

PUBLIC

Code Assessment

of the NameWrapper

Smart Contracts

September 17, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 10

7 Notes 14

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear ENS team,

First and foremost we would like to thank you for giving us the opportunity to assess the current state of
your NameWrapper system. This document outlines the findings, limitations, and methodology of our
assessment.

We hope that this assessment provided valuable findings. All identified findings have been resolved. We
are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code Corrected 1

• Specification Changed 1

Low -Severity Findings 4

• Code Corrected 3

• Specification Changed 1

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the NameWrapper repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 June 01 2021 429d8c4b86f93c10827fcef2dd16a744db4f3fb6 Initial Version

2 June 21 2021 c624466bb8566c705bc76724e3267d09f52f0e49 Second Version

3 June 30 2021 0ec2823a4b54a79ba0e9e736c8b92d451d5b1bc6 Third Version

4 August 11 2021 2aad2c92150b7ed56e3247f2218b7a6babb78b3e Final Version

For the solidity smart contracts, the compiler version 0.8.4 was chosen.

2.1.1 Excluded from scope
The existing contracts of ENS, including but not limited to the registry and the registrar, are out of the
scope of this engagement.

2.1.2 Excluded from report
Independently, a vulnerability was discovered by samczsun which is hence not part of this report. For
more information please visit: https://samczsun.com/the-dangers-of-surprising-code/

2.2 System Overview
Version 3This system overview describes the last received version () of the contracts as defined in the

Assessment Overview. Furthermore, in the findings section we have added a version icon to each of the
findings to increase the readability of the report.

The provided contracts implement a wrapper which allows for ENS names to be wrapped as ERC1155
tokens. Moreover, it introduces a set of fuses for each domain name which facilitate permission control.
The exposed interface allows for the following actions:

wrap:

These functions wrap a non-.eth second-level domain or any other subdomain. During wrapping, the
NameWrapper directly interacts with the ENS Registry and not with a registrar. The ENS Registry owner
entry for the domain is set to be the NameWrapper contract. Then, the initial state of the fuses is set and
an ERC1155 token is emitted.

unwrap:

The wrap functionality is being reverted meaning that the ERC1155 token is burned and that the owner
entry inside the ENS Registry is reset.

wrapETH2LD:

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 4

https://samczsun.com/the-dangers-of-surprising-code/
https://chainsecurity.com

This function wraps a second-level .eth domain into an ERC1155 token. These domains are currently
represented by an ERC721 token. The ERC721 token is transferred and the ENS Registry entry is
changed so that the NameWrapper contract becomes the owner. The value of the fuses can then freely
be set. The case of .eth domains is handled differently due to the fact that the domain is wrapped by a
registrar.

The NameWrapper also implements the onERC721Received hook. This means that an .eth domain,
represented as the ERC721 token, can be sent to the NameWrapper contract to trigger the wrapping.
Appropriate metadata needs to be supplied for the data parameter of the safeTransfer.

unwrapETH2LD:

At the unwrapping the inverse procedure takes place. Hence the ERC721 token is released while the
ERC1155 token is burned. Additionally, the ENS Registry entry is updated accordingly.

The NameWrapper exposes wrapped actions for the ENS. These include setTTL, setResolver,
setRecord, setSubnodeOwner, and setSubnodeRecord. The aforementioned actions can be
executed only if the appropriate fuses are not burned.

2.2.1 Fuses
The permissions for each domain is handled by a set of fuses. Fuses are represented by a uint96
where each bit represents a different permission. Owners of a domains can burn fuses (by calling
burnFuses) to define permissions. If any of the fuses are burned then CANNOT_UNWRAP must also be
burned and CANNOT_REPLACE_SUBDOMAIN must be burned on the parent node. The available fuses to
burn from the NameWrapper interface are the following:

• CANNOT_UNWRAP = 1: If burned, the name cannot be unwrapped. This fuse must be burned if any
other fuse has been burned.

• CANNOT_BURN_FUSES = 2: If burned, no further fuses can be burned.

• CANNOT_TRANSFER = 4: If burned, the name cannot be transferred. It leads to not being able to
unwrap.

• CANNOT_SET_RESOLVER = 8: If burned, the resolver cannot be changed. Calls to setResolver
and setRecord will fail.

• CANNOT_SET_TTL = 16: If burned, the TTL cannot be changed. Calls to setTTL and setRecord
will fail.

• CANNOT_CREATE_SUBDOMAIN = 32: If burned, no new subdomains can be created under the
current node. Calls to setSubnodeOwner, setSubnodeRecord, setSubnodeOwnerAndWrap
and setSubnodeRecordAndWrap will fail if they reference a name that does not already exist.

• CANNOT_REPLACE_SUBDOMAIN = 64: If burned, existing subdomains cannot be replaced. Calls to
setSubnodeOwner, setSubnodeRecord, setSubnodeOwnerAndWrap and
setSubnodeRecordAndWrap will fail if they reference a name that already exists. Please note that
a previously (before the last expiry) wrapped instance of a subdomain counts as existing and cannot
be replaced.

