

PUBLIC

Code Assessment

of the Sulu Extensions XVIII

Smart Contracts

February 7, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Open Findings 11

6 Resolved Findings 12

7 Notes 17

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Enzyme Foundation with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts according to Scope
to support you in forming an opinion on their security risks.

Enzyme Foundation implements a new external position for GMX V2. Supported orders are
MarketIncrease, MarketDecrease (to modify long or short positions), StopLossDecrease (to set
stop loss) and LimitDecrease (to set take profit). Additionally, a new policy
DisallowedAdapterIncomingassetsPolicy has been implemented.

The most critical subjects covered in our audit are functional correctness, asset solvency and Enzyme's
integration with the external system.

Functional correctness did not hold due to claimable collateral that might have been tracked incorrectly.
For details please refer to the issue: Overestimation of Claimable Collateral in getManagedAssets.
Further, the position's value could have been temporarily decreased by hiding value in the execution fee,
which was not accounted for when evaluating the external position's total value: ExecutionFee of Orders
in getManagedAssets.

After the intermediate report, all issues have been resolved.

During the assessment period, it became apparent that the technical documentation for GMX V2 lacks
key information. As a result, our in-depth understanding of the external system was primarily derived from
analyzing the available source code.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 4

• Code Corrected 4

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Enzyme Protocol repository. The
table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
12 August 2024 81fb006d67f0c0b923e2f7ebb9234e8e7c870d

3f
Initial Version

2
20 August 2024 0f132460d4c5018327027582728f56348b288

aa6
After Intermediate Report

3
11 November
2024

cfdc6459105740c566b251950ed98721f1de4
d35

QA of refactoring

4
17 December
2024

e2254ef4f2bf917e2178b35db80be7317766a
192

Fix

5
03 February
2025

bab831a76d72ae6d978832ff74e06bd54e14b
8ad

Accounting for position fees

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

The scope for the GMX V2 Protocol external position is:

contracts/release/extensions/external-position-manager/external-positions/gmx-v2-leverage-trading/GMXV2LeverageTradingPositionLib.sol
contracts/release/extensions/external-position-manager/external-positions/gmx-v2-leverage-trading/GMXV2LeverageTradingPositionParser.sol
contracts/release/extensions/external-position-manager/external-positions/gmx-v2-leverage-trading/IGMXV2LeverageTradingPosition.sol
contracts/release/extensions/external-position-manager/external-positions/gmx-v2-leverage-trading/bases/GMXV2LeverageTradingPositionLibBase1.sol

Version 2In , the scope has been updated to include the DisallowedAdapterIncomingAssetsPolicy:

contracts/release/extensions/policy-manager/policies/asset-managers/DisallowedAdapterIncomingAssetsPolicy.sol

Version 3 covers a quality assurance review of the refactoring performed in commits
cfdc6459105740c566b251950ed98721f1de4d35 and
e031b39f458960b4e82aaea6057caac7e5aaeb46. This covers a technical risk assessment but is no
full review of the code.

2.1.1 Excluded from scope
Any contracts inside the repository that are not mentioned in Scope are not part of this assessment. All
external libraries, and imports are assumed to behave correctly according to their high-level specification,
without unexpected side effects.

The correctness of external systems is not in scope.

Tests and deployment scripts are excluded from the scope.

The main part of this review took place in the first half of August 2024; the review is based on the state of
GMX V2 at this point in time. This review cannot account for future changes.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Enzyme Foundation implements a new external position for integrating with GMX V2 on Arbitrum.

2.2.1 External Position: GMX
GMX is a decentralized perpetuals exchange that supports leverage trading. It offers both fully backed as
well as synthetic markets where users can open long/short positions. The external position (EP) enables
Enzyme vaults to trade on GMX. For a detailed description of how external positions function, please
refer to the main code assessment report of Sulu.

The external position implements the following actions:

1. CreateOrder: Creates a new order on GMX. The implementation supports one of the following
OrderTypes: MarketIncrease, MarketDecrease, StopLossDecrease, LimitDecrease.
Please find a brief description of each of these order types towards the end of this section.

2. UpdateOrder: Updates parameters of existing orders. Since GMX does not allow to update
market orders, this action can only be applied to stop-loss and limit decrease orders.

3. CancelOrder: Cancels a pending order and transfers the remaining execution fees to the vault. If
the canceled order is of type MarketIncrease the associated collateral is also transferred back.

4. ClaimFundingFees: Claims positive funding fees for given market-token pairs from the GMX
protocol.

5. ClaimCollateral: Claims claimable collateral for the specified market-token-timekey tuples, the
collateral is returned to the vault.

