

PUBLIC

Code Assessment

of the Enso-Weiroll

Smart Contracts

January 26, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Notes 15

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Connor,

Thank you for trusting us to help Enso with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Enso-Weiroll according to
Scope to support you in forming an opinion on their security risks.

Enso implements Enso-Weiroll - a virtual machine that is capable of grouping a chain of smart contract
function calls into a single transaction. This chain of operations, or scripts, can perform arbitrary calls with
user-defined data and allow the output of one command to be used as the input for the subsequent
commands.

The most critical subjects covered in our audit are functional correctness and memory consistency.
Security regarding all the aforementioned subjects is high.

The general subjects covered are a check of the specification and error handling. The specification is
improvable, e.g. examples of encoded data can be added. Error handling is improved, after the fix of
Assumptions on output from unsuccessful call.

In summary, we find that the codebase provides a good level of security. The remaining unfixed
Complexity of Commands Effect Evaluation issue is fundamentally linked to the same risks as any other
Ethereum transaction - however, the novelty of Enso-Weiroll requires additional tooling and user
education to minimize this risk.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 4

• Code Corrected 4

Low -Severity Findings 4

• Code Corrected 3

• Risk Accepted 1

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the CommandBuilder.sol and VM.sol code files inside the
contracts folder of the Enso-Weiroll repository based on the README.md file as documentation. The
table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
16 November
2022

0d658b5a6432d849c92c1ef3bcb9710b0004292e Initial Version

2
10 January 2023 0318cc5187fd52534560ccaf6dc1244b96a31423 Version with fixes

3
17 January 2023 46ac1d111bc2f93a559d91b7e0dd987d536039b

2
Version with fixes

4
24 January 2023 900250114203727ff236d3f6313673c17c2d90dd Merge into main branch

For the solidity smart contracts, the compiler version 0.8.16 was chosen.

2.1.1 Excluded from scope
Since all the contracts in scope are abstract, we don't know how exactly they will be used. Any contract
that will extend and use the assessed functionality might introduce integration bugs and thus is out of the
scope.

2.2 Explicit Assumptions
The Enso-Weiroll heavily relies on the encoding of input parameters. Any party that will use the
functionality of the Enso-Weiroll is assumed to understand and be aware of the consequences of the
execution. They will need to be aware of the state changes that execution of the commands sequence
will cause. While the weiroll encoded data is different from regular Ethereum transactions, we assume
that the users have comprehensive tools for analysis of the command sequence.

2.3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Enso implemented Weiroll - a virtual machine built on Ethereum that enables the execution of user
defined scripts.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Weiroll allows the chaining of Ethereum transactions within a single transaction. Financial operations of
arbitrary complexity can therefore be executed atomically, without the need for ad-hoc contract
deployments.

The Weiroll architecture is split into a Virtual Machine (VM.sol), which performs external calls to execute
the provided commands, and a CommandBuilder (CommandBuilder.sol), a library that implements
ABI encoding at runtime for the arguments provided by the virtual machine.

2.3.1 The Virtual Machine
The Virtual Machine (VM) architecture is composed of an execution loop, a list of bytes32[] commands
that are consumed by the execution loop, and a bytes[] state from which the loop reads inputs and to
which it writes outputs of commands.

A command is a 32 bytes value with the following structure:

0		1		2 3
0 1 2 3	4	5 6 7 8 9 0	1	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
sel	f	in	o	target

The fields consist of:

1. sel: a function selector

2. f: a set of flags

3. in: a list of six input indices

4. o: an output index.

5. target: a target address

When FLAG_EXTENDED_COMMAND is set in the flags, the next command in the command list is treated
as a list of 32 input indices, which substitutes the six input indices of a command.

The execution loop takes care of calling the target address with calldata consisting of the given function
selector and an ABI encoded payload, defined by the list of input indices. The list of input indices
encodes which elements of the state are to be included in the ABI encoded input, and in which position.
With the use of special indices, arbitrarily nested tuples and variable length arrays can be encoded, up to
a size limit.

