

PUBLIC

Security Audit
of DIGIX’s Smart Contracts

December 10, 2018

Produced for

by

Table Of Content

Foreword . 1

Executive Summary . 1

Scope . 2

1. Included in the scope . 2

2. Out of scope . 2

Audit Overview . 3

1. Scope of the Audit . 3

2. Depth of Audit . 4

3. Terminology . 5

Limitations . 6

System Overview . 7

1. Voting overview . 7

2. Extra voting features . 7

Best Practices in DIGIX’s project . 10

1. Hard Requirements . 10

2. Soft Requirements . 10

Security Issues . 11

1. Roles . 11

1.1 Usage of extcodesize to verify EOAs H 3 Fixed . 12

1.2 Use of tx.origin for authorization H 3 Addressed 13

1.3 Unrestricted calls to readProposalDraftVotingTime L 3 Fixed 13

2. Timing and Quarters . 13

2.1 Start of first quarter can be in the past L 3 Fixed . 14

3. Quarter: Lockup and Main phase . 14

TOC https://chainsecurity.com

https://chainsecurity.com

4. Proposal phases . 15

4.1 Preproposals can be overwritten M 3 Fixed . 21

4.2 Draft voting passes with minority L 3 Acknowledged 21

5. Special Proposals . 21

5.1 Unchecked arithmethic operations L 3 Fixed . 23

5.2 Special proposals details can be silently updated M 3 Fixed 23

5.3 Array underflows M 3 Fixed . 24

6. Voting . 24

6.1 PRL can unpause stopped proposal M 3 Fixed . 27

7. Reputation . 27

8. Rewards . 28

8.1 Old DAO can be funded L 3 Fixed . 29

8.2 Wrong parameter description L 3 Fixed . 29

Trust Issues . 31

1. Remarks on the migration process H 3 Acknowledged . 31

1.1 Malicious fund transfer 3 Acknowledged . 31

1.2 Information migration 3 Acknowledged . 31

1.3 Technical competence when migrating 3 Acknowledged 31

Design Issues . 32

1. Special Proposals may fail unintentionally M 3 Fixed . 32

2. Preliminary iteration L 3 Fixed . 32

3. DaoFundingManager can receive arbitrary funds L 3 Fixed 33

ChainSecurity Security Audit Report TOC

4. Deprecated constant keyword M 3 Fixed . 33

5. Assigning to function arguments L 3 Fixed . 33

6. Duplicate code M 3 Fixed . 33

7. Fallback function is public L 3 Fixed . 33

8. Inefficient fund tracking L 3 Fixed . 34

9. Non-indexed events L 3 Fixed . 34

10. Unnecessary loop iterations L 3 Fixed . 34

11. Duplicate funding checks for preproposals L 3 Fixed . 34

12. Unnecessary calculations L 3 Fixed . 35

13. Broad function visibility M 3 Fixed . 35

14. Closed proposals can be reclosed L 3 Fixed . 35

15. Failing test cases in DaoRewardsManager L 3 Fixed . 36

16. Inefficient DAO storage M 3 Acknowledged . 37

17. Missing input validation M 3 Fixed . 38

18. Old compiler version M 3 Fixed . 38

19. Underspecified ownership structure H 3 Addressed . 38

20. Suboptimal struct Proposal M 3 Fixed . 39

21. TODOs in code L 3 Fixed . 39

Recommendations / Suggestions . 40

TOC https://chainsecurity.com

https://chainsecurity.com

Disclaimer . 41

ChainSecurity Security Audit Report TOC

Foreword

We first and foremost thank DIGIX for giving us the opportunity to audit their smart contracts. This documents
outlines our methodology, limitations, and results.

– ChainSecurity

Executive Summary

The DIGIX smart contracts have been analyzed under different aspects, with a variety of customized and
publicly available tools for automated security analysis of Ethereum smart contracts, as well as with expert
manual review. The audit was performed within a clearly defined scope and strived to verify a functional
specification developed by DIGIX and CHAINSECURITY.

Overall, we found that DIGIX employs good coding practices and succeeded in building a complex DAO
system with clean code and modularity. However, CHAINSECURITY managed to uncover several high and
medium severity security issues which need to be addressed and a wide range of design issues that when fixed
can help improve the system. More so, DIGIX needs to significantly extend the system’s overall documentation
for future users and developers.

ChainSecurity Security Audit Report 1

Scope

DIGIX requested a precisely scoped audit, meant to assess the technical foundation of DIGIX’s project in its
current state. To define this scope, CHAINSECURITY listed potential points of failure and agreed with DIGIX
upon them.

Issues that have been encountered while verifying this specification have been listed, even when they were
not explicitly mentioned in the specification. However, this list should not be considered exhaustive with respect
to the security of DIGIX’s smart contracts. CHAINSECURITY strove to verify the points listed here, to provide a
report whose contents could serve as potential guidelines in the future.

The main specification sections are listed below and a detailed description of the reviewed properties can
be found in the issues section.

Included in the scope

• 1. Roles

• 2. Timing and quarters

• 3. Quarter: Lockup and Main phase

• 4. Proposal phases

• 5. Special proposals

• 6. Voting

• 7. Reputation

• 8. Rewards

Out of scope

• All non-smart contract components (e.g. user interfaces of dApps)

• All smart contracts whose hashes are not included in the audit overview

2 https://chainsecurity.com

https://chainsecurity.com

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were received
on August 10, 20181 and updated versions on December 6, 20182:

1https://github.com/DigixGlobal/dao-contracts/tree/81ca6846d8965effc0c652274401808bb13f5869, https://github.com/
DigixGlobal/cacp-contracts/tree/2a3cd3d2d1cfd6c6d97572b426d096a86d23961c

2https://github.com/DigixGlobal/dao-contracts/tree/84ac4a5f3271925f8ad9586c5987f4283eb92ab0, https://github.com/
DigixGlobal/cacp-contracts/tree/3ec2e84d23a6e6ff178110eaa50652f168032115

ChainSecurity Security Audit Report 3

https://github.com/DigixGlobal/dao-contracts/tree/81ca6846d8965effc0c652274401808bb13f5869
https://github.com/DigixGlobal/cacp-contracts/tree/2a3cd3d2d1cfd6c6d97572b426d096a86d23961c
https://github.com/DigixGlobal/cacp-contracts/tree/2a3cd3d2d1cfd6c6d97572b426d096a86d23961c
https://github.com/DigixGlobal/dao-contracts/tree/84ac4a5f3271925f8ad9586c5987f4283eb92ab0
https://github.com/DigixGlobal/cacp-contracts/tree/3ec2e84d23a6e6ff178110eaa50652f168032115
https://github.com/DigixGlobal/cacp-contracts/tree/3ec2e84d23a6e6ff178110eaa50652f168032115

File SHA-256 checksum

cacp/ResolverClient.sol d240b477582501f4c8b198ed91267758ddc8b20fc0c237e99492de0d9678876f

cacp/ContractResolver.sol 73bf758f0c52b5c1e5fc22bb02db8f443f095b91e662d0d380a12372b331a484

dao/lib/MathHelper.sol 73d8dad82cd8ef760b17ef85ab9d1366be723039414627fbc5b3886e895f8820

dao/lib/DaoStructs.sol 4c93d3d8aadf8e15c1cfce3951c53cfadb5740b770cabddf5500a3785b39d538

dao/lib/DaoIntermediateStructs.sol af28f90014778ddd6b54c45aff51ff63d08dc67911c208fc682d2df8012a38bb

dao/interactive/DaoInformation.sol f91deb1f991ad08be69dd3a682d40f4bc61d6a1ee2cb367b68d7c49a1fd6d3ec

dao/interactive/DaoSpecialVotingClaims.sol b5448c19561e3d29a85b3fdbb4f0462412b9a9fe82c7a4ea7e08ec3852b1a76e

dao/interactive/DaoSpecialProposal.sol ff4586d1bbe4084b8cf81de7613b265eacd192c82d173963d9342f56431ea3fe

dao/interactive/DaoVoting.sol d0a093c7908878e2b2829b123feb5206481052f3cc9b99b122db40fb50ef1e04

dao/interactive/DaoRewardsManager.sol e825a446ae1b16cbab565f5edb3f4321250407ae5cec2a5cfd4ad9df10a8fe8b

dao/interactive/DaoVotingClaims.sol 8a1cd5fb2cdb41f99f2834441de635f3e25f352136225cf68f582a7a6a9e2bba

dao/interactive/DaoIdentity.sol 0469ebae87d50a42a0d72129cf1afae7e180a2c6697cad1c75718ab025ade489

dao/interactive/Dao.sol f4f3d1047c8dd926f53df924234fd829f9e30230c78162728916b12ed0335756

dao/interactive/DaoStakeLocking.sol d47cd893112350145578e0ba4245ad192506287806ceadf973c0e6bb28be6613

dao/interactive/DaoWhitelisting.sol cacf952d3bcce904637e1793545c1a6b9d66f2ec237249aeab1553dbcc848787

dao/interactive/DaoRewardsManagerExtras.sol 7e86a40664d06432731b455ed2647294af9ef88fe960815c0fcba430a9e9cf96

dao/interactive/DaoFundingManager.sol ad9273b4fdd8e6520565a08a7505ed50ce2b55483362daf0f13ab91caa219ecc

dao/storage/DaoConfigsStorage.sol 092c82af12523c39f3cfaa82b45c72dc06c45f8424b5ba55816a29fdb8099994

dao/storage/DaoUpgradeStorage.sol c4e9718e0703a15adb675f34abf3aece77939b34627ee81233abe86f1af1529b

dao/storage/DaoSpecialStorage.sol 3a9bf33e2e1d51cac42580e6f1c84b45ac8ffe9aee7697e32565c779c63041df

dao/storage/DaoStakeStorage.sol 6101e0ee69aa077cf434c9710485144230e9c0b650908ddcacfe491ce416c481

dao/storage/DaoStorage.sol 43e58ebe259c3460c5b03f9909fe378a0b6cff455590610773c64c6169be5e7f

dao/storage/DaoWhitelistingStorage.sol 9dfe80966489e3c9804a34737458fab887230b5bb72769dbbf4c0c28f587e6b5

dao/storage/DaoPointsStorage.sol f2c6479b74d0cb1c403488908c00a26a8bbfb2693e805b625761a17b1797321e

dao/storage/DaoIdentityStorage.sol f1122ecca3608a70cb62a6550c265e960ec2bd1db84842e45e7f92860c4896bb

dao/storage/DaoRewardsStorage.sol f205e1de0ec41f2638db9e5cb9a6a0fbb29366dfd93ac867e7507bde7baf24ad

dao/storage/IntermediateResultsStorage.sol c620f6cb9c604e451abdcbe6a8995e6d561689c42bfd8940433c20a5f7eed476

dao/storage/DaoProposalCounterStorage.sol a3e629878d4c271da7ba3e32d64efec33e3e4059e5f6e68eed1a034cc9098a5d

dao/service/DaoCalculatorService.sol 20303f14f2074675d7b709df1709876a02ba96ca3641211b237435a70af51bf6

dao/service/DaoListingService.sol ee3f8c79ff35235b9c2283a417e7d8a9425f6604873a611d197f8b790b3a714f

dao/common/DaoServiceCommon.sol 2c2e66e667be2836e32fabe168da66085578719e8347baa809ffb1c12ffd928f

dao/common/DaoCommonMini.sol 50bd26b443967a39e08e658d40b11b89aff3010f5815a6b7dcb49bb059f2c4ba

dao/common/DaoRewardsManagerCommon.sol 70d560aefd0dd408347e556a542838365cf0aa9e51e7d1528ad6eee2254ea8f7

dao/common/DaoWhitelistingCommon.sol db697f645b6ff3d4ff61095c14b3550554cf98efd176b7060ab52d50d082a6a2

dao/common/DaoConstants.sol 8544adbba75e36d484499f837d3902c15328e4e4a9866d60edcd003aadb59369

dao/common/IdentityCommon.sol 75ec4ab634877e5f339a094d097c9c21a6d851c6c4978905528f00763622e81a

dao/common/DaoCommon.sol e63bbd557eeb8dd446b006ec2169913275e8387f154ab5a8347ead6a6edd8ff4

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

• Scan the contracts listed above for generic security issues using automated systems and manually in-
spect the results.

• Manual audit of the contracts listed above for security issues.

4 https://chainsecurity.com

https://chainsecurity.com

Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology3).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.

Impact specifies the technical and business related consequences of an exploit.

