acti veRound==0 and enough ETH is
deposited so that _acti vat eRound() is called, acti vat edRound is set to 1 in the storage but its
cached value is not updated. Because of this, if _deposi t Bal ance was to call _deposi t Account ()
after _activateRound's call (the user deposited enough to activate two or more rounds),
_aut oconmpoundAccount () would cache the wuser's deposit for the round O in
pendi ngDeposi t edBal ances although the deposit should be active at this time and shares should be
minted.

CS-EVERSTKB2C-020

Code corrected:
The special handling of the case act i veRound==0 has been removed from _act i vat eRound() .

7.28 acti veRound==0 Shortcut Breaks
Semantics

(D (Cow) (Version 1) ST

The implemented shortcut in _act i vat eRound() , the shortcut that marks the round 0 activated breaks
the semantics of the act i vat edRound, which should only represent the number of validators that have
been effectively activated.

CS-EVERSTKB2C-021

Code corrected:

The special handling of the case act i veRound==0 has been removed from _act i vat eRound() .

7.29 onl yGover nor Not Used
T (Low) (Version 1) CITYSIRTD)

The modifier onl yGover nor defined in the Gover nor is never used in the code base and thus should
be removed.

CS-EVERSTKB2C-032

Moreover, as the check ensuring that the nsg. sender is the governor is performed after the function's
call the modifier is applied to, if the modifier was to be used on a function updating the governor, it could
be that the function is not protected and could be called by anyone providing themselves as the new
governor.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

Code corrected:

The modifier onl yGover nor has been removed from the Gover nor contract.

7.30 unst akePendi ng Does Not Update
sl ot Pendi ngSt aker s

T (Low) (Version 1) (XTI

When a user withdraws his full pending stake using unst akePendi ng,
_sl ot Pendi ngSt aker s[acti veRound] is not updated to remove the staker.

CS-EVERSTKB2C-019

Code corrected:

The Account i ng. wi t hdr awPendi ng function has been updated such that the staker is removed from
_sl ot Pendi ngSt aker s[acti veRound] if they remove all of their pending stakes.

7.31 Deleting astruct With a Mapping Has No
Effect
[Informational] [Version 1]

In Solidity, if a st r uct contains a mapping and one deletes the st r uct , the mapping will not be deleted.
In the codebase, Accounti ng. _acti vat eRound() deletes
_sl ot Pendi ngSt akers()[acti veRound], an Addr essSet, but only the _val ues field of the Set
will be defaulted.

CS-EVERSTKB2C-008

Code corrected:

The deletion of _sl ot Pendi ngSt aker s() [acti veRound] has been removed.

7.32 Event Reentrancy
[Informational] [Version 1]

In several functions, an event is emitted after an external call to some address, in the case that the call
would reenter the contract, it would be possible to have events emitted out of order.

CS-EVERSTKB2C-009

The list of such patterns is shown below.
* Pool . unst ake() with _saf eEt hSend() and the event Unst ake.
* Pool . unst akePendi ng() with _saf eEt hSend() and the event St akeCancel ed.

Wt hdrawer. _clai MmNt hdrawRequest () with | TreasuryBase. sendEt h() and the event
d ai MW t hdr awRequest .

* Account i ng. cl ai mPool Fee() with | RewardsTreasury.sendEth() and the event
C ai mPool Fee.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:

All the patterns above have been updated to emit the event first, and then transfer ETH.

7.33 Gas Optimizations

(Informational] [Version 1]

1.

CS-EVERSTKB2C-011

The type casting from addr ess to addr ess is not required in Pool . i nitialize(), removing it
might save gas during initialization depending on the compiler's optimization setting.

. pendi ngVal i dat or PubKey is read twice from storage in Pool . _deposi t (), the value could be

cached in memory to avoid one SLOAD.

. The checks of the form a != b & a != c¢ can be modified following De Morgan's law

(!(a == b || a == c)) to leverage the lazy evaluation of the condition and save gas on
runtime.