2.2.1.1 Checking Fuses
When querying a fuse value, the domain hierarchy also needs to be considered. This is due to the fact
that domains might be re-wrapped after expiry. For more information see our Resolved Findings
regarding earlier versions below.

Hence, given a (sub)domain the function getFuses returns the raw fuse values along with a vulnerability
type. A domain or a subdomain can be "vulnerable" under certain conditions. For a vulnerable domain
the returned values cannot be trusted as they could be manipulated through re-wrapping. In case that
getFuses declares that a (sub)domain is safe, however, it is sufficient to query the fuse values from this
domain without the need for further hierarchical checks. Please note that the safety of a domain is only
given until it or any parent domain expires next. Hence, it needs to be rechecked in due time.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.2 Controller Functions
The NameWrapper contract has certain privileged functions that can only be executed by addresses with
the Controller role:

• In order to streamline the registration process for wrapped domains, the NameWrapper has the
capability to directly register and wrap an .eth domain through the registerAndWrapETH2LD
function. The successful execution of this function requires the correct configuration of the Registrar
contract.

• The NameWrapper contract can trigger the renewal of domains. This also requires the
NameWrapper contract to have the necessary permissions inside the Registrar contract.

2.2.3 Trust Model
In the current scope the existing ENS contracts, including Registry and Registrar, are considered to be
trusted and to work correctly.

The NameWrapper has a privileged owner role, however, the owner can only do two things. First, the
owner can do set the metadata URI as this might need adjustment in the future. Second, the owner can
set addresses that should receive the Controller role. All addresses that have the Controller role
can call the Controller Functions described above.

In summary:

• Controllers can register and renew .eth domains without need for payment. Note that they can also
renew non-wrapped domains.

• The owner controls the controllers and thereby has all their powers. Additionally, the owner can set
the metadata service.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedExpired Domains Look Valid for the Subdomains

• Specification ChangedOld State From Expired Domains Can Block Legitimate Actions

Low -Severity Findings 4

• Code CorrectedVariable node Assigned but Never Used in wrapETH2LD

• Specification ChangedIncorrect Specification for Unwrapping Functions

• Code CorrectedRepetitive Code

• Code CorrectedSpecification Unclear for setSubnode* Functions

6.1 Expired Domains Look Valid for the
Subdomains
Correctness Medium Version 1 Code Corrected

The desired invariant that fuses can be inspected individually and care only needs to be taken when
domains expire, can be broken. This is because an expired domain can be rewrapped with new fuses
and wrapped subdomains are not aware of the expiry of higher-level domains. Please consider the
following scenario:

1. User U controls example.eth, wraps it and burns the CANNOT_REPLACE_SUBDOMAIN fuse.

2. The domain expires and user V takes control of it and makes sure it will not expire any time soon.

3. User V assigns control to W over sub.example.org.

4. User W wraps sub.example.org:

1. W also decides to burn the CANNOT_UNWRAP fuse.

2. During the execution the parent node (example.eth) is checked where the
CANNOT_REPLACE_SUBDOMAIN fuse has been burnt.

3. Hence, the wrapping succeeds.

5. Now third parties check the wrapped state of sub.example.org: According to the invariant it
cannot be unwrapped as it will not expire any time soon and as the CANNOT_UNWRAP fuse has been
burnt.

6. User V can freely reassign sub.example.org (independently of the NameWrapper). Hence, the
permission system has been bypassed as a non-wrapped and a wrapped version exists for
sub.example.org.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Hence, fuses are indifferent to the expiry of domains and they enforce the corresponding permissions
only for never-expired domains.

Code corrected:

The code was rewritten so that it checks the hierarchy of a name for safety.

6.2 Old State From Expired Domains Can Block
Legitimate Actions
Correctness Medium Version 1 Specification Changed

In case a domain is wrapped, then expires and is later controlled by another user and wrapped again, the
following problem can arise, which blocks the new legitimate owner from performing an action they would
have been allowed to.

Please consider the following sequence:

1. User U controls example.eth and wraps it.

2. User U creates a subnode sub.example.org and sets themselves as owner.

3. The domain expires and user V takes control of it.

4. User V wraps example.eth again and burns the CANNOT_REPLACE_SUBDOMAIN fuse.

5. Now, user V tries to create sub.example.org:

1. The function canCallSetSubnodeOwner is evaluated, it should return true as V has the
permission to create new subdomains.

2. The owner of sub.example.org is queried and it returns U.

3. As the owner is non-zero, the CANNOT_REPLACE_SUBDOMAIN fuse is checked.

4. Finally, canCallSetSubnodeOwner returns false and hence the legitimate creation of
the subnode fails.

Specification corrected:

The specification has been made more explicit so that it covers the case above.

6.3 Variable node Assigned but Never Used in
wrapETH2LD
Design Low Version 2 Code Corrected

In the wrapETH2LD functions, the new node is calculated using
_makeNode(ETH_NODE, labelhash). However, this value is never used.