6. Sweep: Transfers tokens of the tracked assets held by the external position to the vault. Also
removes stale tracked asset by rebuilding the tracked assets array based on the active
MarketIncrease orders and current positions.

Orders on GMX are executed in two steps: The user creates an order which will be executed in a second
transaction by a keeper.

The external position with GMX does not take on debt. The amount and types of assets managed by the
vault's external GMX position can be retrieved via getManagedAssets(). Note that the total value of
assets managed by the external position is composed of several factors:

• The valuation of collateral that is held in active GMX positions. It is computed by using the
conservative bound of the oracle price range and hence under-estimates the actual value.

• The value of the MarketIncrease orders that are pending (have not been executed yet).

• The value of assets held by the external position due to refunds of execution fees, liquidations or
cancellation of pending orders.

• The value of released collateral from decreased GMX positions.

• Positive funding fees that can be claimed from the GMX protocol.

We briefly describe the four possible order types implemented in the external position for GMX:

1. MarketIncrease: A market order to increase or open a position (long or short); transfers the
collateral (and execution fee) to the exchange router.

2. MarketDecrease: A market order to decrease or close a position (long or short); transfers
execution fee to the exchange router.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3. StopLossDecrease: A stop-loss order to decrease a position (long or short); should be executed
according to the trigger price.

4. LimitDecrease: A limit order to decrease a position (long or short); should be executed
according to the trigger price.

Callers specify parameters in CreateOrderActionArgs, which are then used to generate
CreateOrderParams for interaction with GMX. Note that not all functionalities are accessible; notably,
swaps prior to the order have been disabled. This enforces the vault to send long and/or short tokens
from the respective market as collateral.

For each market the vault is participating in, the vault's external position is set as callback contract for
GMX upon the first creation of a MarketIncrease order. This stored callback contract is used for async
actions such as liquidations and ADL in GMX. The callback address for orders is set within the order
parameters as the vault's external position proxy or 0x0 for MarketIncrease orders. The EP provides
a callback function afterOrderExecution that is called by GMX when a decrease order has been
executed and in the case of liquidation. The callback function updates claimableCollateralKeys
and claimableCollateralKeyToClaimableCollateralInfo if additional collateral has been
released from the order execution due to the order exceeding the negative price impact threshold. Thus,
the EP keeps track of released collateral that still needs to be claimed with __claimCollateral().

GMX uses the concept of time keys to group users' claimable collateral in the protocol accounting. The
current time slot divisor is set to 3600 (1h) in GMX, which implies that the timeKey has a different value
for every hour. Therefore, a user's claimable collateral is stored in the GMX DataStore under the
respective market, account address and time key of when the collateral was released. Thus, the EP
keeps track of the time keys in addition to the market and account address to claim all collateral.

Changes in Version 2

A new policy, DisallowedAdapterIncomingAssetsPolicy, has been implemented to check for disallowed
assets after calls on integrations. This policy passes if none of the incoming assets are present in any of
the configured disallowed lists.

2.2.2 Roles and Trust Model
Please refer to the main code assessment report and the extension reports for a general trust model of
Sulu.

In general, we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple entry
points, callbacks, fees-on-transfer, or other special behaviors.

Fund owners and asset managers are generally fully trusted for a fund. However, their powers can be
limited through the fund's settings. The funds' settings/policies are assumed to be set up correctly for the
intended configuration/usage.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting with, which includes choosing appropriate parameters. External systems
(i.e. GMX) are expected to work correctly and as expected.

Further, it is assumed that the fund manager only acts through Enzyme's official interface for GMX. The
CHAINLINK_PRICE_FEE_PROVIDER is assumed to be set to ChainlinkPriceFeedProvider, a custom
implementation by GMX. The price returned is assumed to be the price of one unit of the token using a
value with 30 decimals of precision. This allows for conversions between token amounts and fiat values
to be: token amount * oracle price, to calculate the token amount for a fiat value: fiat value /
oracle price. For more details please refer to the examples provided by GMX.

Only valid exchange routers are expected to have the CONTROLLER_ROLE and have the functions called
by the external position accessible. While other contracts may hold this role, e.g. the OrderHandler calls
from the external position are expected to fail due to the function selector not being available / the
function not being accessible. Hence checking __assertHandler is assumed to be sufficient to ensure
that the EP is interacting with a valid GMX exchange router.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 7

https://arbiscan.io/address/0x527fb0bcff63c47761039bb386cfe181a92a4701#code
https://github.com/gmx-io/gmx-synthetics/blob/main/README.md#example-1
https://chainsecurity.com

The GMX Pools that the external position interacts with are expected to have sufficient liquidity; it is
assumed they cannot be manipulated (price impact).

