

PUBLIC

Code Assessment

of the EIP-4788 Contract

Smart Contracts

September 28, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 11

7 Informational 13

8 Notes 15

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
To the Ethereum Foundation,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our EIP-4788 Contract audit according to the Scope to support you in
forming an opinion on the contract's security and correctness.

EIP-4788 introduces a mechanism for the execution layer of Ethereum mainnet to access the beacon
roots of the consensus layer. This access is provided through a regular smart contract which acts as a
temporary database. This particular smart contract is the scope of this audit.

The most critical subjects covered in our audit are the security and the correctness of the smart contract
storing the beacon roots. Herein, the most important security property is that:

• Only the privileged SYSTEM_ADDRESS can store beacon roots

Among other properties the correctness properties include:

• Only previously stored beacon roots can be retrieved

• The ring buffer correctly overwrites old beacon roots

Our most significant finding here is that the Zero-Timestamp can be queried successfully, which has
been corrected in the code.

Version 2

In another finding, we suggested to make the ring buffer size a prime number which provides different
benefits as described in Implications of Ring Buffer Size. This has been adopted, as in the ring
buffer size became a prime number.

Furthermore, we investigated possible gas savings and made some recommendations which focused on
reducing the execution cost of the contract's usual execution path.

Additionally, in the Informational Section we highlighted how changes in the specification could allow a
more efficient contract implementation. Lastly, we wrote Notes for smart contract developers, planning to
interact with this contract, so that they can avoid mistakes.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but do not replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 0

Low -Severity Findings 6

• Code Corrected 1

• Acknowledged 4

• No Response 1

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the following source code files inside the EIP-4788 Contract's code
repository:

• src/main.etk

• src/ctor.etk

The tables below indicates the commits relevant to this report and when they were received. The
EIP-4788 was used as a source of documentation and specification.

Contract Code

V
Date Commit Hash Note

1 August 29 2023 38c114bcd96817989496d6e902c1c5a8679a2eef Initial Version

2 September 26 2023 bea9744af95953963552057c8a7d2124ec1bd33d Version 2

EIP-4788

V
Date Commit Hash Note

1 August 29 2023 46f8d5bc9593f096cd92f66692e115218ec1c633 Initial Version

2 September 26 2023 761df83432837603da12879885c8b19381fa0c1d Version 2

For assembly, etk-ask assembler version 0.3.0 was used.

2.1.1 Excluded from scope
This review does not include all of EIP-4788. In particular, it does not include how the beacon roots are
passed from Consensus Layer to the Execution Layer or correctness of client implementations of the
EIP. Furthermore, it does not include the interactions of clients with the contract.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview. Furthermore, in the findings section, we have added a version icon to each of the
findings to increase the readability of the report.

EIP-4788 adds the possibility to retrieve beacon block roots inside the EVM. As explained in the
Motivation, this allows decentralized applications based on consensus-level data with reduced trust
assumptions. This functionality is provided through a beacon roots contract. The beacon roots contract is
a regular EVM contract. Logically, the beacon roots contract acts as a temporary database where block
producers can store beacon roots and anyone can retrieve them. That database allows beacon root
lookup based on a provided timestamp.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 5

https://github.com/lightclient/4788asm/tree/38c114bcd96817989496d6e902c1c5a8679a2eef
https://github.com/lightclient/4788asm/tree/bea9744af95953963552057c8a7d2124ec1bd33d
https://github.com/ethereum/EIPs/tree/46f8d5bc9593f096cd92f66692e115218ec1c633
https://github.com/ethereum/EIPs/tree/761df83432837603da12879885c8b19381fa0c1d
https://eips.ethereum.org/EIPS/eip-4788
https://eips.ethereum.org/EIPS/eip-4788#motivation
https://chainsecurity.com

Concretely, the storage layout of the contract is as follows. The contract has two ring buffers, one for
timestamps and one for beacon roots. Those buffers are aligned so that element i from the first buffer
corresponds to element i from the second buffer:

1. Timestamps: Storage slots 0 - HISTORY_BUFFER_LENGTH

2. Beacon Roots: Storage slots HISTORY_BUFFER_LENGTH - HISTORY_BUFFER_LENGTH * 2

The functionality of the beacon roots contract is as follows:

1. At the beginning of each block, the block producer calls the beacon roots contract using a special
SYSTEM_ADDRESS. When called with the SYSTEM_ADDRESS the contract will perform a set
operation. The set operation has two effects:

1. sstore(timestamp % HISTORY_BUFFER_LENGTH, timestamp), setting the current
timestamp in the timestamp ring buffer