Severity is derived based on the likelihood and the impact calculated previously.

We categorize the findings into 4 distinct categories, depending on their severities:

• L Low: can be considered as less important

• M Medium: should be fixed

• H High: we strongly suggest to fix it before release

• C Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD High Medium Low

High C H M

Medium H M L

Low M L L

During the audit concerns might arise or tools might flag certain security issues. After careful inspection of
the potential security impact, we assign the following labels:

• 3 No Issue : no security impact

• 3 Fixed : during the course of the audit process, the issue has been addressed technically

• 3 Addressed : issue addressed otherwise by improving documentation or further specification

• 3 Acknowledged : issue is meant to be fixed in the future without immediate changes to the code

Findings that are labelled as either 3 Fixed or 3 Addressed are resolved and therefore pose no security
threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

3https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

ChainSecurity Security Audit Report 5

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

6 https://chainsecurity.com

https://chainsecurity.com

System Overview

DIGIX realized a feature rich DAO to vote on user submitted proposals, including the management of corre-
sponding funds in ETH. The DIGIX DAO is linked to the gold-backed DIGIX (DGX) and the DIGIX Dao (DGD)
tokens. These token contracts were not included in the scope of the audit.

Voting overview

The core functionality provided by the DIGIX Dao are the voting procedures. The participants can vote on two
kinds of proposals. These are

• Common proposals, initiated by other participants

• Special proposals, initiated by founders to change DAO configuration parameters

A proposal can consist of multiple milestones and an initial collateral which is required to open a proposal.
Each time the proposer accomplishes a milestone and passes an interim voting round, a new part of the
initially proposed funding is released. If the last milestone and voting round on the proposal is successfully
accomplished the proposer receives his initial collateral and a predefined bonus known as the final reward.

Extra voting features

Active participants receive rewards for contributing to the DAO. Inactivity gets punished with either less or no
financial rewards and a loss of reputation or quarter points. To measure the voter’s activity DIGIX introduces
quarter points and reputation points as measures of quarterly and overall participation.

Each proposer needs to go through a KYC process, validated by a special KYC administrator role. A special
Policy-Regulatory-Department (PRL) administrator is able to at will to pause, unpause or stop a proposal.
Proposals that were not finalized by its corresponding proposer in a certain time frame can be closed by founder
accounts. When initiating a proposal, the proposer needs to lock up collateral and specify the previously
mentioned milestone funding and final reward. The root account which is supposed to be controlled by a multi-
signature wallet has the possibility to migrate the DAO and therefore update and change the DAO contract
without going through the full voting process.

As already mentioned earlier the DIGIX DAO knows different roles. CHAINSECURITY provides a concise
overview in the table below

Role Obtained by Who Additionally Rights

Root The only predefined
role(root) is set as the
account which deploys
the contracts. After
deployment, the
account is supposed to
transfer its rights to a
multi-signature wallet

A multi-signature
wallet controlled by
DIGIX founders

Can set itself to any
role

• Add and
remove
accounts from
specific roles

• Migrate the
DAO

Founders Root granting
privileges

DIGIX founders Can be any other role • Close inactive
proposals

• Start special
proposals

• Claim special
proposal results

• Trigger the
calculation of
global rewards

PRL Root granting
privileges

Independent law
firm/DIGIX legal
counselor

Can be any other role • Update the PRL
status of a
proposal

• Can whitelist a
contract
address

ChainSecurity Security Audit Report 7

Role Obtained by Who Additionally Rights

KYC Admin Root granting
privileges

Independent law
firm/DIGIX compliance
head

Can be any other role • Update the
KYC data of a
user

Moderator • Locking more
DGD than
CONFIG_MINIMUM
_DGD_FOR_MODERATOR

• Have at least
CONFIG_MINIMUM
_REPUTATION_FOR_MODERATOR
locked
reputation stake

Arbitrary individuals Is also Participant, can
be any other role

• Endorse
preproposals

• Vote on
preproposals

Proposer • Be at least
participant

• Pass KYC

• Submit a
proposal

Arbitrary individuals Is also Participant, can
be any other role

• Submit
preproposal

• Modify
proposals

• Change
fundings

• Finalize
proposals

• Finish
milestones

• Add proposal
documents

• Claim voting
result

• Claim funding

• Claim final
reward

• Claim milestone
funds

Participant Locking more DGD
than CONFIG_MINIMUM
_LOCKED_DGD

Arbitrary individuals Is Account, can be any
other role

• Submit
proposals if
KYC approved

• Vote on
proposals

• Claim DGX

• Continue
participation

Account Controlling an address Arbitrary individuals Can be other any role • Lock DGD

• Withdraw DGD

• Claim voting
result

• Claim badge

Note, that:

• It is not enforced that the main roles are held by different addresses.

• Accounts can vote on their own proposals.

• Voting power and rewards are proportional to the amount of locked tokens.

• As initially there are no accounts with enough reputation points, accounts can obtain badges. These can
be exchanged for enough reputation points to become a Moderator.

8 https://chainsecurity.com

https://chainsecurity.com

The diagrams below provide an overview of some phases in the voting procedure. Light-blue time frames
are fixed, dark-blue ones are sliding.

ChainSecurity Security Audit Report 9

Best Practices in DIGIX’s project

Projects of good quality follow best practices. In doing so, they make audits more meaningful, by allowing
efforts to be focused on subtle and project-specific issues rather than the fulfillment of general guidelines.

Avoiding code duplication is a good example of a good engineering practice which increases the potential
of any security audit.

We now list a few points that should be enforced in any good project that aims to be deployed on the
Ethereum blockchain. The corresponding box is ticked when DIGIX’s project fitted the criterion when the audit
started.

Hard Requirements

These requirements ensure that the DIGIX’s project can be audited by CHAINSECURITY.

3 The code is provided as a Git repository to allow the review of future code changes.

3 Code duplication is minimal, or justified and documented.

3 Libraries are properly referred to as package dependencies, including the specific version(s) that are
compatible with DIGIX’s project. No library file is mixed with DIGIX’s own files.

3 The code compiles with the latest Solidity compiler version. If DIGIX uses an older version, the reasons
are documented.

3 There are no compiler warnings, or warnings are documented.

Soft Requirements

Although these requirements are not as important as the previous ones, they still help to make the audit more
valuable to DIGIX.

3 There are migration scripts.

3 There are tests.

3 The tests are related to the migration scripts and a clear separation is made between the two.

3 The tests are easy to run for CHAINSECURITY, using the documentation provided by DIGIX.

3 The test coverage is available or can be obtained easily.

7 The output of the build process (including possible flattened files) is not committed to the Git repository.

7 The project only contains audit-related files, or, if not possible, a meaningful separation is made between
modules that have to be audited and modules that CHAINSECURITY should assume correct and out of
scope.

7 There is no dead code.

3 The code is well documented.

7 The high-level specification is thorough and allow a quick understanding of the project without looking at
the code.

7 Both the code documentation and the high-level specification are up to date with respect to the code
version CHAINSECURITY audits.

3 There are no getter functions for public variables, or the reason why these getters are in the code is given.

3 Function are grouped together according either to the Solidity guidelines4, or to their functionality.

4https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions

10 https://chainsecurity.com

https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions
https://chainsecurity.com

Security Issues

In the following, we discuss our investigation into security issues. Therefore, we highlight whenever we found
specific issues but also mention what vulnerability classes do not appear, if relevant.

Roles

3 There are six roles: participants, moderators, founders and Policy-Regulatory-Department (PRL), root,
and KYC admin

The roles and groups are defined in the constructor of DaoIdentity (except for the root). The only
preset group is "admins" but the code implements access control(modifiers) for "root" if_root(),
founder if_founder(), PRL if_prl() and kyc admin if_kyc_admin(). The remaining two role
checks, for participants and moderators, only query the current locked DGD and reputation points to
check whether an account has the corresponding role.

3 A participant must call either lockDGD, withdrawDGD or confirmContinuedParticipation to partici-
pate in a quarter

DaoCommon.isParticipant(user)== true means that:

(daoRewardsStorage().lastParticipatedQuarter(_user) ==
currentQuarterIndex())

&& (daoStakeStorage().lockedDGDStake(_user) >= getUintConfig(
CONFIG_MINIMUM_LOCKED_DGD));

To set daoRewardsStorage().lastParticipatedQuarter(_user) to currentQuarterIndex()
one needs to call updateLastParticipatedQuarter. This method is only called from the two

functions lockDGDInternal and withdrawDGD, whereas confirmContinuedParticipation just
calls lockDGDInternal with zero DGD. Thus, the specification holds.

3 The minimum lockup amount is more than or equal to minimumDgdToParticipate in quarter

This is checked in both functions (lockDGDInternal, withdrawDGD) by the if-clause _newInfo.
userLockedDGDStake>=getUintConfig(..) before calling updateLastParticipatedQuarter.

3 Moderator: participant (lock-up stake might be different CONFIG_MINIMUM_DGD_FOR_MODERATOR) with
minimum amount of ReputationPoints

To be a moderator (isModerator) these conditions need to hold:

(daoRewardsStorage().lastParticipatedQuarter(_user) ==
currentQuarterIndex())

&& (daoStakeStorage().lockedDGDStake(_user) >= getUintConfig(
CONFIG_MINIMUM_DGD_FOR_MODERATOR))

&& (daoPointsStorage().getReputation(_user) >= getUintConfig(
CONFIG_MINIMUM_REPUTATION_FOR_MODERATOR));

CONFIG_MINIMUM_DGD_FOR_MODERATOR, CONFIG_MINIMUM_REPUTATION_FOR_MODERATOR are included
in both.

3 Founders: addresses representing DIGIX, are set by root

To add an account to any group the addGroupUser function needs to be called. The modifier
if_root() restricts access to

require(identity_storage().read_user_role_id(msg.sender)==ROLES_ROOT);

and the root is set when initializing the system.

3 PRL: addresses set by root, can pause or stop proposals and whitelist addresses

ChainSecurity Security Audit Report 11

Setting group members works as described in the previous property verification. A proposal is
paused if the boolean below is true:

(,,,,,,,,_isPausedOrStopped,)=daoStorage().readProposal(_proposalId);

To set the variable, updateProposalPRL() needs to be called. This call happens from updatePRL
() and the whole call chain is guarded by corresponding requires and modifiers. Specifically,
if_prl() checks

require(identity_storage().read_user_role_id(msg.sender)==ROLES_PRLS);

Thus, this call is limited to accounts in the PRLS role. The PRL can whitelist contracts by calling
setWhitelisted. The modifier if_prl protects the function from being called by any other group
than prl. DaoWhiteListing.setWhitelisted calls daoWhitelistingStorage().setWhitelisted
. However, to check if a contract is whitelisted isWhitelisted(address) is called, which is broken
and can be circumvented as described in issue 1.1 below. This issue has been fixed during the audit
process.

3 Root: is assigned to the deployer of the DaoIdentityStorage contract. Can add/remove users to
founder, prl, kyc admin and root roles

The root role and thus the root group is created in the constructor of the ContractResolver. There
a call to init_ac_groups() in ACGroups is made. As shown previously it is only this role that can
call addGroupUser/removeGroupUser and therefore add/remove other roles. Nonetheless, CHAIN-
SECURITY remarks that the ownership setup is heavily underspecified as raised in design issue
19.

1.1 Usage of extcodesize to verify EOAs H 3 Fixed

DIGIX makes use of the extcodesize assembly instruction to check for contract size in several modifiers which
are supposed to restrict access to certain information for contract accounts and only allow externally owned
accounts (EOAs) to read it. However, such checks are not secure and can be easily circumvented by calling
from the constructor of a contract account5.

Such checks are exhaustively used in the DIGIX code base and the following parts are affected:

• In CACP: the modifiers if_contract and unless_contract are broken, although so far these are only
used in mocks

• In DAO:

– DaoListingService.sol, DaoWhitelistingCommon.sol: the function isWhitelisted is broken

– DaoCommonMini.sol: modifier ifNotContract is broken

CHAINSECURITY notes that isWhitelisted is used in many places:

• DaoCalculatorService.sol: in minimumVotingQuorum

• DaoListingService.sol: in listProposalsInState and listProposalsInStateFrom

• DaoSpecialStorage.sol: in six functions

• DaoStorage.sol: in nineteen functions

Additionally ifNotContract is used in the DaoStakeLocking contract. This means that bots can now stake
and participate in the DAO by calling lockDGD. Given that all of these checks can be fully circumvented, they
can be removed and the restriction policy and its enforcement needs to be reconsidered.

