PUBLIC

Code Assessment

of the Ethereum Vault Connector

Smart Contracts

6 May, 2024

Produced for

@EHAINSEEURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG

10
11
12
15
18

https://chainsecurity.com

1 Executive Summary

Dear Euler team,

Thank you for trusting us to help Euler with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Ethereum Vault Connector
according to Scope to support you in forming an opinion on their security risks.

Euler implements Ethereum Vault Connector, a general framework for vaults interoperability for the
purpose of arbitrary lending markets creation.

The critical subjects covered in our audit are authentication, checks enforcement, and adherence to the
specification. Security regarding all the aforementioned subjects is high.

Some issues of low severity have been addressed by Euler by accepting them as part of the specification
and improving the documentation.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed.

We have furthermore included notes on peculiar aspects of the systems, that will hopefully be of interest
to integrators and future users of Ethereum Vault Connector.

We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Risk Accepted

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Ethereum Vault Connector repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

Date Commit Hash Note
Vv
1 | 7 April 2024 | c30606b44fld1cabba303dfd13046e5444cab775 | Initial Version
2 | 22 April 9bcOcl7afd6bed51cd9126d9f3b8fc31614d29a9 After Intermediate Report

For the solidity smart contracts, the compiler version 0. 8. 24 was chosen.

2.1.1 Included in scope
This report covers the Euler Ethereum Vault Connector (EVC) contracts.
* src/ExecutionContext.sol
* src/EthereumVaultConnector.sol
« src/TransientStorage.sol
* src/Errors.sol
* src/Events.sol
* src/Set.sol
* src/utils/EVCUil.sol

2.1.2 Excluded from scope
Any contracts inside the repository that are not mentioned in Scope are not part of this assessment.

Tests and deployment scripts are excluded from the scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Euler offers Ethereum Vault Connector (EVC), a system that enables coordination between vaults to
build composable and arbitrary lending markets. The EVC serves as a foundation for vaults to interact
with each other in a unified manner. The EVC acts as a central registry of which collaterals are enabled

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

for a given user, and which lending vault has the power to act on a user's collateral in case of need. The
EVC allows batching Vault operations and is tasked to enforce the solvency of lenders.

2.2.1 EthereumVaultConnector

2.2.1.1 Controller

The main functionality provided by the EVC is to enable borrowing from vaults, by allowing vaults to
interact with the borrower's collateral, which is provided in the form of shares of EVC-compatible vaults.
When an account takes a loan from a vault, this vault has to be set as the controller of the account, and it
will gain control over the collateral until the vault itself renounces the controller role (in general when the
loan is fully repaid). At any time, the controller vault can invoke control Col | ateral () to move the
account's collateral. Typically this is used to transfer the collateral to the liquidator during the liquidation
of the borrow position.

2.2.1.2 Collateral management

An account owner or operator can enabl eCol | ateral () and di sabl eCol | ateral () for it. A
maximum of 10 different collaterals can be enabled for an account. Furthermore, the account owner or
operator can r eor der Col | at er al s() to optimize collateral checks performed by controllers.

2.2.1.3 call,batchandpermt

The EVC allows any userto cal | () into anyt ar get Cont r act with arbitrary dat a. Acal | () can also
be performed onBehal f OF Account which requires additional authentication to be performed as only
account owners or assigned operators can perform calls for an account. If t ar get Contract is the
neg. sender, no authentication is performed as the contract is supposed to trust itself. Similarly,
bat ch() allows for multiple cal | s to be executed one after another.

A si gner can sign arbitrary dat a, only allowing sender to invoke permnit () with the signed data,
which will verify the validity of the signature and ensure that the contents of the signature are valid. The
signature contains a deadl i ne after which it is no longer valid and a nonce to prevent the signature
from being replayed. The signature can either be an ECDSA signature (used by EOAS), in which case it
is verified using ecer ecover (), or an ERC1271 signature (used by smart contracts) that is verified by
calling signer.isValidSignature(). Once the validity of the signature has been assessed, a
self-call into the EVC is performed with the arbitrary data. Furthermore, the execution context is modified
to set onBehal f OF Account to si gner. During a self-call into the EVC the _nsgSender is set to the
onBehal f OF Account address stored in the execution context instead of being nsg. sender. This
allows the EVC to act on behalf of the signer. This kind of self-call is detected because the
neg. sender is the EVC itself, and it can happen only through the per i t function. Calls in bat ch or
call that target the EVC are performed through del egatecall and maintain the original
neg. sender.