2. sstore(timestamp % HISTORY_BUFFER_LENGTH + HISTORY_BUFFER_LENGTH,

calldata[0:32]), setting the provided beacon root in the beacon root ring buffer

2. During regular EVM execution the beacon roots contract can receive calls by any other address.
Note that these calls are implicitly get calls, so that no calldata signature has to be provided.
Instead only the desired timestamp is provided as calldata. As part of a get call the following
checks are made:

1. calldatasize == 32

2. calldataload(0) != 0

3. sload(calldataload(0) % HISTORY_BUFFER_LENGTH) == calldataload(0), this
checks that the provided timestamp needs to match the timestamp stored in the timestamp
ring buffer, indicating that the desired beacon root is available.

If all of these checks pass, the stored beacon root is returned, otherwise the contract reverts without
revert reason.

For a more precise description of the functionality, see the Pseudocode.

As ring buffers are used the beacon root for a particular timestamp is generally only available for a limited
time. Furthermore, note that not all slot timestamps might return beacon roots as slots could be missed.
For more information on possible pitfalls see Integration Guidelines for Developers.

2.2.1 Trust Model
We make the following trust assumptions:

• A valid signature for the SYSTEM_ADDRESS is never found.

• Nobody can successfully deploy a contract to the SYSTEM_ADDRESS.

• The consensus checks that block producers correctly insert the beacon roots. In particular, they are
not allowed to overwrite old beacon roots.

• No future Ethereum hard fork will allow two blocks to have the same timestamp. That would lead to
undefined behavior for this contract.

• No future Ethereum hard fork will allow a subsequent block to have a smaller timestamp.

• If the block interval changes or becomes variable, some of the assumptions will no longer hold. See
Changes in Block Interval for more details.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 6

https://eips.ethereum.org/EIPS/eip-4788#pseudocode
https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 5

• Push3 Used Where Push2 Would Be Sufficient

• AcknowledgedMerge Failure Cases for Gas Savings

• AcknowledgedNegate Failure Conditions to Save Gas

• AcknowledgedReorder Operations to Save Gas

• AcknowledgedReplace Push Command With Msize for Gas Savings

5.1 Push3 Used Where Push2 Would Be Sufficient
Design Low Version 2

CS-EIP4788-010

Version 2The ring buffer size (8191 in), is pushed to the stack using PUSH3, however, as it only occupies
two bytes, a PUSH2 would also be sufficient. This would result in a minor size reduction of the bytecode.

5.2 Merge Failure Cases for Gas Savings
Design Low Version 1 Acknowledged

CS-EIP4788-002

Generally, we expect the most common get execution case to be the one, where the get call will
succeed. Hence, we try to optimize the gas cost for this case. In the current implementation, the
successful get contains two executions of JUMPI that branch off to the corresponding revert statements.
If the two conditions were combined using an OR operation, only a single JUMPI would be needed.
Thereby execution gas costs could be lowered in the successful get execution.

5.3 Negate Failure Conditions to Save Gas
Design Low Version 1 Acknowledged

CS-EIP4788-003

The contract has two conditions that can revert the execution:

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

1. calldatasize == 32

2. sload(calldataload(0) % HISTORY_BUFFER_LENGTH) == calldataload(0)

Usually, we expect the good case where both conditions will evaluate to true to be the most common
one. However, on EVM-level the conditions are currently implemented so that in the good case the
JUMPI performs a jump. As a result, in the good case two JUMPDEST operations are executed, which
consume one gas each. If the conditions would be negated on EVM level by using SUB instead of EQ, the
gas consumed by the JUMPDEST operations could be saved.

5.4 Reorder Operations to Save Gas
Design Low Version 1 Acknowledged

CS-EIP4788-004

The contract's source code contains a swap1 operation, which swaps out elements of the stack. Through
a different order for the preceding operations, the swap1 instruction can be omitted. This results in a
lower execution gas cost and smaller contract size.

5.5 Replace Push Command With Msize for Gas
Savings
Design Low Version 1 Acknowledged

CS-EIP4788-005

Towards the end of the get() function there is the following instruction:

push1 32

It is supposed to push the current memory size (32 bytes) onto the stack, so that this can be used as size
input for the return statement. Instead the msize instruction could be used, which achieves the same
and reduces execution gas costs as well as contract deployment costs.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedZero-Timestamp Can Be Queried Successfully

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected Specification ChangedImplications of Ring Buffer Size

Informational Findings 1

• Code CorrectedInconsistent Comment

6.1 Zero-Timestamp Can Be Queried Successfully
Correctness High Version 1 Code Corrected

CS-EIP4788-001

The get() function can be queried with the Zero-Timestamp even though no value has ever been set for
the Zero-Timestamp. This violates the important property that all returned values must have previously
been set. This happens because the EVM storage is initialized with zeroes which allow the timestamp
check to pass.