Likelihood: High
Impact: Medium

Fixed: DIGIX now checks if(msg.sender==tx.origin) and explicitly passes on this msg.sender as an
argument to the function they call. Note that if the current sender would not be passed in such manner, then
the property would be circumventable.

5https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-using-extcodesize-to-check-for-externally-owned-
accounts

12 https://chainsecurity.com

https://chainsecurity.com

1.2 Use of tx.origin for authorization H 3 Addressed

The ContractResolver contract makes use of the origin statement for authorization in its modifier:

modifier if_owner_origin() {
require(tx.origin == owner);
_;

}

However, the transaction origin can be manipulated easily and should not be used for access control6. In
this contract, the vulnerable if_owner_origin modifier is one of the checks on the execution of important
functions such as init_register_contract, register_contract and unregister_contract. Given the
previous, this modifier should be changed.

In an iterated review DIGIX removed the register_contract and unregister_contract functions. How-
ever the modifier using tx.origin is still present and tx.origin itself is still used for authentication in the
DaoStakeLocking and DaoWhitelistingCommon contracts.

Likelihood: Medium
Impact: High

Addressed: DIGIX clarifies the following:

• if_owner_origin() is only used in init_register_contract which will only be called upon deploy-
ment after which lock_resolver_forever will be called, locking ContractResolver and disabling any
more calls to init_register_contract.

• DIGIX acknowledges that before lock_resolver_forever is called, the deployer might be tricked to
call malicious contracts that call init_register_contract to register contracts to ContractResolver
. However, DIGIX states that the migration process will make sure to just use the deployer account to
deploy the contracts, and lock_resolver_forever right away.

• tx.origin in DaoStakeLocking and DaoWhitelistingCommon is only used to detect whether msg.
sender is a contract or an EOA.

1.3 Unrestricted calls to readProposalDraftVotingTime L 3 Fixed

Most of the constant methods present in DaoStorage are protected with the isWhitelisted modifier and
cannot be called by any other contract.

However, the readProposalDraftVotingTime method is allowed to be called from any deployed contract
and has no restrictions in place.

Likelihood: Medium
Impact: Low

Fixed: DIGIX added a require statement require(isWhitelisted(msg.sender)) that prevents unautho-
rized access by non-whitelisted callers.

Timing and Quarters

3 The conf(A_CONSTANT) is the value returned by getUintConfig(A_CONSTANT) in DaoCommonMini (and
any contract that inherits it) where the values of A_CONSTANT have been defined in the DaoConstants
contract

The corresponding functions are getUintConfig(bytes32 _configKey) and daoConfigsStorage
(). The DaoStrage contract defines the mappings with explicit configuration values

mapping (bytes32 => uint256) public uintConfigs;

3 No block timestamp issues can lead to unintended behaviour (e.g. no time slips)

6https://solidity.readthedocs.io/en/latest/security-considerations.html#tx-origin

ChainSecurity Security Audit Report 13

https://solidity.readthedocs.io/en/latest/security-considerations.html#tx-origin

A lot of the DIGIX logic needs to rely on block.timestamps. and now is often used. While blocks
timestamps can be manipulated, the system can tolerate 15 second driftsa as the calculations rely
on daily accuracy. Hence, CHAINSECURITY does not foresee any issues.

ahttps://consensys.github.io/smart-contract-best-practices/recommendations/#timestamp-manipulation

3 A period (quarter) is always exactly 90 days = conf(CONFIG_QUARTER_DURATION)
The variable is set in the DaoConstants contract by the field uint256 QUARTER_DURATION = 90
days, guarded by access control. This is used by the functions getTimeLeftInQuarter, timeInQuarter
and getQuarterIndex in DaoCommonMini, as well as in calculateAdditionalLockedDGDStake

in the contract DaoCalculatorService.

3 The lockup Period is always exactly conf(CONFIG_LOCKING_PHASE_DURATION)
The function isLockingPhase checks if:

currentTimeInQuarter () < getUintConfig(CONFIG_LOCKING_PHASE_DURATION)

and is used to enforce this property, e.g. in withdraw, lockDGD and confirmContinuedParticipation
with correspoding requires.

2.1 Start of first quarter can be in the past L 3 Fixed

The Dao contract’s founder role can set the start of the first quarter using setStartOfFirstQuarter and
can set any uint256 value to start the quarter from that epoch timestamp. If _start is set as timestamp
representing some past time, this can cause issues with calculations of the quarter. setStartOfFirstQuarter
should allow only future timestamp values as arguments for _start.

Likelihood: Low
Impact: Medium
DIGIX added require(_start > 0), however this only resolves the issue raised in the suggestions re-

garding that this function can be called multiple times, if called with _start = 0. For this issue, the require
statement should ensure the argument is a timestamp in the future, for this _start must be greater than the
current time, block.timestamp.

Fixed: DIGIX now correctly checks the start of the quarter.

Quarter: Lockup and Main phase

The Lockup DGD phase are the first conf (CONFIG_LOCKING_PHASE_DURATION) seconds of the quarter. It
shall hold, that:

3 No accounts other than the participants of the previous quarter or accounts that locked less than
minimumDgdToParticipate can choose to call DaoStakeLocking.withdrawDGD to withdraw the funds
(partially or completely) or or leave them untouched

Leaving them untouched refers to a call to DaoStakeLocking.confirmContinuedParticipation,
in case a user locked at least minimumDgdToParticipate. This is enforced by:

require(_info.userActualLockedDGD > 0);

3 lockedDGDStake equals sum of DGD left untouched, withdrawn or added in
conf(CONFIG_LOCKING_PHASE_DURATION) seconds

This holds true under the assumption that lockedDGDStake does not count stakes that are less than
the required minimum.

3 No accounts without DGD become a participant
This holds true as the participant status relies on the amount of DGD locked and hence is implied
by the previous property.

The main phase lasts from conf(CONFIG_LOCKING_PHASE_DURATION) seconds to 90 days. It shall hold,
that:

3 No account (including participants, moderators, . . .) can withdraw locked DGD in this period

14 https://chainsecurity.com

https://consensys.github.io/smart-contract-best-practices/recommendations/#timestamp-manipulation
https://chainsecurity.com

withdrawDGD checks for require(isLockingPhase()..). isLockingPhase in turn checks that
currentTimeInQuarter() is smaller than getUintConfig(CONFIG_LOCKING_PHASE_DURATION).
Thus, withdraws can not be called outside the locking phase.

3 No governance activity (submitPreproposal, modifyProposal, changeFundings, finalizeProposal,
finishMilestone, addProposalDoc, endorseProposal, closeProposal, voteOnDraft,
commitVoteOnSpecialProposal, revealVoteOnSpecialProposal, commitVoteOnProposal,
revealVoteOnProposal) is possible outside of this period

This holds true as all of the above functions are guarded by corresponding timing modifiers ,
specifically isMainPhase ifCommitPhaseSpecial, ifRevealPhaseSpecial, ifCommitPhase and
ifRevealPhase.

3 Participants can top up the locked DGD. But the new lockedDGDStake is the sum of the DGD stake during
the lockup period and the additional DGD times (90 days - t seconds)/(90 days - conf(C_LOCK_PHASE_DUR)
seconds)

The function calculateAdditionalLockedDGDStake performs the correct calculation.

Proposal phases

Endorsement phase:

3 No participant without successful KYC can open pre-proposals

submitPreproposal checks senderCanDoProposerOperations:

– require check: isMainPhase() (in DaoMini)

– require check: isParticipant(msg.sender)

– require check: is_kyc_approved in DaoIdentityStorage, which in turn calls read_kyc_info
. The kyc fields can only be written to by the DaoIdentityStorage contract.

Hence, in order to submit a proposal the KYC information must have been set by the authorized
DaoIdentityStorage contract. The property holds.

3 No participant can open a preproposal without a sufficient collateral = conf(CON_PREPROPOSAL_DEPOSIT
) wei

submitPreproposal checks senderCanDoProposerOperations:

– require check: isParticipant(msg.sender), which checks that lockedDGDStake(_user)
is bigger or equal to getUintConfig(CONFIG_MINIMUM_LOCKED_DGD).

– Also an explicit check is made whether the deposit was send along with the actual call to submit
the pre-proposal through another require.

Hence, it is not possible to successfully call submitPreproposal without sending along the right
msg.value.

3 No malformatted proposals can be opened (needs to have the fields: an ipfs hash, milestones + funding
requirements, proposer final reward)

Three parameters need to be passed to submitPreproposal: bytes32 _docIpfsHash, uint256
[] _milestonesFundings, and uint256 _finalReward

– ifFundingPossiblechecks checks if the milestones are fundable

– checkNonDigixFundings does the same but for non founders

– daoStorage().addProposal adds the docIpfsHash by calling append. append returns a
boolean value on whether the appending process was successful or not, however the return
value is not checked.

A new check was introduced in the addProposal function, which overlaps with checks already in-
place in the append method but resolves the issue. It is best practice to check return values from
interactions with data structures, hence DIGIX can consider to check for the return values of the
append method instead.

ChainSecurity Security Audit Report 15

3 No other than one of the following states (phases) shall apply to a proposal: Endorsement, Draft, Draft
Voting, Voting, milestone Delivery, Interim Voting, Closed

If at all, these are only implicitly present through the corresponding time phases and action allowed
to be taken during that time and do not have an explicit representation in the code base. Only the
below states are explicitly encoded:

bytes32 PROPOSAL_STATE_PREPROPOSAL = "proposal_state_preproposal";
bytes32 PROPOSAL_STATE_DRAFT = "proposal_state_draft";
bytes32 PROPOSAL_STATE_MODERATED = "proposal_state_moderated";
bytes32 PROPOSAL_STATE_ONGOING = "proposal_state_ongoing";
bytes32 PROPOSAL_STATE_CLOSED = "proposal_state_closed";
bytes32 PROPOSAL_STATE_ARCHIVED = "proposal_state_archived";

DIGIX remarks that originally there was a confusion in terminology between "allowed phases for a
proposal" and "possible states of proposal". The last state in the list above was added in an updated
code version.

Draft proposal phase: It shall hold, that:

3 Only moderators can move pre-proposals to drafts

endorseProposal checks require(isModerator(msg.sender)).

3 In Draft phase,

3 Proposer can update its draft details
By calling modifyProposal, which can only be successfully done if called by proposer, since
there is a check require(isFromProposer(_proposalId)).

3 Proposer can finalize and move to Draft Voting phase
finalizeProposal is only callable by the proposer, enforced by require(isFromProposer(
_proposalId).

3 A proposal in the Draft phase or Endorsement phase that is older than conf(CONF_PROPOSAL_DEAD_DURATION
) can be optionally closed by the founders using a founderCloseProposals transaction

founderCloseProposals correctly enforces these restrictions with require clauses. However, an
additional check could be introduced to explicitly verify for the proposal to have the allowed state.

3 Proposals will need ETH collateral to be locked before creation

Enforced by the following checks in submitPreproposal():

require(msg.value == getUintConfig(CONFIG_PREPROPOSAL_DEPOSIT))
require(address(daoFundingManager()).call.value(msg.value)())

3 The amount of collateral can be voted upon/set

Can be done by calling updateUintConfigs‘ from the DaoSpecialVotingClaims‘ contract, through
the claimSpecialProposalVotingResult function.

3 Proposers can receive back their collateral in either of the only three cases:

3 Proposer cancelled his proposal before any voting activity took place
A proposal can be cancelled by calling closeProposal, if not yet finalized. Because closeProposal
checks that require(_finalVersion == EMPTY_BYTES), a proposal can only go into the vot-
ing phase once it is finalized.

3 Proposal did not pass draft voting or first voting phase, meaning that no funds have been released
to the proposer

16 https://chainsecurity.com

https://chainsecurity.com

∗ claimDraftVotingResult refunds the collateral in the following case when the time ex-
ceeds:

if (now > daoStorage().readProposalDraftVotingTime(_proposalId)
.add(getUintConfig(CONFIG_DRAFT_VOTING_PHASE))
.add(getUintConfig(CONFIG_VOTE_CLAIMING_DEADLINE))
|| !isNonDigixProposalsWithinLimit(_proposalId))

∗ claimDraftVotingResult refunds the collateral when draft voting is failed. It internally
calls processDraftVotingClaim which in turn calls processCollateralRefund when
voting failed.

∗ claimProposalVotingResult does so when index=0 (first voting round) calls the function
processCollateralRefund, when voting result fails.