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedExecutionFee of Orders in getManagedAssets

Medium -Severity Findings 1

• Code CorrectedOverestimation of Claimable Collateral in getManagedAssets

Low -Severity Findings 4

• Code CorrectedCallback Contract Stored Is Independent of Router

• Code CorrectedIncorrect Assumption for Claimed and Claimable Collateral

• Code CorrectedMissing Accounting Fees Incurred by Position

• Code CorrectedUpdateOrder Does Not Support to Increase the Fee Amount

Informational Findings 1

• Specification ChangedInaccurate Description

6.1 ExecutionFee of Orders in getManagedAssets
Correctness High Version 1 Code Corrected

CS-SUL18-001

Pending MarketIncrease orders contribute to the valuation of the external position, such orders have
a collateral amount and execution fee associated.

The collateral value is accounted for in getManagedAssets():

// 2. Get pending market increase orders value
IGMXV2Order.Props[] memory orders = __getAccountOrders();

for (uint256 i; i < orders.length; i++) {
 IGMXV2Order.Props memory order = orders[i];
 if (order.numbers.orderType == IGMXV2Order.OrderType.MarketIncrease) {
 assets_ = assets_.addItem(order.addresses.initialCollateralToken);
 amounts_ = amounts_.addItem(order.numbers.initialCollateralDeltaAmount);
 }
}

This does not account for the execution fee which has been provided alongside the order. Excess
execution fee is refunded to the external position after the order has been executed; this e.g. allows to
hide value as execution fee which will not be included in the valuation thereby leading to a lower
valuation returned by getManagedAssets() temporarily before the excess fee is returned.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

The getManagedAssets value could be manipulated by placing a MarketIncrease order with a high
execution fee, then buying vault shares at a reduced price and finally canceling the order.

Similarly, execution fees of other pending orders (MarketDecrease, StopLossDecrease and
LimitDecrease) are also not taken into account.

Code corrected:

The valuation of the managed assets now includes execution fees for pending orders.

6.2 Overestimation of Claimable Collateral in
getManagedAssets
Correctness Medium Version 1 Code Corrected

CS-SUL18-002

getManagedAssets() relies on the claimableCollateralKeys array in step 4 to determine the
amount of collateral that can be claimed.

claimableCollateralKeys is populated with the keys of the collateral that can be claimed in the
afterOrderExecution() callback if the executed order resulted in collateral being claimable. The
keys added to claimableCollateralKeys are DATA_STORE keys that represent the aggregated
amount of collateral that became claimable on a market for a token in the period timeKey. In the
current deployed implementation, the period is 1 hour.

However, multiple orders can be executed in the same period, on the same market, for the same token
that exceed the negative price impact threshold. Therefore, the same key could be added to
claimableCollateralKeys multiple times. This will cause getManagedAssets() to double count
the amount of collateral that can be claimed.

// __addClaimableCollateral()
bytes32 key = __claimableCollateralAmountKey({_market: _market, _token: _token, _timeKey: _timeKey});

claimableCollateralKeys.push(key); // Can push the same key multiple times

Code corrected:

__addClaimableCollateral() now ensures that a key is added to claimableCollateralKeys
only once.

6.3 Callback Contract Stored Is Independent of
Router
Design Low Version 1 Code Corrected

CS-SUL18-003

A nested mapping per router and market is used in the external position to track whether a callback
contract is set:
exchangeRouterToMarketToIsCallbackContractSet[_exchangeRouter][_market]. GMX
however only stores the callback contract per account and market, independent of the ExchangeRouter:

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

function setSavedCallbackContract(DataStore dataStore, address account, address market, address callbackContract) external {
 dataStore.setAddress(Keys.savedCallbackContract(account, market), callbackContract);
}

The current implementation of the external position might give the impression that a callback contract is
set for each market and router pair, which isn’t the case. Since the external position always sets itself as
the callback, there’s no risk of error. The only impact is a slight increase in gas cost due to writing
additional mapping entries.

Code corrected:

The callback is now stored per market only, the mapping used has been changed to
marketToIsCallbackContractSet[_market]. Additionally a public getter
getMarketToIsCallbackContractSet() has been introduced for accessing the internal mapping.

6.4 Incorrect Assumption for Claimed and
Claimable Collateral
Correctness Low Version 1 Code Corrected

CS-SUL18-004

In GMX, MarketUtils.claimCollateral() computes the amount of collateral that can be claimed
by an account for a market. As the claimable collateral can be released over time, a claimableFactor
exists to determine the amount of collateral that can be claimed at a given time. An additional check is
then performed that adjustedClaimableAmount > claimedAmount. Therefore, GMX remains
conservative by handling the unlikely case where the claimed collateral amount exceeds the claimable
collateral amount.