2.2.1.4 Checks

The EVC is tasked to enforce the solvency of the lending markets that are implemented through it by
performing checks on user position every time a critical action is performed. For example, a user who
borrows through the EVC does not transfer its collateral to a lending pool, instead the balance is
maintained with the user and whenever an outgoing transfer is performed, the collateral contract is
tasked to request a check on the solvency of the sending user. The solvency check is requested through
the EVC's r equi r eAccount St at usCheck function.

Checks can be performed immediately, in case no ongoing EVC execution is running, or they can be
deferred, meaning they are performed after batches of actions have been performed. This allows a
generalized flash-loan logic, enabling simpler and more powerful position management.

As the last action of acal | () orabat ch(), checks are performed on the accounts and the vaults that
have been involved in the batch. While checks are performed, no call can re-enter the EVC. The checks
are first performed on the accounts and then on the vaults. An account check is performed by delegating

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

the check to its controller, if there is any. The controller ensures that the account is not
under-collateralized. Checks can be required explicitly by systems that rely on the EVC by calling
requi reAccount St at usCheck() or requi reVaul t St at usCheck() . Anyone can request a check
for an account, and vaults can request checks for themselves. Checks are also added when using EVC
functionality that modifies a user position, such as di sabl eCol | ateral ().

Calls, batches and permits can be nested in which case the checks are all deferred to the end of the
outermost call. This is achieved by setting the checksDef erred flag in the execution context. Vault
status checks are performed by calling checkVaul t St at us() on the vaults. The vault status check
ensures that the vaults are not exceeding global limits (such as supply limits) after the actions have been
performed.

Controllers also have the ability to f or gi veAccount St at usCheck() for accounts they control. This is
used to allow accounts to still be in an under-collateralized state following a partial liquidation, as long as
the overall health of the system is improved. If EVC checks are forgiven, the controller vault must
implement its custom checking logic.

2.2.1.5 Accounts

Every Ethereum address that interacts with the EVC owns 256 accounts. Every account range (0-255)
has an owner assigned to it stored in the owner Lookup mapping. Each account's address is computed
from the first 19 bytes of the user's address and the first byte of the account id. The owner of an account
is the owner of the 19-byte address prefix. This allows for up to 256 borrow positions per user. In the
unlikely case that two users share the same address prefix, the first one to have interacted with the EVC
and be authenticated by it will become the owner of the addr essPr efi x. The owner of an address
prefix is saved the first time the owner is authenticated during a cal | or a bat ch in the EVC.

The owner of an account can set operators for it. Operators can act on behalf of the owner on the
account. Operators cannot add other operators to accounts they manage but can renounce their operator
role. Accounts can have multiple operators. Accounts cannot be operators for other accounts in the same
address prefix.

2.2.1.6 Nonces

Every addr essPr ef i x owns 2**256 nonceNanmespaces each initialized to a nonce of 0. A nonce in a
given nonceNanespace is used by a user in a signed per ni t message to prevent replay attacks by
ensuring that the message is only valid once. The nonce is incremented after the message has been
processed. The nonce is stored in the nonceNanmespaces mapping. To invalidate a nonce, the user can
set Nonce to a value greater than the current nonce. To invalidate a namespace its nonce can be set to
t ype(ui nt 256) . max. Nonces for every nonceNanespace for every addr essPrefi x are stored in
the nonceLookup mapping.

2.2.1.7 LockdownMode & PermitDisableMode

Lockdown mode can only be enabled and disabled by the owner. It will prevent any call with
authentication from being performed that is not from the owner. Lockdown mode is enforced during
authentication of the caller in cal | Wt hAut henti cati onl nternal ().

Per m t Di sabl eMbde can only be enabled and disabled by the owner. It will prevent any permit action
from being performed. It can be used in case the owner signs by mistake a permit action that should not
be executed. However, this is not enough to prevent the permit action from never being executed. The
owner should then invalidate the nonce used in the malicious permit action. It is only enforced during the
execution of a permit action in permi t ().

Both modes cannot be disabled during a self-call of permi t () or during cal I or bat ch actions. This is
enforced by checking that the execution context ar eChecksDef er r ed flag is not set.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.1.8 Simulation

The EVC allows users to simulate their batches using bat chSi nmul ati on() and bat chRevert(). A
simulation will always revert to the initial state and yield the results of each batch item operation and the
result of all account and vault checks that have been performed for the batch to the user. This allows
users to test the outcome of their batch before executing it.