. Some function arguments on call can be replaced by constants. Some examples are:

e Accounting. _acti vat eRound() : the variable act i veRound can be replaced by 0 in
the call _makeAut oconpoundRoundCheckpoi nt (acti veRound) .

e Account i ng. _deposi t Bal ance(): in the call to _acti vat eRound() of the branch
if (pendi ngAnount > 0), the parameter
pendi ngTot al Share + cl oseCurrent RoundAnount can be replaced by
BEACON_AMOUNT.

e Account i ng. _deposi t Bal ance(): in the call to _deposi t Account () of the branch
i f (depositToPendi ngAnount > 0), the parameter i nt er changedAnmount will
always be 0.

e Account i ng. _deposi t Bal ance(): in the call
AUTO_COVPOUND_PENDI NG_SHARE _PCSI Tl ON. set St or ageUi nt 256() of the branch
if (depositToPendi ngAmount > 0), the parameter pendi ngTot al Share will
always be 0.

.The activatedSlots in the branch if (pendingTotal Share > 0) of the function

Accounti ng. _deposi t Bal ance() can be setto 1 instead of incrementing the variable to save
gas on runtime.

.The while loop and multiple stack variables increments in the branch

if (deposi t ToPendi ngAnount >= BEACON _AMOUNT) of the function
Accounti ng. _deposi t Bal ance can be replaced by one update for each involved variable. If the
whil e loop was to stay, a do-while construct could save gas. The same applies in
_si mul at eAut oconpound() .

. Setting pendi ngTot al Shar e to 0 in the branch

if (deposi t ToPendi ngAnount >= BEACON _AMOUNT) of the function
Accounti ng. _deposi t Bal ance is redundant.

. The whi | e loop in the function Accounti ng. wi t hdraw() can be simplified since in the case

i sFul | yDeposit ed==f al se, then the remaining i nt erchangeW t hPendi ngDeposits is
zero.

.In the branch if (wi t hdr awFr onPendi ngAnount > 0) of the function

Accounti ng. wi t hdraw, pendi ngRest akedVal ue - wi thdrawFr onmPendi ngAnount is
computed twice while it could be done only once.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

10.

11.

12.

13.

14.
15.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

In the function Accounti ng. wi t hdr aw, the pendi ngTot al Shar e is read from storage twice
when it could be cached in the memory.

In the return statement of the branch
if (unclainmedReward < M N RESTAKE POSI Tl ON. get St or ageUi nt 256()) of the
function Accounti ng. _si nul at eAut oconpound(), the constant 0 can be used instead of
uncl ai nredRewar d

When simulating the withdraw queue filling in Accounti ng. _si mul at eAut oconpound(), the
iffelse branches could be unified in the same way it is done in
W t hdrawer. i nterchangeWthdraw().

The modifier Gover nor. onl yGover nor () does the address check after executing the code.
Reverting early would save gas.

In the function Pool . _st ake(), val ue cannot be zero.

The increment i ++ can be in an unchecked block in multiple f or loops.

. The function Wt hdrawer. _cal cul at eVal i dat or Cl ose can return only one value, as the

two values are linked by a constant factor, one can easily deduce a value from the other one.

In the function Wthdrawer. cal cul ateWt hdrawRequest Anount, the condition
Wi t hdr awFr omAct i veDeposi t > 0 will always be true if
wi t hdr awFr omAct i veDeposit > pendi ngTot al Shar e is true and is hence redundant.

In the function W t hdr awRequest s. add, the assignation r equests. _val ues[i] = request
can be moved inside the i f (requests. val ues[i].value == 0) block and the function
can return right after.

In the functions Wt hdr awRequests.claim and W t hdr awRequest s. i nf o,
requests.value[i].afterFill edAnrount is read twice from the storage while it could be
cached to avoid one SLOAD.

In the functions Wt hdr awRequests. cl ai m and Wt hdr awRequest s. i nf o, the condition
requests. values[i].afterFill edAnrount > actual Fill edAnount can be relaxed to

an unstrict comparison since if
requests. values[i].afterFill edArount == actual Fill edAnount their difference is
null.