3 The proposal completes all milestones and gets past the final voting round
processSuccessfulVotingClaim is correctly called from claimProposalVotingResult if the
final round is successfully passed.

Draft voting phase: It shall hold, that:

3 Draft Voting Phase lasts conf(CONFIG_DRAFT_VOTING_PHASE) seconds

It is specified as uintConfigs[CONFIG_DRAFT_VOTING_PHASE] = 2 weeks. Draft voting shall not
be possible after this time. Thus voteOnDraft() can not be called anymore. This is enforced by the
modifier ifDraftVotingPhase, which calls

requireInPhase(
daoStorage().readProposalDraftVotingTime(_proposalId),
0,
getUintConfig(CONFIG_DRAFT_VOTING_PHASE)
);

3 Draft Voting Phase allows no modifications of proposals

To modify a proposal modifyProposal needs to be called. This is not possible because of isEditable
(_proposalId)) which checks for _finalVersion == EMPTY_BYTES. This field is set when calling
daoStorage().finalizeProposal(_proposalId) in finalizeProposal().

3 Draft Voting Phase allows moderators to openly vote (y/n) and change their vote

The function voteOnDraft (this is the only way to call addDraftVote()) checks if isModerator(
msg.sender) and directly adds the vote. So the vote is open and can only be true or false due
to bool _voteYes. The function can be called multiple times in between ifDraftVotingPhase(
_proposalId) and just overrides the previous vote.

3 A Draft can move to a ModeratedProposal
This state transition is possible.

3 A Draft proposal can move to a Moderated Proposal if:

(quorum || #DGDVotedStake geq MinDarftQuorum)
&& (quota || #yes/quorum geq MinDraftQuota)}

To move a draft to a moderated proposal the participant who initiated the proposal needs to call
claimDraftVotingResult and this calls processDraftVotingClaim which checks:

(_currentResults.currentForCount.add(_currentResults.
currentAgainstCount)
> daoCalculatorService().minimumDraftQuorum(_proposalId))

&& (daoCalculatorService().draftQuotaPass(_currentResults.
currentForCount,
_currentResults.currentAgainstCount))

ChainSecurity Security Audit Report 17

With minimumDraftQuorum which calls calculateMinQuorum calculating:

uint256 _ethInDao = get_contract(CONTRACT_DAO_FUNDING_MANAGER).balance;
// add the fixed portion of the quorum
_minimumQuorum = (_totalStake.mul(_fixedQuorumPortionNumerator))
.div(_fixedQuorumPortionDenominator);
// add the dynamic portion of the quorum
_minimumQuorum = _minimumQuorum.add(_totalStake.mul(_ethAsked.
mul(_scalingFactorNumerator)).div(_ethInDao.mul(

_scalingFactorDenominator)));

with the corresponding configuration values in accordance with the specification and draftQuotaPass
computing:

_passed = _for.mul(getUintConfig(CONFIG_DRAFT_QUOTA_DENOMINATOR))
> getUintConfig(CONFIG_DRAFT_QUOTA_NUMERATOR).mul(_for.add(

_against));

These calculations conform to the specification requirements.

3 The draft proposal voting result can be claimed only after the draft voting phase, and within a vote claiming
deadline(conf(CONFIG_VOTE_CLAIMING_DEADLINE)). If the vote claiming period is over, the draft voting
result MUST be failed.

DaoVotingClaims.claimDraftVotingResult() checks

ifDraftNotClaimed(_proposalId)
ifAfterDraftVotingPhase(_proposalId)

as well as the corresponding timing boundries.

Moderated proposal voting phase: It shall hold, that:

3 It lasts conf(CONFIG_VOTING_PHASE_TOTAL) seconds

The total time frame consists of the CommitPhase and RevealPhase. The former lasts from zero to
CONFIG_VOTING_COMMIT_PHASE. The latter starts after until CONFIG_VOTING_PHASE_TOTAL.

3 It allows all participants to vote y/n following a commit/reveal scheme

Votes can be submitted during the previously described time frames.

3 Moderated Proposal is passed if:

(quorum OR #DGDVotedStake geq MinVotingQuorum)
&& (quota OR #yes/quorum geq MinVoteQuota)

setProposalPass is changing a proposal’s state from PROPOSAL_STATE_MODERATED to the next
state PROPOSAL_STATE_ONGOING. In the process claimProposalVotingResult correctly checks
the vote and claim, where calculateMinQuorum is calculated as defined in the governance whitepa-
per formula in section 6.3. and validates for the MinVotingQuorum and votingQuotaPass checks
for MinVoteQuota.

3 If Voting passed AND PRL approves (which is by default, but can be changed to paused/stopped), then
first milestone funds can be claimed by the proposer

If PRL calls updatePRL to stop/pause a proposal before the proposer gets funding, the action will be
successful. When voting passes by calling claimProposalVotingResult, the proposer can claim
the funding calling claimFunding after a successful vote.

3 The voting round result can be claimed only after the voting phase, and within a vote claiming deadline.
If the vote claiming period is over, the voting result MUST be failed

18 https://chainsecurity.com

https://chainsecurity.com

Voting results can be claimed only after the voting phase, as the method is protected with the
modifier ifAfterProposalRevealPhase. If the milestone is already claimed, another request for
the same milestone will be rejected. The milestone voting result can be claimed only before the
CONFIG_VOTE_CLAIMING_DEADLINE deadline. This is checked with:

if (now < startOfmilestone(_proposalId, _index)
.add(getUintConfig(CONFIG_VOTE_CLAIMING_DEADLINE)))

Milestone delivery phase: It shall hold, that:

3 The proposal is funded before each milestone to achieve its goal

A Proposal voting claim is done first which sets the voting result, i.e. calling claimProposalVotingResult
. After that claimFunding needs to be called by the proposer to get the milestone funding. This call
sets the funded status of that milestone. Hence before starting any milestone, if the vote is passed
then the proposer can claim the corresponding milestone funding.

3 After a phase a vote decides if the proposal moves on to the next milestone

– After getting the first milestone (index=0) funding, the proposer will work on the milestone and
once he finishes it, he will call finishMilestone, starting the next InterimVotingPhase.

– Voting time is checked with getTimelineForNextVote to ensure that for InterimVotingPhase
enough time is left in the quarter. Otherwise, the next quarter will start.

– Once InterimVotingPhase starts, participants will vote during the CommitPhase, using the
DaoVoting method commitVoteOnProposal.

– Once the CommitPhase is over, participants will reveal their votes in the RevealPhase, using
the DaoVoting method revealVoteOnProposal.

– Afterwards, the proposer claims his proposal voting results by claimProposalVotingResult.

– If the voting result is passed, the proposer will call claimFunding to claim the funds for the next
milestone.

Hence, a proposal moves to the next milestone after successful voting.

3 The proposer is supposed to end a milestone delivery phase, if he thinks the milestone is already
achieved (this is the only way to end a milestone delivery phase)

– A proposer can call finishMilestone during the main phase to notify that a Milestone is
completed.

– A proposer can only do this operation after the actual start time of the Milestone delivery phase.

– A proposer cannot call finishMilestone again for the same milestone.

– By calling only finishMilestone method, a proposer can start the interim voting phase for the
next milestone phase if there are any more milestones left. Hence this is the only way to stop
the milestone delivery phase and move to the next voting and milestone phase.

Interim voting phase: It shall hold, that:

3 The interim voting phase lasts for conf (CONFIG_INTERIM_PHASE_TOTAL) seconds, starting from when
the proposer calls finishMilestone to explicitly end the previous milestone delivery phase

ifCommitPhase ensures that for the first milestone voting, lasts for CONFIG_VOTING_COMMIT_PHASE
and for the rest interim voting phases it lasts for CONFIG_INTERIM_COMMIT_PHASE. Calling finishMilestone
marks a milestone completed and starts the next round of interim voting.

3 All participants can vote (y/n) on next funding release

In Voting round each participant can call commitVoteOnProposal with a _commitHash which con-
sists of SHA3(address(pub_address), bool(vote),bytes32(random string))).

3 Voting is passed if:

(#DGDStakeVoted geq MinInterimVotingQuorum)
AND (#DGDYesStake/quorum geq #MinInterimVotingQuota)

ChainSecurity Security Audit Report 19

When calling claimProposalVotingResult from DaoVotingClaims the return value _passed is
true, when:

– call to countProposalVote returns _passed as true

– which in turn checks isVoteCountPassed

– combined it is evaluated that:

(#DGDStakeVoted geq MinInterimVotingQuorum)
AND (#DGDYesStake/quorum geq #MinInterimVotingQuota)

3 If the vote passed and the PRL has approved the proposal, the funding for the next milestone funding
can be claimed by the proposer

For a proposer to successfully call claimFunding of the DaoFundingManager contract this must
hold that the voting must have passed and the proposal was not stopped by PRL. Hence, property
holds (under the assumption that "PRL approved" is interpreted as "PRL did not pause").

3 After the last milestone, voting on whether the proposer receives FinalReward happens

Voting proceeds just as in the third property of this section and payout just as in the fourth with
the minor difference that when claimFunding calls readProposalMilestone with the last index, it
returns _proposal.proposalVersions[_finalVersion].finalReward.

3 The voting round result can be claimed only after the voting phase, and within a vote claiming deadline.
If the vote claiming period is over, the voting result MUST be failed

This is enforced by ifAfterProposalRevealPhase modifier in combination with require(isMainPhase
()) and setting _passed to false right away and only change it if within limit.

Limits on non-Digix proposals: If not initiated by the founders, proposals are bound to these limits:

3 Total funding for the proposal cannot exceed conf(CONFIG_MAX_FUNDING_FOR_NON_DIGIX) wei

In DaoConfigStorage the mapping uintConfigs is set to 20 ETH as maximum total funding. The
function DaoCommon.checkNonDigixFundings implements corresponding checks:

require(MathHelper.sumNumbers(_milestonesFundings).add(_finalReward)
<= getUintConfig(CONFIG_MAX_FUNDING_FOR_NON_DIGIX));

require(_milestonesFundings.length
<= getUintConfig(CONFIG_MAX_MILESTONES_FOR_NON_DIGIX));

The function is called if the proposer calls submitPreproposal, modifyProposal and changeFundings
. These are the only functions affecting the total funding of a proposal.

3 Total number of milestones in a proposal cannot exceed conf(CONF_MAX_MILESTONES_FOR_NON_DIGIX)
limit

In DaoConfigStorage the mapping uintConfigs is set to 2 as the maximum number of milestones.
These are checked by the same requires as in the previous property. The verifying function is called
if the proposer calls submitPreproposal, modifyProposal and changeFundings. These are the
only functions affecting the milestone funding of a proposal.

3 Total number of non-Digix proposals that get pass the first Voting Round in a quarter must not exceed
conf(CONFIG_NON_DIGIX_PROPOSAL_CAP_PER_QUARTER)

In DaoConfigStorage the mapping uintConfigs is setting the number to 10. The variable is only
used in the DaoCommon function isNonDigixProposalsWithinLimit. The claimProposalVotingResult
function needs to be called to increment the proposal counter. To pass the first voting round this

function needs to be called. Therefore the the specification holds.

20 https://chainsecurity.com

https://chainsecurity.com

4.1 Preproposals can be overwritten M 3 Fixed

A malicious participant can simply hijack existing preproposals by calling the submitPreproposal function and
replaying a previously submitted _docIpfsHash in the DAO contract.

While this still requires for the attacker to fulfill the criteria of being a participant and to submit the collateral
for a preproposal, an attacker can benefit by claiming a high-quality proposal to be his own and modify the
funding and reward schemes.

Likelihood: High
Impact: Low

Fixed: DIGIX now ensures that existing preproposals cannot be overwritten by checking that the proposalID
of the struct proposalById at this storage location is empty.

4.2 Draft voting passes with minority L 3 Acknowledged

The DIGIX’s specifications define that moving a draft proposal to a moderated proposal requires at least:

(quorum OR #DGDVotedStake geq MinDarftQuorum) AND
(quota OR #yes/quorum geq MinDraftQuota)

Given the quorum requirement is fulfilled, the initial values to calculate the quota are:

uintConfigs[CONFIG_DRAFT_QUOTA_NUMERATOR] = 30;
uintConfigs[CONFIG_DRAFT_QUOTA_DENOMINATOR] = 100;

and the function implemented in daoCalculatorService().draftQuotaPass() is:
Passed := nY esV otes ∗DENOMINATOR > Total ∗NUMERATOR
Thus, a vote can pass even though it has a minority of "yes" voters. Let us assume a total of three votes,

one "yes" and two "no". Hence:
Passed := 1 ∗ 100 > 30 ∗ 3
Therefore, the vote can pass with any results over 30%. Here it passed with 33.33% which is a minority.
Likelihood: Low
Impact: Medium

Fixed: DIGIX states that the numbers in the DaoConfigsStorage’s constructor are dummy values for now.
They will be set to proper configuration values upon deployment of the DAO.