2.2.2 EVCULIl

EVCuti | is an abstract contract that provides utility functions required by vaults to interact with the EVC.
It must be initialized with the address of the EVC contract. It provides two modifiers: cal | Thr oughEVC
which will redirect the function call through the EVC and onl yEVCW t hChecksl nPr ogr ess which
checks that the EVC is the sender and that checks are in progress. Furthermore, it provides a
_megSender () function that either returns nmsg. sender or the OnBehal f Of Account stored in the
EVC's execution context if the sender is the EVC itself. Last, _nsgSender For Borr ow() is a function
similar to _msgSender () but it additionally ensures that the sender account has the vault specified as
argument as one of its controllers.

2.2.3 ExecutionContext

Execut i onCont ext is a library that provides functions for managing the EVC's execution context (EC).
The EC is represented as a ui nt 256 and holds the following information: onBehal f OF Account ,

checksDef erred, checksl nPr ogr ess, control Col | ateral | nProressLock,
oper at or Aut hent i cat ed, si mul ati on and st anp.
2.2.4 Set

Set is a library that provides functions for managing Set St or age structures that contain a maximum of
SET_MAX_ELEMENTS of El enent St or age structures. Each El ement St or age contains a val ue of
type address (20 bytes) and a st anp of size 12 bytes, i.e one element occupies exactly one slot. The
st anp has value either DUMWY_VALUE (1), or 0. DUMW_VALUE is used to keep a dirty bit in the storage
slot for optimization purposes. The Set St or age structure contains a nunkl enent s field that keeps
track of the number of elements in the set, afi r st El enent field, which contains the first element of the
set, and a st anp value which is initialized to DUMWY_VALUE on the first time an element is inserted in the
set. Theinitialize() function allows setting the st anp values of the array of El enent St or age to
DUMMY_VALUE. The library provides functions to i nsert(), renmove(), reorder() and get ()
elements. Additionally, a cont ai ns() function and two functions to iterate over the set and apply a
function to each element are provided: f or EachAndd ear () and f or EachAndCd ear Wt hResul t ().
The latter function also returns a result.

2.2.5 TransientStorage

Euler plans to use the transient storage recently added to the EVM. As for now, Tr ansi ent St or age
does not yet use transient storage but instead uses regular storage to store the execution context and the
two sets that keep track of deferred account status and vault status checks. Theinitial i ze() function
of Set is used to mark all the st anp values of a transient set to DUMW_VALUE, so that the expensive
storage slot initialization cost is not triggered.

2.2.6 Trust Model

The controller for an account is fully trusted by the account, as it can arbitrarily act on the account's
collateral, it can arbitrarily prevent the checks from passing, and only it has the power to disable itself as
the controller.

Collaterals are by default untrusted, and it is up to the controller implementation to decide how to handle
them.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Operators for an account are fully trusted by the account owner not to perform actions against the
account.

Operations directly submitted by users through cal | () and bat ch() are assumed to be intentional and
correct. Nested operations resulting from the first layer of user operations are considered arbitrary.

No authentication is performed regarding onBehal f O when calling the nsg. sender through cal | ()
or bat ch() . The nsg. sender is expected to perform the authentication.

Systems integrating with the EVC should not use get Cur r ent OnBehal f O Account () unless called
directly by the EVC.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings =

+ Calls That Sweep All ETH in EVC Can Fail Silently
« Execution of Arbitrary Code Can Cause Denial of Service
« Simulations Can Be Tricked by Malicious Systems

5.1 Calls That Sweep All ETH in EVC Can Fall

Silently
[Low] [Version 1) Risk Accepted

Calls and batch items in the Et her eunVaul t Connect or can transfer the whole balance of the EVC by
setting the val ue to t ype(ui nt 256) . max. This can carry unintended consequences when calls are
nested, even in the presence of trusted systems only:

EULEVC-001

Let's consider the following setup, where the user performs a batch call with three actions: A, B, and C.
» A withdraws some ether into the EVC
B performs some arbitrary operation on trusted vaults

« C deposits the ether somewhere, using t ype(ui nt 256) . nax as the value.

If B is to perform some action on the EVC that uses its ether balance, then C would fail to deposits the
whole amount received in A, but the failure will in general not result in a revert.

This can be of course problematic if B triggers malicious code (the EVC documentation addresses this in
the security paragraph), but it can also fail when the action performed by B is correct but also performs
an EVC calls with t ype(ui nt 256) . max value. In the latter case, the nested EVC call performed in B
would unintentionally use the whole ether amount from A.