However, the current EP implementation implicitly assumes that the claimable collateral amount is either
equal to or greater than the claimed collateral amount. This assumption is not guaranteed by the GMX
implementation.

In __claimCollateral() of the EP, the following code snippet is used to check if all the collateral was
claimed:

// check if all the collateral was claimed
if (claimableCollateral - claimedCollateral == 0) {

Thus, the case where claimableCollateral < claimedCollateral is not handled correctly and
will lead to a revert due to underflow.

Similarly, in getManagedAssets() of the EP, the following code snippet is used to compute the
remaining collateral that can be claimed.

amounts_ = amounts_.addItem(
 DATA_STORE.getUint(key)
 - DATA_STORE.getUint(
 __claimedCollateralAmountKey({
 _market: claimableCollateralInfo.market,
 _token: claimableCollateralInfo.token,
 _timeKey: claimableCollateralInfo.timeKey
 })
) // claimable collateral - claimed collateral
);

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Here too, the case where claimableCollateral < claimedCollateral is not handled correctly
and will lead to a revert due to underflow. Therefore, getManagedAssets() would not be able to be
called to retrieve the amount of assets managed by the external position to compute the value of a vault
share.

Due to the potential unexpected reverts, it would then require the fund manager to wait until
claimableCollateral becomes greater or equal than claimedCollateral to execute
claimCollateral(). The same holds for anyone who wants to call getManagedAssets().

Code corrected:

The code has been changed and now follows GMX's conservative approach in _claimCollateral().
Hence the unlikely case where the claimed collateral amount exceeds the claimable collateral amount is
now handled. getManagedAssets() remains unchanged. Since the amount of claimed collateral only
changes in __claimCollateral(), the claimable collateral is only increasing and the key is removed
in __claimCollateral() if there is no more collateral, the subtraction in getManagedAssets()
cannot underflow anymore.

6.5 Missing Accounting Fees Incurred by Position
Correctness Low Version 1 Code Corrected

CS-SUL18-007

This issue was reported externally.

getManagedAssets() does not account for the fees incurred by the position, hence is not pricing
correctly the value of open positions within GMX.

Code corrected:

The fees incurred by the position are now taken into account:

// subtract the fees that the position had to pay if it would be closed at this moment
if (positionInfo.fees.totalCostAmount < totalCollateralAmount) {
 totalCollateralAmount -= positionInfo.fees.totalCostAmount;
} else {
 totalCollateralAmount = 0;
}

6.6 UpdateOrder Does Not Support to Increase
the Fee Amount
Design Low Version 1 Code Corrected

CS-SUL18-005

When updating an order in GMX, it's possible to top up the execution fee for the order by transferring
additional WNT. This is mainly meant to be used for frozen orders. However, the UpdateOrder action
allows to update the params of the order only but does not feature support to increase the fee amount.
Consequently, updating a frozen order, hence unfreezing an order, will fail as it requires an additional
execution fee to be sent alongside it.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Action UpdateOrder now supports to increase the execution fee. A check to validate the exchange
router was missed when the action was updated to handle funds in version 2, potentially allowing
untrusted fund managers to drain funds. In version 3, this missing validation has been added.

6.7 Inaccurate Description
Informational Version 1 Specification Changed

CS-SUL18-006

The NatSpec of getManagedAssets() roughly describes the contributions to the valuation of the
external position. For positions, the description is not accurate:

// 1. Collateral in the GMX positions

The value of the position is calculated in terms of collateral taking into account price impact and profit or
loss.

Specification changed:

The description has been updated.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Valuation of Claimable Collateral
Note Version 1

getManagedAssets() takes into account the full value of the released collateral to be claimed. Note
that while this collateral belongs to the external position, as it's released over time not the full amount
might be claimable at this point in time.

The comment:

4. Get the value of the collateral that can be claimed from GMX
positions where collateral was freed up from decreased positions.

is slightly inaccurate; while it's collateral belonging to the external position and can eventually be claimed;
not all of it may be claimable at this point in time.

The code has been annotated to clarify that this collateral can eventually be claimed from GMX.

Enzyme Foundation - Sulu Extensions XVIII - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 External Position: GMX
	2.2.2 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 ExecutionFee of Orders in getManagedAssets
	6.2 Overestimation of Claimable Collateral in getManagedAssets
	6.3 Callback Contract Stored Is Independent of Router
	6.4 Incorrect Assumption for Claimed and Claimable Collateral
	6.5 Missing Accounting Fees Incurred by Position
	6.6 UpdateOrder Does Not Support to Increase the Fee Amount
	6.7 Inaccurate Description

	7 Notes
	7.1 Valuation of Claimable Collateral