In the function Wt hdrawRequests.info, requests. val ues.length is read from the
storage at each iteration of the loop. Caching it in the memory would avoid several SLOAD.

In the function Val i dat or Li st . add, set. _activeValidatorl ndex and
set. activePendi ngEl ement | ndex are both read three times from the storage when their
value could be cached in the memory.

In the function Val i datorList.shift, set. activePendi ngEl enent | ndex is read two
times from the storage when its value could be cached in the memory.

In the functions, _aut oconpoundAccount ,
_aut oConmpoundUser Pendi ngDeposi t edBal ance, _aut oConpoundUser Bal ance and
_ Wi t hdr awFr omAut oconpound of Aut oconpoundAccount i ng, the field

pendi ngDeposi t edBal ances. | engt h of the staker is read from the storage at each iteration of
the loop. Caching it in the memory would avoid several SLOAD.

In the first f or loop of the function Aut oconpoundAccounti ng. _aut oconpoundAccount, both
st aker. pendi ngDeposi t edBal ances|[]j]. peri od and
st aker. acti vePendi ngDeposi t edEl enent | ndex are read twice from the storage and could
be cached.

In Aut oconpoundAccounti ng. _aut oconmpoundAccount (), when updating the pendi ng
status to pendi ngDeposi t ed, one execution path read three times
st aker. acti vePendi ngDeposi t edEl enent | ndex from storage, it could be cached.

Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

27.In Aut oconmpoundAccount i ng. _aut oconpoundAccount (), when updating the pendi ng
status to pendi ngDeposi t ed or to act i vat ed, both st aker. pendi ngBal ance. bal ance and
st aker. pendi ngBal ance. peri od are read twice from storage.

28.In Aut oconpoundAccount i ng. _aut oConpoundUser Pendi ngDeposi t edBal ance(),
st aker. pendi ngBal ance. peri od is read twice from storage.

29. In Aut oconmpoundAccount i ng. _aut oConpoundUser Bal ance(), at each iteration of the f or
loop, if the condition of the if statement is not met, both
st aker Aut oconpoundBal ance. pendi ngDeposi t edBal ances[j]. bal ance and
st aker Aut oconpoundBal ance. pendi ngDeposi t edBal ances[j]. peri od are read twice
from storage.

(Version 3)

30. The calls to _user Acti veBal ance to get only the deposi t edBal ance could be replaced by a
simple storage read to save gas.

31. At the end of Account i ng. _si mul at eAut oconpound(),
pendi ngAnount == pendi ngRest aked always holds as if i f (pendi ngAmount > 0) is
entered, then they are both set to 0. Otherwise pendi ngAnount ==0 and hopefully one should
always have pendi ngAmount >= pendi ngRest aked meaning that there is no need to keep
both var for the while loop.

Code corrected:

The gas optimizations have been applied.

7.34 Governor Is Immutable

(Informational] [Version 1]

While the Governor role of the Pool can be transferred to another address by the Owner, the
Super Adm n or the governor himself at any time, the Gover nor of the Account i ng contract can only
be set when calling Accounting.initialize.

CS-EVERSTKB2C-012

Code corrected:

The Gover nor of the Account i ng can now be updated using the function set Gover nor .

7.35 Unneeded r et ur n Statement

(Informational] [Version 1]

When a function signature looks like f uncti on foo() external returns(uint a, uint b),the
statementreturn (a, b) is not necessary when the values to be returned have been assigned earlier
to the returned variables.

CS-EVERSTKB2C-015

Some examples:
» Aut oconpoundAccounti ng. _wi t hdr awFr omAut oconpound()

» Aut oconpoundAccount i ng. _aut oconpoundAccount ()

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Code corrected:

Some of the unnecessary r et ur n statements have been removed.