The problem is not present when using a specified ETH value in C, because the C action would cause a
revert. The use of t ype(ui nt 256) . max as value is therefore safe only when no intermediate action
exists that transfers ETH to the EVC.

Risk accepted:

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Euler accepts the risk with the following statement:

We acknowledge this issue. Considering that oftentimes users might not know exactly how much
value the EVC has received as a result of an operation, the EVC provides users with a convenient
method to sweep all the available value by passing a special parameter of type(uint256).max. We
consider this feature to outweigh potential risks associated.

As per “EVC Contract Privileges” section of the EVC white paper, it is not advisable for the EVC to
hold any native currency. The documentation emphasizes potential risks regarding untrusted code
execution, but we agree it does not mention any side effects that may arise from multiple operations
using special type(uint256).max and an input parameter for the EVC. The EVC white paper has been
refined to sufficiently describe this behavior.

5.2 Execution of Arbitrary Code Can Cause Denial
of Service

D (Cow) (Version 1) (EITETED)

The execution of arbitrary code when checks are deferred can be exploited to cause denial of service of
the EVC. If a user initiates a call through the EVC which triggers the execution of malicious code, the
whole EVC execution can be forced to revert by introducing an account or vault status checks that fails.

EULEVC-003

Arbitrary non malicious code can also introduce EVC failures by including a number of vault or account
status checks that exceeds the maximum of 10 (SET_MAX_ELEMENTS).

Risk Accepted:
Euler accepts the risk with the following statement:

We acknowledge this issue. The EVC has been designed to function as a glorified multi-call contract
allowing the user to execute calls into any other addresses, including contracts containing malicious
code. As with any other system of such a type, it is the user's responsibility to carefully select
contracts they interact with. If not careful, it is true that malicious contracts can cause denial of
service attacks. However, such attacks should never pose a greater security threat to the system as
a whole and with user’s care, can easily be avoided. The white paper has been refined to sufficiently
describe this behavior.

5.3 Simulations Can Be Tricked by Malicious
Systems

D (Cow) (Version 1) (EITTED)

A user can simulate the effects of a batch by using bat chSi nul ati on() or batchRevert ().
However, during a simulated batch, the execution context of the EVC is updated to indicate that it is in
simulation mode, by setting the Si nul at i onl nPr ogr ess flag. This flag can be checked by any vault or
external system that the EVC interacts with. Therefore, malicious vaults or external systems could use
this information to act differently during simulation mode, in order to trick the user into thinking that the
vault/external system is not malicious. Simulations should not be used as a security measure to
determine the effects of a batch if the systems with which the batch interacts are untrusted.

EULEVC-004

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 13

https://github.com/euler-xyz/ethereum-vault-connector/pull/150/commits/5087c9552ae8e5178d2981382088b2cacc058166
https://github.com/euler-xyz/ethereum-vault-connector/pull/150/commits/0d03cf7725e826af352c9fba618c47fd5ee292d6
https://chainsecurity.com

Risk Accepted:

Euler accepts the risk with the following statement:

We acknowledge this issue. The simul ationlnProgress flag, same as
oper at or Aut hent i cat ed flag, has been introduced in the system on purpose. None of them is
used internally by the EVC, they both have been introduced so that they can be observed by the
external smart contracts the user interacts with through the EVC. Although, as noticed in the issue
description, those flags allow the contracts called to modify the behavior and execution path, their
existence may increase the UX and hence we consider this feature to outweigh potential risks
associated.

For example, the si nul at i onl nPr ogr ess flag can be used by a vault so that the user is able to
determine the outcome of the operation even if they do not currently hold tokens required to carry out
such an operation, i.e. deposit into a vault.

As with any other EVC feature, users should only use the EVC simulation with trusted and
recognized smart contracts that do not aim to trick or harm them in any way. Considering the EVC
simulation features are mostly meant to be used by the Ul applications, we believe this is the natural
place where user protection should be applied. If the user aims to faithfully evaluate the outcome of
the simulation to assess the security of the to be executed transaction, they should resort to other
methods and available commercial solutions. The white paper has been refined to sufficiently
describe this behavior.

Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 14

https://github.com/euler-xyz/ethereum-vault-connector/pull/150/commits/f15b4531f85354396d14231b3a4d49acb94ed7da
https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(1 1)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0
Informational Findings 3

» Gas Optimizations (LCReLTIERL

* setAccountOwnerinternal() Naming Is Not Accurate (SCRSIEaE

e Unused Variable (@ eIl]

6.1 Gas Optimizations

[Informationalj [Version 1]

In the Et hereunVaul t Connect or contract, public functions requireAccount St at usCheck,
requi r eVaul t St at usCheck, and r equi r eAccount AndVaul t St at usCheck are decorated with the
nonReent r ant Checks modifier. However, the functions perform different actions depending if checks
are deferred or not. Since areChecksDeferred() and areChecksl nProgress() are mutually
exclusive (except transiently in the body of these functions), the reentrancy check can be moved to the
internal version of the functions which is called if checks are not deferred. This saves 3 storage accesses
every time one of these functions is called.

EULEVC-005

Several gas optimizations can be implemented in the Set library, all pertaining to writing values into
structs that share a storage slot. If a and b share a storage slot, writing a new value into a requires first
loading b from storage, so that the new [a, b] value can be then written in storage. If a and b are written
together, the SLOAD is prevented. The gas optimizations in question are:

o At the end of function i nsert, around line 94
(set St orage. nuntl enents = ui nt8(nuntl enments + 1)), a storage load can be prevented
by also setting set St or age. fi r st El enent, which is known, and set St or age. st anp, which is
always DUMWY_STANP in the set St or age struct.

« In function i nsert when inserting at the end of the array, line 91, the st anp value can also be
written, therefore saving a storage read. To know which value to set for stanp, the
element-searching loop that is performed just before (lines 85-87) can also be used to query the
st anp values of the array. They will either all be set (for transient sets), or all unset (for persistent
sets), so when setting stamp at index i , the value of st anp atindexi - 1lcanbeused (i >= 1).
If the second element is being inserted (i == 0), then the extra SLOAD can't be avoided, since the
old value of st anp must be retrieved.

« In function r enove, when replacing the removed element with the last element, at line 143, the
st anp value can also be written to prevent an SLOAD. The st anp value to write can be known at no
extra storage load costs.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

« In function r eor der, if i ndex1l == 0, set Storage. nunkl enents and set St or age. st anp
can be set to their known values to prevent an extra SLOAD.

«In functions forEachAndC ear and forEachAndC earWthResult, when clearing
set St or age. nuntl enent s and set St or age. first El enent, set St or age. st anp can be set
to DUMWIY_STAMP to prevent an extra SLOAD.

Because some functions are only used ont r ansi ent sets (f or Eachandd ear), and some others only
on persistent sets (r eor der), extra optimizations are available if we accept tighter coupling between the
Set implementation and the Et her euniaul t Connect or:

* When clearing the array elements in f or Eachandd ear (and f or EachAndC ear Wt hResul t),
we can also write setStorage.elenments[i].stanp = DUMW_STAMP, since
f or EachAndd ear () is only used on transient sets which are known to have every stamp set to
DUMWY_STAMP.

ereorder () is only used on persistent sets of account Col | at er al s, which are known to have
st anp value O for entries of the el enent s array. Therefore, the st anp value can be set to 0 when
writing the val ue of entries, saving extra SLOADs

Code corrected:

After evaluation by Euler, some of the optimizations were implemented while others were considered to
slightly complicate the logic of the contract or increase the gas consumption.

The following optimizations were implemented:

« two additional internal functions, r equi r eAccount St at usCheckl nt er nal NonReent rant and

requi reVaul t St at usCheckl nt er nal NonReent r ant that wrap
requi r eAccount St at usCheckl nt er nal and requi reVaul t St at usCheckl nt er nal
accordingly, have been added to the EthereunVaultConnector and wused in
requi r eAccount St at usCheck, requi reVaul t St at usCheck and

requi r eAccount AndVaul t St at usCheck functions.
» forEachAndClear and forEachAndClearWithResult have been modified.

6.2 Unused Variable
[Informational] [Version 1]

The variable STAMP_MASK of Execut i onCont ext is currently unused.

EULEVC-008

Code corrected:

This variable has been removed

6.3 set Account Omner I nternal () Naming Is Not
Accurate

[Informational] [Version 1]

EULEVC-009

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

set Account Onner | nt er nal () seems to indicate that the function is setting the account owner for a
single account. However, the function is setting the owner of all 256 accounts (for the whole address
prefix), and not just a single account.

Code corrected:
This function has been inlined and removed.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Account Check Can Fail When Enabling
Collateral

enabl eCol | at eral () will always r equi r eAccount St at usCheck() . This can be problematic in the
case a position is below the LTV and above the liquidation threshold. In this case, it will prevent the
account from improving the position by enabling a new collateral if the amount of enabled collateral is too
small to improve the position above the LTV. The same issue can arise in r eor der Col | ateral ().