The state consists of a dynamic array of up to 128 bytes strings, each bytes string being one state
element. When the input for an external call is built, state elements are read and encoded according to
the 8 bits index values in the input indices list. The lowest 7 order bits represent the offset of the element
in the state array, the highest bit represents whether the indexed value is to be interpreted as a static
value (constant length, one word in size), or a string (variable length, where the first word is the size).

The output index specifies the treatment for the value returned by the external call to target. It can be
stored in a state slot as a static or dynamic variable, it can be saved as a tuple in a state slot, or it can be
ABI decoded as an array of bytes strings and replace the whole state.

The VM doesn't implement any logic itself on how the output is produced from the inputs. Its mechanism
of action is the calling of external target contracts with the supplied inputs and the optional writing of
the output to the state. According to which flags are set in the command, a CALL with zero ether,
DELEGATECALL, STATICCALL, or CALL with non-zero ether value will be performed. When a CALL with
value is performed, the first input index is used to retrieve the ether value from the state. The remaining
indices are used to build the ABI encoded input for the call as usual.

Finally, the special flag FLAG_DATA allows passing the content of a state element as the calldata to the
external call without prepending the selector nor undergoing any encoding.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.3.2 Command Builder
The library CommandBuilder implements an ABI encoder that can produce arbitrary payloads at
runtime in the EVM. The function buildInputs takes as arguments the state, an array of bytes strings,
a 4 bytes selector, and at most 32 8bits indices for inputs to be encoded.

Each index either points to a state variable, as a static or dynamic size variable, or it is a special index
that indicates special actions for the command builder. The value IDX_END_OF_ARGS is used to
terminate the encoding, and all indices beyond the current one are ignored. IDX_USE_STATE is used to
encode at the current position the whole state array. IDX_TUPLE_START and IDX_ARRAY_START serve
as opening parenthesis for the recursive encoding of dynamic tuples or dynamic arrays (arrays are
encoded as tuples prepended with their number of elements). IDX_DYNAMIC_END closes the nested
dynamic tuple (or array). This set of primitives can express the full range of encodings allowed by the
Ethereum ABI.

Indexes that don't have special values are interpreted according to their higher order bit. If it is not set,
the state at that index is treated as a static variable, 32 bytes in size, and is encoded in-place in the abi
encoding. When the higher order bit is set, the state element at the index (after masking away the higher
order bit) is treated as a variable length value: a string, bytes, array or tuple. An offset pointer is written in
the abi encoded output, and the string is written at that offset.

The list of indices of the command needs to be terminated by IDX_END_OF_ARGS, and every opened
dynamic tuple or array needs to be closed with IDX_DYNAMIC_END.

The code of CommandBuilder contract is structured such, that there are two passes over the indices.
The first pass is used to assess the total bytes length of the encoding, and to count the number of
elements of every nested dynamic tuple or array. The second pass uses the information from the first
pass to write the encoded output.

Version 12.3.3 Changes in
Following changes affect the system overview:

The DELEGATECALL operation was removed from the VM.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedComplexity of Commands Effect Evaluation

5.1 Complexity of Commands Effect Evaluation
Design Low Version 1 Risk Accepted

Due to the novelty and non-standard encoding of Weiroll, the end user will need to sign a transaction,
without knowing full details about the execution consequences. Standard hardware and software wallets
won't be able to decode the content of the commands. As a result, users will need to perform
blind-signing - signing without verifying the full transaction details. Phishing attacks can be performed on
users to trick them to sign commands that will impact the token balances in an undesired way. Users
should be notified about this risk and only sign transactions from trusted sources and ideally after careful
inspection.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedFunction writeOutputs Can Corrupt Memory

Medium -Severity Findings 4

• Code CorrectedAssumptions on Output From Unsuccessful Call

• Code CorrectedDynamic Variable Encoding Is Assumed to Be Correct

• Code CorrectedThe Index Is Not Masked

• Code CorrectedValue for the Call Can Be Loaded From Wrong Memory Location

Low -Severity Findings 3

• Code CorrectedIDX_USE_STATE Case Not Handled Inside Tuples and Arrays

• Code CorrectedNon-terminated Indices Fail Silently

• Code CorrectedUnbalanced Tuple Starts and Ends Cause Silent Failure

6.1 Function writeOutputs Can Corrupt Memory
Correctness High Version 1 Code Corrected

To store the pointer of the return data the writeOutputs function performs a write to memory at the
index state + 32 + (idx & IDX_VALUE_MASK) * 32 . However, a check that this location still
belongs to the state array of pointers is not performed. This effectively permits writing to locations in
memory that can contain other variables, including data of other state elements. The command
(maliciously or accidentally) can trigger such writing and cause unexpected results.