Special Proposals

It shall hold that

3 No account other than the founder can initiate a special proposal

To create a special proposal daoSpecialStorage().addSpecialProposal() needs to be called.
This is exclusively (due to require(sender_is(CONTRACT_DAO_SPECIAL_PROPOSAL))) possible by
calling createSpecialProposal(). This function has the modifier if_founder(), which checks
identity_storage().read_user_role_id(msg.sender)== ROLES_FOUNDERS.
Thus only accounts belonging to the group founders can initiate a special proposal.

3 Only one kind of special proposals are possible (change parameters in the governance model)

When claiming the voting results by calling claimSpecialProposalVotingResult() the function
setConfigs() only changes the parameters of the governance model.

3 Consists of one voting phase lasting (conf(CONFIG_SPECIAL_PROPOSAL_PHASE_TOTAL)seconds)

As mentioned a special proposal can only be initialized by calling createSpecialProposal(). To
start the voting startSpecialProposalVoting() needs to be called. This function registers the
start time and checks if enough time is left in this quarter to start the proposal. Also covered in the
following properties.

3 The voting phase has conf(CONFIG_SPECIAL_PROPOSAL_COMMIT_PHASE) seconds for submitting votes

ChainSecurity Security Audit Report 21

To submit a vote commitVoteOnSpecialProposal() needs to be called. The implemented modifier
ifCommitPhaseSpecial() checks if the vote is in the submitting phase by calling requireInPhase
() which checks

require(_startingPoint > 0);
require(now < _startingPoint.add(_relativePhaseEnd));
require(now >= _startingPoint.add(_relativePhaseStart));

with

_startingPoint = requireInPhase(daoSpecialStorage().readVotingTime(
_proposalId)

// the time startSpecialProposalVoting() was called
_relativePhaseStart=0;
_relativePhaseEnd=getUintConfig(CONFIG_SPECIAL_PROPOSAL_COMMIT_PHASE));

and thus a participant has CONFIG_SPECIAL_PROPOSAL_COMMIT_PHASE seconds to submit a vote.

3 After the voting process

conf(CONFIG_SPECIAL_PROPOSAL_PHASE_TOTAL)} −
conf(CONFIG_SPECIAL_PROPOSAL_COMMIT_PHASE)}

seconds remain for revealing votes
To reveal a vote revealVoteOnSpecialProposal() needs to be called. The function’s modifier
(ifRevealPhaseSpecial) checks for

requireInPhase(
daoSpecialStorage().readVotingTime(_proposalId),
getUintConfig(CONFIG_SPECIAL_PROPOSAL_COMMIT_PHASE),
getUintConfig(CONFIG_SPECIAL_PROPOSAL_PHASE_TOTAL));

As mentioned before this is:

require(proposalsById[_proposalId].voting.startTime > 0);
require(now < proposalsById[_proposalId].voting.startTime.add(

CONFIG_SPECIAL_PROPOSAL_PHASE_TOTAL));
require(now >= proposalsById[_proposalId].voting.startTime.add(

CONFIG_SPECIAL_PROPOSAL_COMMIT_PHASE));

Thus, it needs to be within the time window T where:

CONFIG_SPECIAL_PROPOSAL_COMMIT_PHASE < T
< CONFIG_SPECIAL_PROPOSAL_PHASE_TOTAL

3 A successful vote needs at least a quo rum of conf(CONFIG_SPECIAL_PROPOSAL_QUORUM_NUMERATOR)
/conf(CONFIG_SPECIAL_PROPOSAL_QUORUM_DENOMINATOR) of the totalLockedDGDStake

For a special proposal to pass, the votes need to be claimed by the proper claimSpecialProposalVR
before CONFIG_VOTE_CLAIMING_DEADLINE ends. If not, it fails. The function checks if the proposal

passed by:

if ((_currentResults.currentForCount.add(_currentResults.
currentAgainstCount) > daoCalculatorService().
minimumVotingQuorumForSpecial())

&& (daoCalculatorService().votingQuotaForSpecialPass(currentResults.
currentForCount, _currentResults.currentAgainstCount))) {

_passed = true;
setConfigs(_proposalId);

}
daoSpecialStorage().setPass(_proposalId, _passed);

22 https://chainsecurity.com

https://chainsecurity.com

daoSpecialStorage().setVotingClaim(_proposalId, true);

The function minimumVotingQuorumForSpecial() checks if enough participants voted by:

_minQuorum = getUintConfig(CONFIG_SPECIAL_PROPOSAL_QUORUM_NUMERATOR).
mul(
daoStakeStorage().totalLockedDGDStake()).div(
getUintConfig(CONFIG_SPECIAL_PROPOSAL_QUORUM_DENOMINATOR));

with uintConfigs[CONFIG_SPECIAL_PROPOSAL_QUORUM_NUMERATOR] = 70; and correspondingly
uintConfigs [CONFIG_SPECIAL_PROPOSAL_QUORUM_DENOMINATOR] = 100;

3 Also a min quota of conf(CONFIG_SPECIAL_QUOTA_NUMERATOR)/conf(CONFIG_SPECIAL_QUOTA_DENOMINATOR
) is needed

When calming the voting results by calling claimSpecialProposalVotingResult() the function
setConfigs() changes the parameters of the governance model.

If this is true it also checks if the vote passed or not by calling votingQuotaForSpecialPass.

function votingQuotaForSpecialPass(uint256 _for, uint256 _against)
public
constant
returns (bool _passed)

{
if ((_for.mul(getUintConfig(CONFIG_SPECIAL_QUOTA_DENOMINATOR)))

>
(getUintConfig(CONFIG_SPECIAL_QUOTA_NUMERATOR)
.mul(_for.add(_against)))) {

_passed = true;
}

}

with uintConfigs[CONFIG_SPECIAL_QUOTA_DENOMINATOR] = 100; and the parameter uintConfigs
[CONFIG_SPECIAL_QUOTA_NUMERATOR] = 51; Note: a tie and the vote does not pass.

5.1 Unchecked arithmethic operations L 3 Fixed

In the DaoCommon contract, the modifier ifAfterDraftVotingPhase adds two timestamps directly by using the
+ operator, without checking for overflow or using a library such as SafeMath.

uint256 _start = daoStorage().readProposalDraftVotingTime(_proposalId);
require(_start > 0);
require(now >= _start + getUintConfig(CONFIG_DRAFT_VOTING_PHASE));

Given that only the DaoSpecialVotingClaims contract can set the configuration values (by calling the
function updateUintConfigs in the DaoConfigStorage contract) a overflow might seem unlikely, however no
checks on writing the corresponding fields exist.

Likelihood: Low
Impact: Low

Fixed: DIGIX now uses the SafeMath function add() for the addition.

5.2 Special proposals details can be silently updated M 3 Fixed

The Founder can call createSpecialProposal method multiple times replaying the same hash _doc and
update the configuration of a special proposal silently, as no events are emitted.

This would allow the founder to change critical values and settings that affect the whole user base without
them noticing, either by accident or on purpose. A proposal creation should be allowed only once and a
seperation between creation and updates can be made as is done with normal proposals.

Likelihood: Low
Impact: High

ChainSecurity Security Audit Report 23

Fixed: Overwriting an already existing special proposal is now prevented, a check has been introduced which
ensures that no previous special proposal with the same hash already exists or the call will revert.

5.3 Array underflows M 3 Fixed

In the following functions the listed arrays can underflow and read from unknown memory locations if called
with _operations = 0, given that all other provided arguments are valid.

• DaoSpecialVotingClaims.claimSpecialProposalVotingResult(), concretely address _lastVoter
= _voters[_voters.length − 1]

• DaoVotingClaims.claimDraftVotingResult(), concretely moderators[_moderators.length−1]

• DaoVotingClaims.claimProposalVotingResult(), concretely address _lastVoter = _voters[_voters
.length − 1]

The same pattern is used in the functions calculateVoterBonus() and sumEffectiveBalance(). How-
ever these take the correct precautionary measures, checking whether _operations = 0 and returning ac-
cordingly.

Likelihood: Low
Impact: High

Fixed: DIGIX implemented the proposed checks.

Voting

Voting on proposals:

3 No accounts with less than minimumDgdToParticipate can participate (vote on any proposal in the
DAO)

Voting methods present in DaoVoting:

– voteOnDraft (only Moderator allowed)

– commitVoteOnProposal (only Participant allowed)

– commitVoteOnSpecialProposal (only Participant allowed)

The requirements for moderators and participants are already checked in the roles section. There
is no other place in the code to vote and call these methods. Hence, the property holds true.

3 No participant with less than minimumDgdToModerate and minimumRpToModerate can become a Mod-
erator

See section roles - Moderator.

3 Stopped proposals (by PRL) cannot be unpaused and will be deemed as over
This holds true and corresponding checks were introduced.

Voting Mechanics:

3 Voting power is equal to lockedDGDStake by the participant or moderator
When voting (on a draft or draft proposal) the participant or moderator needs to call one of these
functions to reveal the vote:

voteOnDraft() which calls:

...
uint256 _moderatorStake = daoStakeStorage().lockedDGDStake(_moderator);
...
daoStorage().addDraftVote(_proposalId, _moderator, _voteYes,

_moderatorStake);
...

Adding this to the proposal (draftVoting) struct through the addDraftVote function. When count-
ing the draft votes claimDraftVotingResult needs to be called which ultimately calls countVotes

24 https://chainsecurity.com

https://chainsecurity.com

in DaoStructs.sol. This contract directly accesses the stored votes (which are weights), that were
set before and sums them up. Otherwise the participants and moderators call revealVoteOnProposal
() and revealVoteOnSpecialProposal() which both ultimately call revealVote() in DaoStructs
.sol with

function revealVote(
Voting storage _voting,
address _voter,
bool _vote,
uint256 _weight

)
public

{
if (_vote) {

_voting.yesVotes[_voter] = _weight;
} else {

_voting.noVotes[_voter] = _weight;
}

}

Because the call is made with:

daoStorage().revealVote(_proposalId, msg.sender, _vote,
daoStakeStorage().lockedDGDStake(msg.sender), _index);

daoStorage().revealVote(_proposalId, msg.sender, _vote,
daoStakeStorage().lockedDGDStake(msg.sender));

This directly sets the votes as the stake. The voting results are determined by calling the functions
claimProposalVotingResult() in DaoVotingClaims.sol or claimSpecialProposalVotingResult
() in DaoSpecialVotingClaims.sol. These ultimately call to check if passed:

(_currentResults.currentForCount.add(_currentResults.
currentAgainstCount) > daoCalculatorService().
minimumVotingQuorumForSpecial()) &&

(daoCalculatorService().votingQuotaForSpecialPass(
_currentResults.currentForCount, _currentResults.
currentAgainstCount))

and

_passed = (_currentResults.currentForCount.add(_currentResults.
currentAgainstCount) > daoCalculatorService().minimumVotingQuorum(
_proposalId, _index))

&& (daoCalculatorService().votingQuotaPass(
_currentResults.currentForCount, _currentResults.
currentAgainstCount));

Thus, it counts the weights set previously.

3 It is not possible to recover the vote without knowing the CommitSecret

This depends on the hashing performed by DIGIX, i.e. keccak256(abi.encodePacked(msg.sender
, _vote, _salt)). As the generation of the random salt is not provided and out of scope, no hard
guarantees can be given. Hence, this holds true under the assumption that no hash collisions can
be performed and that a truly random salt is used.

3 A voter can change his vote in the commit period by committing again

The function commitVote() would just override the committed hash proposalsById[_proposalId
].votingRounds[_index].commits[_voter] = _hash; and proposalsById[_proposalId].voting
.commits[_voter] = _hash; and for drafts addDraftVote(() would override the votes directly
with:

ChainSecurity Security Audit Report 25

DaoStructs.Proposal storage _proposal = proposalsById[_proposalId];
if (_vote) {

_proposal.draftVoting.yesVotes[_voter] = _weight;
if (_proposal.draftVoting.noVotes[_voter] > 0) { //

minimize number of writes to storage, since EIP-1087 is
not implemented yet
_proposal.draftVoting.noVotes[_voter] = 0;

}
} else {

_proposal.draftVoting.noVotes[_voter] = _weight;
if (_proposal.draftVoting.yesVotes[_voter] > 0) {

_proposal.draftVoting.yesVotes[_voter] = 0;
}

}

Therefore this property holds.