7.2 Differences Between Call to Collateral and
control Col | at er al

control Col I at eral () enables the controller of an account to act on the account's collateral while
impersonating the account. This is expected to be used for example in liquidations, and the controller
should be able to use the collateral at their discretion. However, since cont r ol Col | at eral () sets the
set Control Col | ateral | nProgress flag, a controller has more restrictions when interacting with a
collateral than the owner, because the EVC can't be re-entered.

EULEVC-002

The implementation of complex collateral vaults is therefore restricted to not interact with other EVC
vaults in methods used in liquidations, and controller vaults are restricted to use methods of collateral
vaults that are known not to interact with the EVC. This imposes design restrictions on how the liquidating
vault (controller) interacts with the collateral. When asked about it, Euler stated that operations performed
as part of the liquidation flow will most likely involve share transfers or asset withdrawals, and should not
contain any complex logic requiring them to perform additional EVC calls.

If a vault implementation performs EVC calls when transferring shares (cal | Thr oughEVC), in case the
liquidation flow includes asset withdrawal from a vault, the withdrawn asset cannot be a share token of
another vault (vaults nesting). This restriction is however unlikely to cause problems because nested
vaults make a poor choice of collateral from a risk management perspective.

7.3 Inefficient ETH Transfer in
cal | Thr oughEVC()

In cal | ThroughEVC() a substantial amount of gas is spent if the message value is positive because
the ether is sent to the EVC and back to the Vault resulting in the ether being moved three times instead
of once. Every call that transfers ether costs at least 6800 gas, so at least an additional 13600 gas is
spent.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7.4 Inter-dependencies in Checks

(D) (Version 1)

Checks on accounts and vaults are performed in the order they were added to the set. These checks
might read and modify the state of third-party smart contracts such that subsequent checks will behave
differently due to the modified state. Therefore, the order in which the checks are performed can matter.

While this is not a problem for the EVC itself, it should be considered by any vault implementation that
relies on the EVC. Vault should not depend on the order of checks execution as it is not guaranteed,
since different call nesting can influence it.

7.5 Nonces Are Shared by Addresses With
Colliding Prefix

(D) (Version 1)

While extremely unlikely, two different addresses may share the same address prefix. In this case, the
first address to be authenticated with the EVC will be the owner of the address prefix preventing the other
address from authenticating on behalf of the address prefix. However, the second address can still sign
permit messages using nonces for the address prefix. Therefore, the second address can invalidate
nonces used by the owner's address by signing a permit message with the same nonce and front running
the call to per m t by the owner's address.

EULEVC-007

7.6 Vault Composability Is Limited by the
Maximum Amount of Deferred Checks

(D) (Version 1)

The amount of vaults and accounts that can be checked during the check phase is limited by the size of
the respective sets. Therefore, any nested operation that results in more than 10 deferred vault or
account checks will fail.

Therefore, vaults containing other vaults could stop working with the EVC if the contained vaults change
their behavior by requesting additional checks, which would lead to the above-mentioned limit being
exceeded. This is a limitation of the EVC that vault developers should be aware of.

@ Euler - Ethereum Vault Connector - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Included in scope
	2.1.2 Excluded from scope

	2.2 System Overview
	2.2.1 EthereumVaultConnector
	2.2.1.1 Controller
	2.2.1.2 Collateral management
	2.2.1.3 call, batch and permit
	2.2.1.4 Checks
	2.2.1.5 Accounts
	2.2.1.6 Nonces
	2.2.1.7 LockdownMode & PermitDisableMode
	2.2.1.8 Simulation

	2.2.2 EVCUtil
	2.2.3 ExecutionContext
	2.2.4 Set
	2.2.5 TransientStorage
	2.2.6 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Calls That Sweep All ETH in EVC Can Fail Silently
	5.2 Execution of Arbitrary Code Can Cause Denial of Service
	5.3 Simulations Can Be Tricked by Malicious Systems

	6 Resolved Findings
	6.1 Gas Optimizations
	6.2 Unused Variable
	6.3 setAccountOwnerInternal() Naming Is Not Accurate

	7 Notes
	7.1 Account Check Can Fail When Enabling Collateral
	7.2 Differences Between Call to Collateral and controlCollateral
	7.3 Inefficient ETH Transfer in callThroughEVC()
	7.4 Inter-dependencies in Checks
	7.5 Nonces Are Shared by Addresses With Colliding Prefix
	7.6 Vault Composability Is Limited by the Maximum Amount of Deferred Checks