Note that this remains possible until the corresponding storage slot is first used.

With 0 as an argument for get(), The returned beacon root would be zero. This leads to integrators
being tricked into accepting the Zero-Hash as a valid beacon root which might allow exploits depending
on the protocol.

Code corrected:

An explicit check has been added to make sure that the get() function reverts when a Zero-Timestamp
is provided as calldata.

6.2 Implications of Ring Buffer Size
Design Low Version 1 Code Corrected Specification Changed

CS-EIP4788-008

The EIP-4788 states:

The ring buffer data structures are sized to hold 8192 roots from the consensus layer at current slot
timings.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Version 1In the code implements the circular buffer, however out of 98304 slots, only 8192 will be utilized
at a current SECONDS_PER_SLOT = 12 on the mainnet.

Effectively the ring buffer behaves as a ring of integers modulo n, where n is its size. The
(current_timestamp + X * SECONDS_PER_SLOT) mod 98304 function will produce a cyclic
subgroup of order 8192 if SECONDS_PER_SLOT is 12. However, if, in the future, the
SECONDS_PER_SLOT would change to 16, the cyclic subgroup will have order 6144, which is less than
8192. Furthermore, many old entries from the 12-second interval would uselessly remain in the ring
buffer.

Thus, the requirement of the EIP-4788 to have 8192 roots available in the ring buffer will not be satisfied
if the SECONDS_PER_SLOT changes to 16 seconds. If the SECONDS_PER_SLOT changes to 13 seconds,
the cyclic subgroup will have order 98304, thus increasing the storage requirements for the ring buffer by
12 times.

To summarize, the 98304 as a group order for the ring buffer is not an ideal choice, as it is not a prime
number. Potential changes to the SECONDS_PER_SLOT will drastically change the behavior of the ring
buffer.

If the (current_timestamp + X * SECONDS_PER_SLOT) mod 8209 function is used instead,
the cyclic subgroup will always have order 8209, since it is a prime number. That would have two key
advantages:

• The ring buffer could always hold the most recent 8209 beacon roots independent of
SECONDS_PER_SLOT

• The storage consumption would remain constant even when SECONDS_PER_SLOT changes

If the primary objective is to make sure that the ring buffer can hold all beacon roots of the past 24 hours,
then a prime ring buffer size still makes sense, but a bigger one has to be chosen, according to the
lowest value SECONDS_PER_SLOT might have in the future.

Please note that the changes discussed here would require a change in the specification.

Code corrected:

The specification has been changed to make the ring buffer size 8191, which is a prime number. The
code has been changed accordingly. Hence, the new implementation benefits from the positive effects
described above.

6.3 Inconsistent Comment
Informational Version 1 Code Corrected

CS-EIP4788-009

In the code comments inside src/main.etk for the get() function, the same loaded calldata is once
referred to as time and once as input. To avoid confusion a consistent label could be used for it in both
places.

Code corrected:

The comments have been updated and are more consistent.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are technically not issues. As the EIP served
as a specification, we primarily check whether the code correctly and securely implements the EIP. Here,
however, we also point out possible improvements to the EIP. Furthermore, an inconsistency in the
comments of the source code.

7.1 Changes in Block Interval
Informational Version 2

CS-EIP4788-011

As long as the block interval (SECONDS_PER_SLOT) remains at its current value of 12 seconds two
properties will hold:

1. A successfully written beacon root can only be overwritten after 8191 blocks have passed.

2. All successfully written beacon roots from past 24 hours are available in the contract.

However, different changes in the block interval are possible:

Different, Fixed Block Interval

If, at a block X, the block interval changes to a different value, e.g., 8 seconds, the following holds
regarding the properties mentioned above:

1. This property is temporarily violated. A beacon root written in the blocks [X - 8190, X] might be
overwritten sooner due to the change in the interval.

2. This property is temporarily violated for the beacon roots written in the 24 hours before X.
Furthermore, if the new block interval is smaller than 11 seconds, the property will no longer hold as
more than 8191 beacon roots are produced in 24 hours.

Variable Block Interval

If the block interval becomes variable, e.g. there are 10 seconds between blocks X and X+1, but 9
seconds between blocks X+1 and X+2, then the following holds regarding the properties mentioned
above:

1. This property is permanently violated.

2. This property is permanently violated.

However, in all cases mentioned above, the following property always holds:

A successfully written beacon root can only be overwritten after 8191 seconds have passed. Hence,
even during network changes, each beacon root will be available for more than two hours.