Code corrected:

The redundant variable was removed.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6.4 Incorrect Specification for Unwrapping
Functions
Correctness Low Version 1 Specification Changed

The README says about unwrapping:

Wrapped names can be unwrapped by calling either unwrapETH2LD(label, newRegistrant,
newController) or unwrap(parentNode, label, newController) as appropriate. label and parentNode
have meanings as described under "Wrapping a name"

Furthermore, the docstring says:

• @param label label as a string of the .eth domain to wrap e.g. vitalik.xyz would be 'vitalik'

However, the implementation works differently. Instead of passing a label, a labelhash should be passed
to the unwrapping functions, as seen for unwrapETH2LD below:

function unwrapETH2LD(
 bytes32 label,
 address newRegistrant,
 address newController
) public override onlyTokenOwner(_makeNode(ETH_NODE, label)) {
 _unwrap(_makeNode(ETH_NODE, label), newController);

Specification changed:

The documentation has been updated.

6.5 Repetitive Code
Design Low Version 1 Code Corrected

There are multiple instances of repetitive code that could be avoided. These instances include:

• Within the function wrapETH2LD, two calls are made to registrar.ownerOf(tokenId).

• Within the functions unwrapETH2LD, unwrap, and burnFuses, two calls are made to
_makeNode(parentNode, labelhash).

• Within the function burnFuses, getData is called multiple times in different spots.

The cost impact of these repetitions has been lowered by the recently introduced EIP-2929, however gas
optimizations remain possible.

Code corrected:

The superfluous call to registrar.ownerOf(tokenId) has been removed as well as the duplicate
calle to getData in burnFuses.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.6 Specification Unclear for setSubnode*
Functions
Correctness Low Version 1 Code Corrected

The docstring for the setSubnodeRecord function says:

• @notice Sets records for the subdomain in the ENS Registry

• @param node namehash of the name

However, the node parameter should contain the namehash for the parent node. This is not entirely clear
from the description. Especially, in comparison with the setSubnodeRecordAndWrap function, where
the docstring says:

• @notice Sets the subdomain owner in the registry with records and then wraps the subdomain

• @param parentNode parent namehash of the subdomain

A consistent naming of node versus parentNode for these very similar functions would be beneficial to
avoid confusion. This also extends to the setSubnodeOwner and setSubnodeOwnerAndWrap
functions. Furthermore, the label parameter is missing from the setSubnodeRecord description.

Code corrected:

The parameter names were changed to reflect their status.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Dirty Bits in Return Value of getData
Note Version 1

The getData function is one of the most important functions of the NameWrapper as it retrieves
information about the different nodes.

function getData(uint256 tokenId)
 public
 view
 returns (address owner, uint96 fuses)
{
 uint256 t = _tokens[tokenId];
 owner = address(uint160(t));
 fuses = uint96(t >> 160);
}

Functions calling getData need to be aware that the owner return value will contain "dirty bits". This is
dangerous if assembly is being used, because assembly will access the raw data. Writing normal
solidity code should be fine.

Hence, we recommend to avoid assembly in connection with getData. We have attached an example
file for this behaviour.

7.2 Note to Integrators: onERC1155Received
Hook
Note Version 1

This note is meant for any developers wanting to build upon the NameWrapper. Similarly to ERC223,
ERC721, ERC777, and others the implementation of ERC1155 invokes the onERC1155Received hook
at the end of safeTransferFrom. Developers building services which interact with the NameWrapper
should be aware of that and implement the hook, as these hooks have historically led to reentrancy
attacks.

7.3 Restrictions on Custom Permissions
Note Version 1

The README documents that additional fuses might be designated to additional permissions. While this
generally can be implemented with the current contract, not all types of permissions will be feasible this
way.

Any permissions, requiring checks "up the chain" of custody would not work without modifications to the
contract or without breaking the invariant that fuses can be inspected individually. As a somewhat

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

contrived example, a permission enforcing that TTL values of subnodes must be strictly larger than TTL
values of parent nodes, currently could not be enforced.

7.4 The Transitive Permission Structure
Note Version 1

Users should be aware of the transitive permission structure of the system. This permission structure
involves the NameWrapper, Registry and Registrar. Given a typical user setup, setting an operator
O using NameWrapper.setApprovalForAll does not only pass control over all wrapped domains but
O also controls all non-wrapped domains. Furthermore, domains that are acquired in the future, can be
controlled by O.

In short becoming an operator for a particular account on the NameWrapper is more powerful than
becoming an operator for the same account on the Registrar or the Registry. Hence, operator
permissions should be given out with great care.

ENS - NameWrapper - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Excluded from report

	2.2 System Overview
	2.2.1 Fuses
	2.2.1.1 Checking Fuses

	2.2.2 Controller Functions
	2.2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Expired Domains Look Valid for the Subdomains
	6.2 Old State From Expired Domains Can Block Legitimate Actions
	6.3 Variable node Assigned but Never Used in wrapETH2LD
	6.4 Incorrect Specification for Unwrapping Functions
	6.5 Repetitive Code
	6.6 Specification Unclear for setSubnode* Functions

	7 Notes
	7.1 Dirty Bits in Return Value of getData
	7.2 Note to Integrators: onERC1155Received Hook
	7.3 Restrictions on Custom Permissions
	7.4 The Transitive Permission Structure