3 Only the last committed vote counts in when the vote is revealed in the reveal period

See previous specification item. New calls override the committed hash. Thus, it always is the most
current vote.

3 The commitSecret needs to be revealed by the voter in the reveal period

See description above. The hash would be set, but if the secret is not revealed, the variables
yesVotes[_voter] and noVotes[_voter], which are the ones that are counted in the end, are just
not set for this specific user on the corresponding proposal.

3 Only successfully revealed votes are counted

This is given implicitly when following the previously confirmed specification properties.

3 The min. quora shall equal the specification in 6.37

The code defines different quorum calculations, such as minVotingQuorumForSpecial, the function
calculateMinQuorum, and minimumDraftQuorum. However the underlying formula stays the same
as just the input parameters vary.

minQuorum = totalStake ∗ (fixedMinDGDStakeNeeded + ETHAsked / ETHinDao
∗ scalingFactor)

The code calculates:

function calculateMinQuorum(
uint256 _totalStake,
uint256 _fixedQuorumPortionNumerator,
uint256 _fixedQuorumPortionDenominator,
uint256 _scalingFactorNumerator,
uint256 _scalingFactorDenominator,
uint256 _ethAsked

)
internal
constant
returns (uint256 _minimumQuorum)

{
uint256 _ethInDao = get_contract(CONTRACT_DAO_FUNDING_MANAGER).

balance;
// add the fixed portion of the quorum
_minimumQuorum = (_totalStake.mul(_fixedQuorumPortionNumerator)

).div(_fixedQuorumPortionDenominator);
// add the dynamic portion of the quorum

7https://github.com/DigixGlobal/dao-contracts/blob/master/doc/GovernanceModel.pdf

26 https://chainsecurity.com

https://chainsecurity.com

_minimumQuorum = _minimumQuorum.add(_totalStake.mul(_ethAsked.
mul(_scalingFactorNumerator)).div(_ethInDao.mul(
_scalingFactorDenominator)));

}

Thus this holds true.

6.1 PRL can unpause stopped proposal M 3 Fixed

The PRL role can easily pause or unpause a stopped proposal by proceeding as follows:

• PRL calls Dao.updatePRL() with the STOP action on a proposal. This internally closes the proposal by
setting it to PROPOSAL_STATE_CLOSED.

• PRL now calls Dao.updatePRL(), passing the same proposalId and the UNPAUSE action. This success-
fully resets the previously stopped proposal state.

Such behavior is possible as there are no checks to ensure whether the proposal was already stopped
or not and directly violates the property stated in the whitepaper, section 4.3: Stopped proposals cannot be
unpaused8.

Likelihood: Low
Impact: High

Fixed: DIGIX introduced a require and now no action can be done on a stopped proposal.

Reputation

3 One DigixDao Badge can be redeemed for conf(CONFIG_REPUTATION_POINT_BOOST_FOR_BADGE) rep-
utation points (still DGD needs to be locked up to to become a moderator)

DaoStakeLocking.redeemBadge() method will be called by anyone to redeem his badge and get
CONFIG_REPUTATION_POINT_BOOST_FOR_BADGE reputation points. Also, refreshModeratorStatus
() checks that the moderator has sufficient DGDs locked.

3 Only one DigixDAO Badge can be redeemed for a specific address

This holds true as the method is protected with check require (!daoStakeStorage().redeemedBadge
(msg.sender)); and does not allow same address to redeem several badges.

3 The Reputations points at the end of each quarter as defined in 7.39

Methods reviewed

– DaoPointsStorage.addReputation

– DaoPointsStorage.subtractReputation seems to be handling a case when more points
need to be reduced from the current balance. That is why special handling is present in the
code. Balance 0 is kept even if more points are to be reduced and returns a success result.

– DaoRewardsManager.updateRPfromQP method calculates changeInRP value and adds/sub-
tracts from user’s reputation points. It only calculates the first two formulas mentioned in the
specification document.

– updateUserReputationUntilPreviousQuarter checks and calculates reputation points to
reduce when a user has not participated in the quarter. The code listed below code is in
accordance with the specification and multiplies with every quarter with no participation.

_reputationDeduction =
(currentQuarterIndex().sub(1).sub(

_lastQuarterThatReputationWasUpdated))
.mul(getUintConfig(CONFIG_MAXIMUM_REPUTATION_DEDUCTION)

.add(getUintConfig(CONFIG_PUNISHMENT_FOR_NOT_LOCKING)));

8https://github.com/DigixGlobal/dao-contracts/blob/160e456a9683c3e477ff707c469a8e96c25acac4/doc/
GovernanceModel.pdf

9https://github.com/DigixGlobal/dao-contracts/blob/master/doc/GovernanceModel.pdf

ChainSecurity Security Audit Report 27

https://github.com/DigixGlobal/dao-contracts/blob/160e456a9683c3e477ff707c469a8e96c25acac4/doc/GovernanceModel.pdf
https://github.com/DigixGlobal/dao-contracts/blob/160e456a9683c3e477ff707c469a8e96c25acac4/doc/GovernanceModel.pdf

– updateRewardsAndReputationBeforeNewQuarter is called from withdrawDGD and lockDGDInternal
, so ReputationPoints calculations are done every upon lock/withdraw operation.

Hence, all holds true for the first part of the 7.3 section in the governance whitepaper.

3 The Reputation bonus for ”consistent votes” follows what is detailed in 7.3, with an additional details that
was not mentioned: The participant who made the “consistent vote” must also be a participant in the
current quarter to receive the reputation bonus.

The calculation is correct and as defined in section 7.3 of the document.

uint256 _bonus = _qp.mul(_rate).mul(
getUintConfig(CONFIG_REPUTATION_PER_EXTRA_QP_NUM))

.div(_base
.mul(getUintConfig(CONFIG_REPUTATION_PER_EXTRA_QP_DEN)));

And:

– calculateVoterBonus is filtering out the yes/no votes of participants and distributing them
with bonus reputation points.

– claimProposalVotingResult calls calculateVoterBonus only during interim voting rounds.

– Bonus reputation points are only given to voters who are participants of the current quarter as
well. This is checked in addBonusReputation

if (isParticipant(_voters[i])) {
// only give bonus reputation to current participants
daoPointsStorage().addReputation(_voters[i], _bonus);

}

All specification properties hold.

Rewards

It shall hold, that

3 The DGX rewards are distributed to participants and moderators accordingly to the formula in 810.

The specs defines the DGX rewards for participants and moderators as follows:

base ∗
(
1 +

(QP −minQP)

QPS

)
∗
(
1 +

RP

RPS

)
The code implementation is:

uint256 _baseDGDBalance = MathHelper.min(_quarterPoint,
_minimalParticipationPoint).mul(_lockedDGDStake).div(
_minimalParticipationPoint);

_effectiveDGDBalance =
_baseDGDBalance
.mul(_quarterPointScalingFactor.add(_quarterPoint).sub(

_minimalParticipationPoint))
.mul(_reputationPointScalingFactor.add(_reputationPoint))
.div(_quarterPointScalingFactor.mul(

_reputationPointScalingFactor));

The result is then distributed by fraction of the staked DGD, as well as the moderators and partici-
pants shares.

When rewriting the formula above we end up with the code implementation by:

10https://github.com/DigixGlobal/dao-contracts/blob/master/doc/GovernanceModel.pdf

28 https://chainsecurity.com

https://chainsecurity.com

= base ∗
(
1 +

RP

RPS
+

(QP −minQP)

QPS
+

(QP −minQP)

QPS
∗ RP

RPS

)

= base ∗
(
QPS ∗RPS

QPS ∗RPS
+

RP ∗QPS

QPS ∗RPS
+

(QP −minQP) ∗RPS

QPS ∗RPS
+

(QP −minQP) ∗RP

QPS ∗RPS

)

= base ∗
(
QPS ∗RPS +RP ∗QPS +QP ∗RPS −minQP ∗ PRS +QP ∗RP −minQP ∗RP

QPS ∗RPS

)

= base ∗
(
(QPS +QP −minQP) ∗RPS +RP ∗ (QPS +QP −minQP)

QPS ∗RPS

)

= base ∗
(
(RPS +RP) ∗ (QPS +QP −minQP)

QPS ∗RPS

)

= base ∗
(
(QPS +QP −minQP) ∗ (RPS +RP)

QPS ∗RPS

)

3 Any participant who keeps their DGX rewards in the DAO is supposed to pay for demurrage fees for
the duration that the DGX rewards stays in the DAO, from the corresponding dgxDistributionDay.
The demurrage fees are calculated using calculateDemurrage function of a DgxDemurrageCalculator
contract (like in here), which is in similar fashion to how MockDgxDemurrageCalculate contract is imple-
mented in dao-contracts repository.

It is not possible to check the final implementation. The demurrage fee is deducted from the
claimable DGX. By:

_claimableDGX = _claimableDGX.sub(
daoCalculatorService().calculateDemurrage(_claimableDGX,

_days_elapsed));

But calculateDemurrage() is only implemented in a mock contract in the project. But it shall in the
future be linked to the contract(DgxDemurrageCalculator) provided herea. The calculation is in a
two step process, with two different time frames. First, the demurrage fee is calculated for the corre-
sponding quarter in the daoRewardsManager function updateUserRewardsForLastParticipatingQuarter
. Then, the demurrage fee up until the user claims his rewards is calculated when the user calls
daoRewardsManager.claimRewards().

ahttps://etherscan.io/address/0xcd76744cd377707279cd500e40a08d707147c871

8.1 Old DAO can be funded L 3 Fixed

The DaoFundingManager has a fallback function which can receive ETH, funding the DAO. However, once
the migration process happens and all funds are migrated to a new DaoFundingManager, the old one is still
fundable and can receive money by users who did not keep track of the address change. This issue highlights
why events notifying users about migrations and other major events are important.

Likelihood: Low
Impact: Low

Fixed: DIGIX solved the problem by only allow deposits by a given funding source and the DAO contract. This
prevents users from accidentally deposit ETH to the contract.

8.2 Wrong parameter description L 3 Fixed

The DaoFundingStorage contract defines two functions taking a uint argument named _ethAmount, addEth
and withdrawEth. However such naming is misleading insofar as at least addEth is called with the msg.value
argument, which is denominated in Wei and not ETH. Hence, CHAINSECURITY recommends to review the

ChainSecurity Security Audit Report 29

https://etherscan.io/address/0xcd76744cd377707279cd500e40a08d707147c871

naming and reconsider whether the original mismatch has any further implications for the balance calculations
or any other assumptions (e.g. the ifFundingPossible modifier).

Likelihood: Low
Impact: Medium

Fixed: DIGIX solved this by removing the DaoFundingStorage contract whose sole purpose was the tracking
of the DaoFundingManagers balance. Tracking the balance of the DaoFundingManager contract is now done
directly by reading it from state. There are no functions addEth and withdrawEth anymore, a new function
weiInDao returns the contract’s balance.

30 https://chainsecurity.com

https://chainsecurity.com

Trust Issues

The issues described in this section are not security issues but describe functionality which is not fixed inside
the smart contract and hence requires additional trust into DIGIX, including in DIGIX’s ability to deal with such
powers appropriately.

Remarks on the migration process H 3 Acknowledged

The DIGIX DAO system can be migrated to a new set of contracts. Contracts to be deployed are a main Dao,
a FundingManager and a RewardsManager. These carry functionality central to the proposal creation, voting
and rewards payoff. Given these powers, malicious behaviour of the contracts can have grave consequences
and trust into the code needs to be highlighted.

Acknowledged: DIGIX acknowledges that the scope of this audit only concerns this current set of contracts,
migration to a new set of contract is out of scope. An event has been added to signal the migration of DigixDao.

1.1 Malicious fund transfer 3 Acknowledged

A malicious root can call migrateToNewDao during any locking phase after setting addresses controlled by
him through setNewDaoContracts. This would transfer all ETH and DGXs the DaoFundingManager contract
holds through moveFundsToNewDao and moveDGXsToNewDao to any address provided by such a malicious root.
More so, the whole process emits absolutely no events which makes it harder for users to timely observe such
behavior.