7.2 Gas Savings in Ring Buffer Layout
Informational Version 1

CS-EIP4788-007

Currently, the two ring buffer storage location segments are laid out as follows:

1. Timestamps: [0 , HISTORY_BUFFER_LENGTH - 1]

2. Beacon Roots: [HISTORY_BUFFER_LENGTH , 2 * HISTORY_BUFFER_LENGTH - 1]

Hence, to compute the beacon root storage slot based on the timestamp storage slot, the code currently
adds HISTORY_BUFFER_LENGTH. However, a more efficient approach would be to use the EVM's NOT

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

opcode on timestamp slot for the beacon root storage slot computation. By doing this, both the execution
gas cost and the overall contract size could be reduced.

Please note that this would require a change in the specification.

7.3 Minor Inconsistencies in Specification
Informational Version 2

CS-EIP4788-012

Version 2A few documentation parts are outdated in :

• The subsection Size of ring buffers in the EIP-4788 contains an outdated ring buffer size.

• The bytecode in the README.md of the code repository is incorrect based on the command
presented above it.

• The cfg.png showing the control-flow graph in the code repository is outdated as it does not
contain the latest code.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight issues that could potentially arise when interacting with this contract.
First from the perspective of smart contract developers and then from the perspective of execution
clients.

8.1 Integration Guidelines for Developers
Note Version 1

Smart contract developers who aim to interact with the beacon roots contract should be aware of the
following pitfalls:

1. Unless most smart contracts, this contract has no 4-byte abi calldata signature to select the
function. As you are not calling from the SYSTEM_ADDRESS your call is automatically calling the
get function.

2. The calldata has to be exactly 32 bytes and should only contain the timestamp, in big-endian
format, which is the EVM default.

3. Due to the points above, smart contract developers might perform a low-level call in the respective
smart contract language. That low-level call generally does not perform checks, such as sufficient
return data. Hence, smart contracts performing such a low-level call should check that the
RETURNDATASIZE == 32 using the features of the respective language.

4. Beacon roots are only available for a limited time. This is because a ring buffer is used where old
values are overwritten. In particular this also implies that a timestamp which was queried
successfully in one block might not be available in the next block.

5. The ring buffer might contain outdated entries. At the time of writing the
HISTORY_BUFFER_LENGTH will be chosen so that roughly one day of beacon roots is available.
However, developers cannot assume that successfully queried beacon roots are from the past day.
They might be as old as the FORK_TIMESTAMP.

6. There is a beacon root available for the current timestamp, but it is not the beacon root of the
current block. It is the beacon root of the preceding block.

7. There might be no beacon root for current timestamp - 12 or more generally: there might be no
beacon root for the timestamp of a particular slot that occurred recently. This is because slots can
be missed. Then no blocks will be produced and no beacon root will be inserted.

8. To get the beacon root from time X do not query X. Instead the timestamp of the succeeding block
must be used. That timestamp is generally unknown it could be X+12, X+24, or something
completely different once the block interval changes.

9. Do not send ETH to the contract. The ETH will be lost. A STATICCALL can be used, as it does not
allow the transfer of ETH.

Please note that we have only covered pitfalls related to the get function as this is the only one smart
contract developers should be able to call.

8.2 Note for Execution Clients
Note Version 1

Execution clients need to perform the set operation as part of block construction. They should be aware
that:

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

set never reverts. Hence, a non-reverting execution of the set function does not imply a correct call. In
particular set would not revert if called with no calldata or with too much calldata. If less than 32 bytes of
calldata are provided, the calldataload operation will pad the missing bytes with zeros.

Ethereum Foundation - EIP-4788 Contract - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Push3 Used Where Push2 Would Be Sufficient
	5.2 Merge Failure Cases for Gas Savings
	5.3 Negate Failure Conditions to Save Gas
	5.4 Reorder Operations to Save Gas
	5.5 Replace Push Command With Msize for Gas Savings

	6 Resolved Findings
	6.1 Zero-Timestamp Can Be Queried Successfully
	6.2 Implications of Ring Buffer Size
	6.3 Inconsistent Comment

	7 Informational
	7.1 Changes in Block Interval
	7.2 Gas Savings in Ring Buffer Layout
	7.3 Minor Inconsistencies in Specification

	8 Notes
	8.1 Integration Guidelines for Developers
	8.2 Note for Execution Clients