Code corrected:

A check was introduced that verifies that idx & IDX_VALUE_MASK < state.length.

6.2 Assumptions on Output From Unsuccessful
Call
Design Medium Version 1 Code Corrected

Unsuccessful calls are assumed to revert with no output data, with output data of the type Panic() (4
bytes selector, empty payload), or with output data of the type Error(string) (4 bytes selector, 32
bytes pointer, 32 bytes string size, string content).

Errors can however have arbitrary signatures, which are up to the contract implementors to define.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

For example, an error of type Error(uint256,uint256) will have its second integer interpreted as a
string length in the VM error handling, potentially causing a memory expansion that will consume all the
gas, if the uint256 value is big enough.

Code corrected:

Additional checks have been introduced to interpret the return data of the error as a string only when it is
appropriate to do so.

6.3 Dynamic Variable Encoding Is Assumed to Be
Correct
Correctness Medium Version 1 Code Corrected

When CommandBuilder builds inputs from the state, the variable length case for bytes and strings (not
array, not tuple) does not verify that the state element at the given index is correct abi encoded data. The
following consequences are possible:

The case when state[idx & IDX_VALUE_MASK].length == 0 is not handled correctly. During the
encode loop, this is executed free += state[idx & IDX_VALUE_MASK].length at line 113, or
offset += state[idx & IDX_VALUE_MASK].length at line 320. However if the state element is
the empty bytes sequence "", the free or offset/pointer pointer does not change. The encoding of
such a state element will write a pointer to unallocated free memory. If any other dynamic variable is
allocated afterward the pointer of the empty state element will point to the same location. The checks
performed in setupDynamicVariable() requires
state[idx & IDX_VALUE_MASK].length % 32 == 0 - this does not prevent the empty state case.

Code corrected:

The following fix was done to address the issue:

A constraint was added for the dynamic variable case in the setupDynamicVariable function: in
addition to state[idx & IDX_VALUE_MASK].length % 32 == 0 check, a check that this lengths
does not equal 0 was added. This resolves the issue.

Enso responded:

Added check to revert if argLen == 0 (weiroll.js already encodes 0x as a full bytes32 value, so the
state generated with weiroll.js will be unaffected). Also, we now check the variable’s encoded size is
the same as the content size.

Note:

The weiroll.js library is out of scope for this assessment, however, encoding of an empty string as
full bytes32 value does not fully comply with abi encoding. Such behavior was considered a bug in
solidity. Some contracts with strict decoding rules might not accept empty strings encoded this way.

6.4 The Index Is Not Masked
Correctness Medium Version 1 Code Corrected

The IDX_VALUE_MASK is not applied to index values at certain places:

1. Mask is not applied on the index in VM smart contract at line 94.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 12

https://docs.soliditylang.org/en/develop/abi-spec.html
https://github.com/ethereum/solidity/issues/12880
https://github.com/ethereum/solidity/issues/12880
https://chainsecurity.com

2. Mask is not applied on the index in CommandBuilder smart contract at line 396.

Code corrected:

The appropriate index masking has been applied.

6.5 Value for the Call Can Be Loaded From Wrong
Memory Location
Correctness Medium Version 1 Code Corrected

When a call with value is performed in VM the first index is treated as an index for the state element. The
read from this memory location is done via assembly instruction.

bytes memory v = state[uint8(bytes1(indices))];
assembly {
 callEth := mload(add(v, 0x20))
}

This mload skips 1 word - the length of the state element. However, the state element can be empty. In
this case, the mload will read memory allocated for other data. Since callEth should be a uint256
typed argument, it should be treated the same way as any other static variable.