Acknowledged: DIGIX acknowledges that DigixDAO participants will have to trust this DIGIX-controlled root
address to be securely managed by DIGIX. The root will be a multisig wallet that is controlled by DIGIX founders.

1.2 Information migration 3 Acknowledged

Information like the on-going proposals, including voting rounds results, reputation points and pending changes
such as the ClaimableDGXs, need to be copied over to the new contracts. This process is not fully documented
and again emits no on-chain events, leaving the user without the possibility to audit these important migrations
and possible modifications.

Acknowledged: DIGIX acknowledges that DigixDAO participants will need to trust that DIGIX will migrate the
data (proposal, dgx rewards, etc) to the new set of contracts

1.3 Technical competence when migrating 3 Acknowledged

The design of DIGIX allows multiple central components, such as voting and reward procedures, to be migrated.
In case of a migration the new smart contracts have to be carefully evaluated to make sure that no functionality
breaks, no vulnerabilities are contained and no additional permissions are granted. In practice, every user
should have the technical skills to review the proposed upgrades independently, without relying on third-party
explanations. Given the migration features of DIGIX’s project, there is no real bound on how complex future
migrations will be, which in turn implies that the minimum required technical skills of voters is unknown as of
now.

Acknowledged: DIGIX acknowledges that DigixDAO participants will have to trust that DIGIX will conduct
proper security audit on the new set of contracts, as well as inform DigixDAO participants, before migrating
DigixDAO to the new set of contracts.

ChainSecurity Security Audit Report 31

Design Issues

The points listed here are general recommendations about the design and style of DIGIX’s project. They
highlight possible ways for DIGIX to further improve the code.

Special Proposals may fail unintentionally M 3 Fixed

DaoSpecialVotingClaims.claimSpecialProposalVotingResult checks that the current time must be
less than startVotingTime + CONFIG_SPECIAL_PROPOSAL_PHASE_TOTAL + CONFIG_VOTE_CLAIMING_DEADLINE
otherwise it will fail.

However, when starting the special proposal by calling startSpecialProposalVoting, it checks that the
time left in quarter must be greater than 4 weeks.

CONFIG_VOTE_CLAIMING_DEADLINE highlighted in red in the above image would be adjusted according to
the day when the special proposal was started. For example if the proposal is started on the 61st day and hour
23:00:00, only one hour would be available for the proposer to claim his voting results.

Hence, if startSpecialProposalVoting is called between 57th - 61st day of a quarter, then there would
be less than the designated 5 days for the proposer to claim the special voting, because the require(
isMainPhase()) condition would stop the proposer from claiming his voting result in the next quarter(locking
phase of the next quarter).

Note that the time 23:00:00 is proportional to the start day and hour of the quarter.

Fixed: DIGIX explicitly added the vote claiming deadline to the requirement for time left in a quarter.

Preliminary iteration L 3 Fixed

In DaoCommon.checkNonDigixFundings() DIGIX encodes the following checks:

require(MathHelper.sumNumbers(_milestonesFundings).add(_finalReward) <=
getUintConfig(CONFIG_MAX_FUNDING_FOR_NON_DIGIX));

require(_milestonesFundings.length <= getUintConfig(
CONFIG_MAX_MILESTONES_FOR_NON_DIGIX));

However, as sumNumbers iterates over _milestonesFundings we suggest to reorder the checks to first
validate the length and then loop to avoid potentially useless computation.

Fixed: The statements have been reordered.

32 https://chainsecurity.com

https://chainsecurity.com

DaoFundingManager can receive arbitrary funds L 3 Fixed

The fallback function of the DaoFundingManger states the intention "to receive ETH funds from DigixDAO
crowdsale contract". However, transferred funds are not checked for their origin and anyone can successfully
send ETH to the contract. If this is not intended, a mechanism to prevent this should be implemented.

/**
@notice Payable function to receive ETH funds from DigixDAO crowdsale

contract
*/

function () payable public {
daoFundingStorage().addEth(msg.value);

}

Fixed: DIGIX added require statements that only a special funding address or the Dao contract may deposit
ETH. There is no risk for users accidentally depositing ETH to the contract anymore.

Deprecated constant keyword M 3 Fixed

Many functions in DIGIX’s code base have their visibility declared as constant which is a deprecated keyword
and should not be used. Instead, the visibility can be described with view11. Numerous examples of this can
be found in the DAO and CACP repositories. Even after initial review some occurrences can be still found in the
code base. Specifically,

• ResolverClient.is_locked method

• ResolverClient.get_contract method

• ContractResolver.get_contract method

Fixed: DIGIX updated the implementation and exchanged the deprecated constant keyword with view where
applicable.

Assigning to function arguments L 3 Fixed

Assigning to function arguments is considered bad practice and should be avoided. A concrete example of
this can be found in the calculateGlobalRewardsBeforeNewQuarter function of the DaoRewardsManager
contract.

Fixed: DIGIX introduced local variables instead of reusing the function arguments.

Duplicate code M 3 Fixed

The isWhitelisted and daoWhitelistingStorage functions declared in the DaoWhitelistingCommon con-
tract are directly inherited by the daoListingService contract, where they are overwritten with an identical
implementation. This has no use and should be avoided.

Fixed: DIGIX removed the duplicate implementations in the DaoListingService contract.

Fallback function is public L 3 Fixed

The fallback function is used in the DaoFundingManager contract. CHAINSECURITY recommends to update
its visibity to external, given that this will be enforced with the upcoming breaking compiler release and is
recommended in the Solidity documentation12.

11https://solidity.readthedocs.io/en/latest/contracts.html#view-functions
12https://solidity.readthedocs.io/en/latest/050-breaking-changes.html#explicitness-requirements

ChainSecurity Security Audit Report 33

https://solidity.readthedocs.io/en/latest/contracts.html#view-functions
https://solidity.readthedocs.io/en/latest/050-breaking-changes.html#explicitness-requirements

Fixed: DIGIX changed the visibility of the fallback function in the DaoFundingManager contract to external.

Inefficient fund tracking L 3 Fixed

The DaoFundingStorage contract has one public state variable ethInDao and two functions to increment and
decrement it. Both methods can only be called by the DaoFundingManger contract, which is done in that
contract whenever ETH is received through its fallback function or withdrawn through calls to claimFunding,
refundCollateral or moveFundsToNewDao. Hence, it seems that the only purpose of the DaoFundingStorage
is to expose and track the amount of funds in DaoFundingManager.

If this is indeed the case, such a design is highly inefficient given that a simple public getter function
returning address(this).balance could provide the same functionality. This way significant gas costs will
be saved by avoiding external function calls on each ETH transfer and mitigating the deployment of another
contract.

Fixed: DIGIX removed the DaoFundingStorage contract and uses the balance of DaoFundingManager.
address in the new weiInDao function.

Non-indexed events L 3 Fixed

No parameters are indexed in the events of the DaoStakeLocking contract. CHAINSECURITY recommends
to index the relevant event parameters to allow DIGIX and its dApps to quickly search for these and simplify
retrospective auditing.

event RedeemBadge(address _user);
event LockDGD(address _user, uint256 _amount, uint256 _currentLockedDGDStake);
event WithdrawDGD(address _user, uint256 _amount);

DaoStakeLocking.sol

Fixed: DIGIX indexed parameters of events as required, additionally more events were introduced.

Unnecessary loop iterations L 3 Fixed

The ResolverClient.sender_is_from method uses a loop to iterate over three addresses that are allowed
to call certain methods. Currently this loop is implementing a logical OR. Hence, if an address is valid and once
_isFrom is set to true, there is no need to continue iterating.

CHAINSECURITY recommends using a break when _isFrom is set to true to avoid unnecessary computa-
tions and allow the caller to save some gas costs.

Fixed: DIGIX introduced a break; after the msg.sender has been found, this avoids unnecessary iteration
over the remainder of the loop.

Duplicate funding checks for preproposals L 3 Fixed

Preproposals can be distinguished by their initiator, who can be a normal user or a authorized DIGIX role.
When a call to submitPreproposal in the Dao contract is made, the modifier ifFundingPossible takes
funding details as arguments and checks whether the DAO can fund such a proposal. Later in the function
body of submitPreproposal a call with the same parameters is made to checkNonDigixFundings, where
depending on the check is_founder different funding requirements are verified.

To avoid separate checks and the entailed function call overhead, the modifier and function can be com-
bined to a single modifier verifying the funding by differentiating on is_founder.

In an iterated review DIGIX stated that both checks are necessary, which is definitely true. Nonetheless, the
two checks can be performed by the same modifier or function receiving different arguments.

Fixed: DIGIX removed the isFundingPossible modifier and moved the logic to a single require in the
submitPreproposal function, since this is the only place where this check needs to happen.

34 https://chainsecurity.com

https://chainsecurity.com

Unnecessary calculations L 3 Fixed

The calculateAdditionalLockedDGDStake function of the DaoCalculatorService contract sometimes is
called with the value 0 as an argument for _additionalDgd, e.g. from the confirmContinuedParticipation
function of the DaoStakeLocking contract. When _additionalDgd is zero, it is expected that the returned
result will always be zero as well.

CHAINSECURITY recommends to add a check for passed 0 values and in such cases return 0 immediately
without doing any further calculations, which will reduce gas consumption.

Fixed: DIGIX’s updated implementation only calls calculateAdditionalLockedDGDStake() if _amount >
0.

Broad function visibility M 3 Fixed

Many contract interactions happen in the DIGIX system. In order to allow cross-contracts calls but restrict them
to allowed roles, require(sender_is (SOMECONTRACT)) is often used.

However, for functions that are expected to be called from other contracts only, the visibility can be re-
stricted to external instead of public. This allows to save gas costs, as public functions copy array function
arguments to memory. A list of functions where such savings would be possible can be found below.

• DaoStorage

– readVotingCount

– readVotingRoundVotes

– readDraftVotingCount

– readVotingRoundVotes

– changeFundings

– addProposal

– editProposal

• Dao

– submitPreproposal

– modifyProposal

– changeFundings

– founderCloseProposals

• DaoSpecialStorage.readVotingCount

• DaoSpecialProposal.createSpecialProposal

• DaoConfigsStorage.updateUintConfigs

Fixed: DIGIX implemented the recommendation as suggested wherever required.

Closed proposals can be reclosed L 3 Fixed

The founders are allowed to close an already closed proposal by calling founderCloseProposals method
and providing the same proposalId again. This happens as no checks on the proposal status are present and
the return value of remove_item which is called from closeProposalInternal is not checked. This return
value would indicate whether the proposal was in the list of current proposals or not, before before adding it to
the closed list again.

Fixed: founderCloseProposals() now checks the status of the proposal first and closes only proposals
which have not yet been finalized or closed, this implies proposals with a current state of either PROPOSAL_STATE_PREPROPOSAL
or PROPOSAL_STATE_DRAFT.

ChainSecurity Security Audit Report 35

Failing test cases in DaoRewardsManager L 3 Fixed

CHAINSECURITY wants to make DIGIX aware that there are several non-deterministic test cases that eventually
fail, specifically in DaoRewardsManager.js. Most notably these are the following tests:

Q[2]/DaoRewardsManager.js sometimes fails due to the assertion: assert.deepEqual(pointsAfter[i
], bN(calculatedReputation [i])) and sometimes throws.

Note that the behavior is not deterministic, and the test may need to be run multiple times for it to actually
throw. CHAINSECURITY was unable to establish if it is an error in the contract suite or in the test set. We
remark that the failure below indicates a higher rounding error than 1e−9. Example of a failure:

1) Contract: DaoRewardsManager
updateRewardsAndReputationBeforeNewQuarter

[Q2]:

AssertionError: expected { Object (s, e, ...) } to deeply equal { Object
(s, e, ...) }

+ expected − actual

{
[

− 614080
+ 614060

]
e: 5
s: 1

}

Another case of non-deterministic behavior has been identified in: [Q3 and Q4]/DaoRewardsManager.js.
This test case throws rarely, but eventually does.