7.36 Unused Imports
[Informational] [Version 1]

The following imports are not used:

CS-EVERSTKB2C-016

1. "./interfaces/IPool.sol" and "./interfaces/ITreasuryBase.sol" in Account i ng.
2. "./linterfaces/IPool.sol" in W t hdr awTr easury.

3. "./interfaces/IRewardsTreasury.sol" in Rewar dsTr easury.

4. " /ITreasuryBase.sol" in | Rewar dsTr easury.

Code corrected:

All unused imports have been removed.

7.37 Validator Cannot Be Marked as Exited
Immediately

[Informationalj [Version 1]

In Val i dat orLi st, mar kAsExi t ed() changes the status of num validators from Deposited to
Exi t ed provided that:

CS-EVERSTKB2C-010

* Their status is Deposi t ed.
» They are all stored consecutively in set. val i dat or sPubKeys.

«The first validator is stored at index set. activeValidatorlndex of
set. val i dat or sPubKeys.

By the design of the Li st struct and the functions add and shi f t, validators that are Deposi t ed are
not always at the "front" of the slice of set._validatorsPubKeys starting at
set. _activeVali dat orl ndex and can be interleaved by validator with another status. A Deposi t ed
validator in such configuration cannot have his status changed to Exi t ed until all previous validators
have the state Deposi t ed or Exi t ed.

Code corrected:

mar KAsExi t ed() has been updated in such ways that the numvalidators to be marked as Exi t ed no
longer need to be stored consecutively. Additionally, Pool . r eor der Pendi ng() can be used to order
pending validators to be deposited to in the order as they appear in _val i dat or sPubKeys. Depending
on how Pool . r eor der Pendi ng() is called this can be used to keep _val i dat or sPubKeys's length
from growing.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

7.38 initializer Used Over
onlylnitializing

[Informational] [Version 1]

The functions __Omnabl eWt hSuper Adm n_i ni t and
__Omnabl eWt hSuper Admi n_i nit_unchained have the initializer modifier while
onlylnitializingwould be more correct.

CS-EVERSTKB2C-014

Code corrected:
The modifieronl yl ni tial i zingisusedinsteadofinitializer.

7.39 m nSt ake's Value Differs From the
Documentation

[Informational] [Version 1]

In the Pool .initialize, the minimum stake is set to 0. 01 ETH while the documentation states that
the minimum users are allowed to stake is 0. 1 ETH.

CS-EVERSTKB2C-013

Code corrected:

The minimum stake is now setto 0. 1 ETH in Pool .initialize.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

8 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Inconsistent Use of overri de and vi rt ual
(Informational] [Version 1]

CS-EVERSTKB2C-006

In solidity, it is not mandatory to use the over ri de keyword when implementing a function from a parent
interface. For the sake of consistency, either none or all implementations should be annotated with
override.

Additionally, Pool . set Gover nor is setas vi rtual although no contract inherits from Pool .

8.2 The Sum of Shares Can Be Less Than the
Total Shares Supply

(Informational] [Version 1]

CS-EVERSTKB2C-007

Due to some rounding errors, the shares distributed to individual stakers for a given round might not
match the total number of shares minted for that round, i.e. _anmount ToShar e(X+Y+Z) >= _anmountT
oShare(X) + _anmount ToShare(Y) + _anount ToShare(Z). The difference in value cannot be
claimed by anyone.

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

9 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 Deposited Amount Is Gifted if Less Than 1
Share

Users should be aware that any amount resulting in less than a share will be a donation to the pool. Even
though this should be avoided by the minimum stake constraint, it is possible to stake and unstake
pending, leaving a small amount to be activated, which may result in O share.

9.2 Users May Miss Rewards on Closed Validator

If some validator is expected to close, i.e. EXPECTED CLOSE VALI DATORS > 0, any rewards
accumulated in the Rewar dsTr easur y that is above 32ETH will be considered as a stake returned by a
closing validator instead of a reward. So any staker withdrawing when one or more validators are
expected to close and when 32ETH of staking rewards or more are available in the Rewar dsTr easury
will miss that reward.