Code corrected:

Enso responded:

We now validate that the state element’s length is 32 bytes and convert it into a uint256.

6.6 IDX_USE_STATE Case Not Handled Inside
Tuples and Arrays
Correctness Low Version 1 Code Corrected

Indices with the value IDX_USE_STATE behave differently according to whether they belong to dynamic
tuples or not. Inside dynamic tuples, the 0xfe == IDX_USE_STATE index is treated as variable length
data (bytes or string). 0xfe value is masked and used as an index to 126 state bytes element. Outside of
dynamic tuples, it causes the whole state to be ABI encoded at that position. This difference in behavior
is not mentioned in the specification.

Code corrected:

IDX_USE_STATE now explicitly reverts when used inside a dynamic tuple or array.

6.7 Non-terminated Indices Fail Silently
Design Low Version 1 Code Corrected

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

If FLAG_EXTENDED_COMMAND is used, and no FF index is included in the indices list, an invalid input will
be produced by CommandBuilder.buildInputs() instead of reverting, causing the external contract
call to have invalid data.

Code corrected:

A new variable, indicesLength, keeps track of the number of indices that needs to be considered by
commandBuilder.buildInputs()

6.8 Unbalanced Tuple Starts and Ends Cause
Silent Failure
Design Low Version 1 Code Corrected

In CommandBuilder.buildInputs() every dynamic array or tuple start should be matched by an
index of value IDX_DYNAMIC_END. Failing to match opening and closing structures causes offsets not
to be updated, and invalid output to be produced. The invalid result risks being passed to arbitrary
external calls.

Since functions setupDymamicTuple and encodeDynamicTuple need to encounter an index
IDX_DYNAMIC_LENGTH to exit correctly, the alternative return statements at lines 226 and 343 are
superfluous and should never happen.

Code corrected:

Function setupDynamicTuple now reverts if no terminating index is found for a dynamic tuple or array.

6.9 DELEGATECALL and SELFDESTRUCT
Informational Version 1 Code Corrected

The VM abstract contract allows DELEGATECALL to the address specified in the command. Any contract
that will inherit this functionality must not perform a call to an arbitrary user-specified address. The
delegate call to an address that has a bytecode with SELFDESTRUCT opcode will cause permanent
destruction of the smart contract. Thus, it is important to allow DELEGATECALL only to trusted smart
contracts.

Code corrected:

Enso responded:

We have removed delegate calls from the VM entirely as there was both risks to the contract via self
destruct as well as the ability to change storage values of the importing contract, potentially bricking
the contract.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Calls to Addresses With No Code
Note Version 1

The low-level delegatecall, call, and staticcall operations will succeed when used with addresses with no
code, however, in the VM there seems to be no reason to use them on addresses with no code,
excluding the precompiled contracts. Only VALUECALL has a reason for being used on an address with
no code.

7.2 Floating Pragma
Note Version 1

Enso-Weiroll uses the floating pragma ^0.8.16. Several assumptions about the layout of memory are
made in the code, which could potentially change without a major version upgrade. Any solidity compiler
version needs to be carefully tested before the deployment of the code to ensure stable functionality.

Enso - Enso-Weiroll - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 Explicit Assumptions
	2.3 System Overview
	2.3.1 The Virtual Machine
	2.3.2 Command Builder
	2.3.3 Changes in

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Complexity of Commands Effect Evaluation

	6 Resolved Findings
	6.1 Function writeOutputs Can Corrupt Memory
	6.2 Assumptions on Output From Unsuccessful Call
	6.3 Dynamic Variable Encoding Is Assumed to Be Correct
	6.4 The Index Is Not Masked
	6.5 Value for the Call Can Be Loaded From Wrong Memory Location
	6.6 IDX_USE_STATE Case Not Handled Inside Tuples and Arrays
	6.7 Non-terminated Indices Fail Silently
	6.8 Unbalanced Tuple Starts and Ends Cause Silent Failure
	6.9 DELEGATECALL and SELFDESTRUCT

	7 Notes
	7.1 Calls to Addresses With No Code
	7.2 Floating Pragma