1) Contract: DaoRewardsManager
updateRewardsAndReputationBeforeNewQuarter

[Q3 and Q4]:

AssertionError: expected 44 to deeply equal 73
+ expected − actual

−44
+73

And:

1) Contract: DaoRewardsManager
claimRewards

[claimable dgx > 0]: success:
Error: VM Exception while processing transaction: revert

Also the test case "daoRewardsManager already has some dgx unclaimed form previous quarter":

3) Contract: DaoRewardsManager
calculateGlobalRewardsBeforeNewQuarter

[daoRewardsManager already has some dgx unclaimed from previous
quarter]: verify quarter info:

AssertionError: expected { Object (s, e, ...) } to deeply equal { Object
(s, e, ...) }

+ expected − actual

{
"c": [

− 1626

36 https://chainsecurity.com

https://chainsecurity.com

+ 3
]

− "e": 3
+ "e": 0

"s": 1
}

Furthermore the test script DaoRewardsManager−140participants.js fails to run for CHAINSECURITY
since the updated code was received. While a full and in-depth investigation of the true reasons of the failures
are out of scope of the audit review and cannot be performed within these time frames, CHAINSECURITY raises
awareness for these as they may point to further underlying issues.

Fixed: DIGIX acknowledges that some test cases are failing and states this is most likely because the tests
run slower than expected and hence some assumptions about the phase timings are wrong. CHAINSECURITY
has remaining doubts about these failing test cases. Test values used in DaoRewardsManager.js are randomly
initialized in setMockValues(). A failing test case can be reproduced by setting the values to:

const mockStakes =
[8720663076,13404752094,2497495611,40609592851,38351005242,29758583424];

const mockModeratorStakes =
[34796176485,2758928230884,507613499037,946687842902];

const mockQPs = [8,7,9,9,6,9,3,5,1,4];
const mockModeratorQPs = [2,5,2,0];
const mockRPs = [8300,10700,12000,10100,9800,6000];
const mockModeratorRPs = [1654100,310100,574100,1021100];

Note that the times for the phase durations do not matter, even if they are increased as suggested to resolve
the problem of slow running tests, the output always remains the same:

1) Contract: DaoRewardsManager
updateRewardsAndReputationBeforeNewQuarter

[Q2]:

AssertionError: expected { Object (s, e, ...) } to deeply equal { Object
(s, e, ...) }

+ expected − actual

{
"c": [

− 1654205
+ 1654199

]
"e": 6
"s": 1

}

at a.map (test/interactive/DaoRewardsManager.js:260:18)

Upon a final review DIGIX identified the issues in the random initialization of moderators’ stakes in the mock
files used for testing and could fully resolve the issue, concluding it was inherent to the test case, not the
contracts.

Inefficient DAO storage M 3 Acknowledged

The DaoConfigsStorage contract updates extremely big lists of configuration flags one at a time, which is very
costly and happens in the constructor and the function updateUintConfigs.

While this operation is below the block gas limit, as is reading the configuration with readUintConfigs,
there is a possibility of receiving out-of-gas exceptions when executing updateUintConfigs() if this method
is being called from other contracts during iterative operations.

The new contract creation in itself is a costly operation and makes for a long constructor. Hence, DIGIX can
consider to move the configuration settings in to an init method, which should be called only once.

ChainSecurity Security Audit Report 37

Acknowledged: DIGIX is aware of this and states: "We have chosen to keep the long constructor, as it still fits
the gas limit and will not grow any bigger for this set of DIGIXDAO contracts. In case of updateUintConfigs,
it is called only once when Special Proposals pass, and this transaction is still within the gas limit, so we will
keep it as it is."

Missing input validation M 3 Fixed

It is possible to call the functions

• DaoSpecialVotingClaims.claimSpecialProposalVotingResult()

• DaoVotingClaims.claimDraftVotingResult()

• DaoVotingClaims.claimProposalVotingResult()

with the argument _operations = 0. Even though only the proposer can successfully perform such a
call and there is no reason for him to do so, an accidental mistake can be avoided. Such a call would lead
to unintended behavior like the underflow mentioned 5.3. CHAINSECURITY suggest to introduce appropriate
checks.

Fixed: DIGIX introduced the recommended checks.

Old compiler version M 3 Fixed

DIGIX uses older compiler versions in its code, mostly 0.4.24 but some contracts. e.g. ContractResolver,
use the even older version 0.4.19. Without a documented reason, the latest version (0.4.25) should be used
homogeneously in all contracts. Given that the latest release was a bug fix only release13 and DIGIX might be
exposed to previous compiler flaws through the examples below, a upgrade is strongly recommended.

uintConfigs[CONFIG_MINIMUM_LOCKED_DGD] = 10 ∗∗ 9;
uintConfigs[CONFIG_MINIMUM_DGD_FOR_MODERATOR] = 100 ∗ (10 ∗∗ 9);

DaoConstants.sol

Fixed: DIGIX updated all files to compiler version 0.4.25.

Underspecified ownership structure H 3 Addressed

In the DIGIX system there are the roles given in the specification (e.g. Participants, Moderators, Founders,
PRL, Root, and KYCadmin). However, there are also so-called "groups".

The difference between "roles" and "groups" is not well-defined, neither by code comments nor in accom-
panying material. More so, the exact powers of the root of a group are not clear. Seemingly even more groups
are present, as the contracts differentiate between the groups nsadmins, uladmins and admins.

The different access control roles/groups are not specified to allow a clear understanding to potential users
of the DAO, who have to rely on these roles and their powers to maintain the system and need to trust those
to not be malicious. This trust is especially high in the current case, where documentation is not available.

Addressed: DIGIX specifies: "The cdap library allows for creating multiple groups in a certain role. However,
our DAO contracts only needs to keep track of the roles, hence we just create one dummy group for each
role and hence the group doesn’t have much significance." Further the ContractResolver in cacp-contracts
has been simplified to only have one owner, whose role is only to deploy the DAO contracts before locking it.
CHAINSECURITY recommends to additionally review the table in the system overview.

13 https://blog.ethereum.org/2018/09/13/solidity-bugfix-release/

38 https://chainsecurity.com

https://blog.ethereum.org/2018/09/13/solidity-bugfix-release/
https://chainsecurity.com

Suboptimal struct Proposal M 3 Fixed

The DIGIX system needs access to a lot of information at different stages in time and makes heavy use of
structs. As the Solidity compiler does not perform optimizations as one might expect14 it is necessary to
ensure that structs are tightly packed by ordering them to align with 32 byte words. CHAINSECURITY identified
an opportunity to do so and recommends DIGIX to adopt these to save significant gas costs.

Reordering below saves 5209 gas on transaction costs and also the same on execution costs:

struct Proposal {
bytes32 proposalId;
bytes32 currentState;
uint256 timeCreated;
DoublyLinkedList.Bytes proposalVersionDocs;
mapping (bytes32 => ProposalVersion) proposalVersions;
Voting draftVoting;
mapping (uint256 => Voting) votingRounds;
uint256 collateralStatus;
uint256 collateralAmount;
bytes32 finalVersion;
PrlAction[] prlActions;
address proposer;
address endorser;
bool isPausedOrStopped;
bool isDigix;

}

DaoStructs.sol

Fixed: DIGIX adapted the proposed changes.

TODOs in code L 3 Fixed

Several contracts, concretely DaoConfigsStorage, DaoVotingClaims and DaoCommonMini, still contain TODO
code comments indicating that certain functionality is not fixed. CHAINSECURITY remarks that no TODO clauses
should be contained within a contract to be deployed and recommends to carefully review these cases before
deployment.

Fixed: DIGIX resolved outstanding TODOs wherever required.

14 https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage

ChainSecurity Security Audit Report 39

https://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage

Recommendations / Suggestions

X� Dao.sol uses

require(address(daoFundingManager()).call.value (msg.value)())

to transfer ETH submitted with a proposal. While the DaoFundingManager contract is a trusted role,
the call still forwards all gas. In this concrete case, the funding manager contract’s fallback function is
triggered, which does nothing more than increase the DaoFundingStorage’s balance. Hence, as an
additional security measure, the gas stipend to that call could be limited15.

X� DaoPointsStorage.subtractReputation() is reducing the ReputationPoints of a user. The method
is designed in such a way that if a user has X ReputationPoints and subtractReputation is called
with Y points, such that the latter is bigger than the former, then ReputationPoints is set to zero, other-
wise X = X−Y is calculated. CHAINSECURITY recommends to rename the method to reduceReputation
and addReputation() to increaseReputation().

X� DIGIX has implemented a complex voting processes, which consist of several stages on the proposal
object. At each stage different functions can be called by different users of the ecosystem. Given the
complexity of these procedures a lifecycle/state diagram should be made to complement the documen-
tation. This will help future developers, users and further clarify the design.

X� As per the definition of Dao.setStartOfFirstQuarter() method, it should be called only once. How-
ever, when the value for the _start argument is set to zero this method is allowed to be called multiple
times. CHAINSECURITY recommends adding a check to ensure that _start is always greater than zero.
This would actually enforce the defined specification.

� Several structs can be further improved by reordering their fields to introduce minor gas savings. These
are SpecialProposal, IntermediateResults and QuarterRewardsInfo.

X� The ACGroups contract implements the two functions add_user_to_group and delete_user_from_group
, which take as a parameter the argument bytes32 _group. A simple sanity check for inequality to zero
bytes can be introduced.

X� The DaoVoting contract uses the variable bool _voteYes to consider yes and no votes for the voteOnDraft
function. This is confusing and the variable should be renamed to vote.

X� CHAINSECURITY notes that DIGIX should document that calculateGlobalRewardsBeforeNewQuarter
must be called in the DaoRewardsManager first during the LockingPhase of each quarter. Without calling
this function successfully, many other activities like locking/withdraw of DIGIX TOKENs cannot be done.

X� In DaoContracts.register_contract() an additional check could be introduced to verify if accidentally
a zero address or a already registered contract is registered.

X� The visibility modifier for a function should come before any custom modifiers16. This is violated in:

– DaoFundingManager contract, fallback function
– DaoRewardsManager contract, calculateGlobalRewardsBeforeNewQuarter

X� quarterIndex is used to represent the number of the current quarter. Since it is called a index, it should
start with a zero, however quarterIndex starts with a one. CHAINSECURITY recommends to either
change the naming to quarterNumber or the quarterIndex should start with a zero.

X� The Dao contract mentions that the proposer has to send in a collateral to open a new pre-proposal.
However, the corresponding variable is referred to by DEPOSIT. Given that there is no documentation
clarifying that the collateral and deposit refer to the same value, the naming should be revisited.

Post-audit comment: DIGIX has fixed some of the issues above and is aware of all the implications of
those points which were not addressed. Given this awareness, DIGIX has to perform no more code changes
with regards to these recommendations.

15 https://solidity.readthedocs.io/en/latest/security-considerations.html#sending-and-receiving-ether
16https://solidity.readthedocs.io/en/latest/style-guide.html#function-declaration

40 https://chainsecurity.com

https://solidity.readthedocs.io/en/latest/security-considerations.html#sending-and-receiving-ether
https://solidity.readthedocs.io/en/latest/style-guide.html#function-declaration
https://chainsecurity.com

Disclaimer

UPON REQUEST BY DIGIX, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT PUBLIC.
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND
WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE
ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT
REMAINS WITH CHAINSECURITY LTD..

ChainSecurity Security Audit Report 41

	Foreword
	Executive Summary
	Scope
	Included in the scope
	Out of scope

	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	System Overview
	Voting overview
	Extra voting features

	Best Practices in Digix's project
	Hard Requirements
	Soft Requirements

	Security Issues
	Roles
	Usage of extcodesize to verify EOAs repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Use of tx.origin for authorization replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unrestricted calls to readProposalDraftVotingTime repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Timing and Quarters
	Start of first quarter can be in the past repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Quarter: Lockup and Main phase
	Proposal phases
	Preproposals can be overwritten replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Draft voting passes with minority repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Special Proposals
	Unchecked arithmethic operations repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Special proposals details can be silently updated repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Array underflows repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Voting
	PRL can unpause stopped proposal replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Reputation
	Rewards
	Old DAO can be funded repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Wrong parameter description repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Remarks on the migration process replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Malicious fund transfer push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Information migration push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Technical competence when migrating push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	Special Proposals may fail unintentionally replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Preliminary iteration repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	DaoFundingManager can receive arbitrary funds repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Deprecated constant keyword repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Assigning to function arguments repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Duplicate code repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Fallback function is public repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inefficient fund tracking repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Non-indexed events repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unnecessary loop iterations repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Duplicate funding checks for preproposals repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unnecessary calculations repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Broad function visibility replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Closed proposals can be reclosed repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Failing test cases in DaoRewardsManager repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inefficient DAO storage replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Missing input validation replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Old compiler version replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Underspecified ownership structure repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Suboptimal struct Proposal repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	TODOs in code repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Disclaimer