9.3 Users May Not Be Fully Refunded in Case of
Slashing

According to the Trust Model, Everstake plans to deploy an emergency treasury fund, but do not
guarantee all the users to be fully refunded in case of slashing.

Everstake states:

We understand and don't neglect the risks related to slashing and we will have a special Energency Treasury

Fund - an Ethereum wal | et address for Energency Cases. Energency Treasury fund will have sone anobunt of Ethereum
to cover at least partly possible unlikely slashing related issues. W also plan to send sone defined share of

Et hereum service fee received fromthe Pool by Everstake, approximtely 10%

Exanpl e:

Pool Service fee is 10%

Emer gency Treasury Fund share is 10%

If all Validators within the Pool generated 10 000 ETH

Then Everstake will receive 1 000 ETH as a Pool Service Fee

And 100 ETH from Pool Service fee will be send to Energency Treasury Fund

@ Everstake - ETH B2C Staking - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Pool
	3.2 Accounting
	3.2.1 Exit stakes and rewards auto-compounding
	3.2.2 Internal accounting

	3.3 Treasuries
	3.3.1 Reward Treasury
	3.3.2 Withdraw Treasury

	3.4 Changes in Version 3
	3.5 Trust Model

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 Pausing Auto-Compounding Can Be Unfair to Users
	6.2 Interchanging Is Not Performed in Order When Withdrawing
	6.3 Minimum Stake Consistency

	7 Resolved Findings
	7.1 Replacing a Validator Eventually Blocks the System
	7.2 Usage of address(this).balance in restake Can Block the System
	7.3 renounceOwnerShip Leaves the _pendingOwner Pending
	7.4 Missing Input Sanitization
	7.5 Pausing Withdrawing Is Ineffective
	7.6 Slashing Is Not Taken Into Account
	7.7 _simulateAutocompound's Computation of pendingRestaked Is Incorrect
	7.8 _simulateAutocompound's Computation of totalShare Is Incorrect
	7.9 Wrong Address in Event upon acceptOwnership
	7.10 RewardsTreasury Overrides SendETH With Identical Implementation
	7.11 ValidatorList.get Might Not Represent the Reality
	7.12 _simulateAutocompound Ignores Paused Rewards
	7.13 Batch Deposit in First Round Skips Shortcut
	7.14 Events Missing
	7.15 Inconsistent Event Emission Order
	7.16 Interchanged Part of a Deposit Is Not Added to depositBalance
	7.17 Interfaces Not Implemented
	7.18 Missing Documentation
	7.19 Missing Indexing of Events
	7.20 Status of Replaced Validators Is Not Reset
	7.21 Unnecessary Function Parameter
	7.22 Variables and Functions Names Are Not Representative
	7.23 View Functions Are Incorrect for Round 0
	7.24 Withdrawing May Fail Due to Underflow
	7.25 Wrong Restake Condition
	7.26 InterchangeDeposit Emitted When No Interchange
	7.27 activatedRound Cached Value Not Updated
	7.28 activeRound==0 Shortcut Breaks Semantics
	7.29 onlyGovernor Not Used
	7.30 unstakePending Does Not Update _slotPendingStakers
	7.31 Deleting a struct With a Mapping Has No Effect
	7.32 Event Reentrancy
	7.33 Gas Optimizations
	7.34 Governor Is Immutable
	7.35 Unneeded return Statement
	7.36 Unused Imports
	7.37 Validator Cannot Be Marked as Exited Immediately
	7.38 initializer Used Over onlyInitializing
	7.39 minStake's Value Differs From the Documentation

	8 Informational
	8.1 Inconsistent Use of override and virtual
	8.2 The Sum of Shares Can Be Less Than the Total Shares Supply

	9 Notes
	9.1 Deposited Amount Is Gifted if Less Than 1 Share
	9.2 Users May Miss Rewards on Closed Validator
	9.3 Users May Not Be Fully Refunded in Case of Slashing

