PUBLIC

Code Assessment

of the RWA
Smart Contracts

June 10, 2025

Produced for

S

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG

10
11
12
14
16
19

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Decentralized USD with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of RWA according
to Scope to support you in forming an opinion on their security risks.

Decentralized USD implements smart contracts for onboarding Real-World Assets as collateral for the
USDD 2 system. The new contracts allow trusted RWA lenders to borrow USDD stablecoins against
these assets, while managing debt repayment and liquidation.

The most critical subjects covered in our audit are access control, functional correctness, and precision of
arithmetic operations. The general subjects covered are documentation, specifications, and gas
efficiency.

Security regarding all aforementioned subjects is high.
In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the RWA repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note
1 | 19 May 4cdb13ab06b4c2f91afe084d3367542aad4eebcd3 Initial Version
2025

2 | 5Jun 2025 | e2ee5a56e€2926015ee007c53ece9d49110c568c7 | After Intermediate Report

For the solidity smart contracts, the compiler version 0. 6. 12 was chosen. Note that the Tron solidity
compiler is used. We assume that it behaves equivalently to the solidity 0.6.12 compiler while handling
Tron-specific properties (e.g. precompile, address handling). Further, the compiler has never been
subject of security reviews and, thus, could expose the system to a higher risk compared to the regular
solidity compiler.

The following files were in scope:

src/
aut h/ aut h. sol
condui ts/
Rwal nput Condui t 2. sol
RwaCut put Condui t 2. sol
RwaSwapl nput Condui t . sol
RwaSwapQut put Condui t . sol
genj oi ns/j oi n-aut h. sol
j ars/ RwaJar . sol
or acl es/ RmaLi qui dati onOr acl e. sol
spel I s/
RwaLi qui dati onSpel | _mai nnet . sol
RwaSpel | _mai nnet . sol
t okens/
RwaToken. sol
RwaTokenFact ory. sol
urns/
RwaUr n2. sol
RwaUr nCl oseHel per. sol
val ue/ val ue. sol

2.1.1 Excluded from scope

All other files are out of scope. The system's core contracts and other contracts, such as the PSM, are
out of scope and assumed to be correct. Governance is expected to configure the contracts accordingly.
Incorrect configuration may lead to issues.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Note that the hardcoded constants were validated against the USDD documentation (archive). For the
undocumented contracts Vat and USDD, the values set in the UsddJoin have been read from the
contract with Tronscan. Similarly, the USDT address has been read from the PSM's gem join's gem
address. The correctness of the values documented and returned by Tronscan are out of scope.

2.2 System Overview

This system overview describes the latest received version of the contracts as defined in the Assessment
Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Decentralized USD offers smart contracts for onboarding RWAs as collateral for USDD V2.

2.2.1 RWA Contracts

The Real-World Asset (RWA) contracts provide a dedicated infrastructure enabling the use of tokenized
RWAs as collateral within the ecosystem. The system facilitates the issuance of USDD against these
assets by designated trusted parties and incorporates specific mechanisms for debt management,
stability fee handling, and liquidation.

Locking Collateral and Drawing USDD. The gem of RWA ilks corresponds to the RwaToken contract
which is an ERC-20 with a fixed supply, deployable via the RwaTokenFact ory. Since the supply is
fixed, the oracle price should determine the value of the RWA reserves.

Once the token contract is created and tokens are transferred to a trusted destination (e.g., an operator),
these funds can be used within the RwaUr n2 contract (whitelisted for authenticated gem joins, as
detailed below) to lock RWA collateral. This process enables the minting of USDD to an output conduit.

Specifically, operators have access to the following functionalities for managing the position:

« | ock: Pulls an amount of gem tokens, joins them via the authenticated join adapter and converts the
gem to ink.

« f r ee: Converts the ink back to gem and exits gem tokens through the join adapter to the operator.

« dr aw: First, the interest rate is updated with Jug. dri p to prevent unnecessary interest payment.
Then, debt is generated, and USDD is minted through the USDD join adapter. The recipient of these
funds is always the output conduit.

e qui t: This function transfers the entire USDD balance to the output conduit. Notably, quit can be
called by any address if the Vat is not live, indicating that the shutdown has been initiated.

The wi pe function can be used permissionlessly to repay debt. It first updates the interest, then burns
USDD via the UsddJoin adapter to settle the debt. Note that the function is permissionless as debt could
be repaid by anyone through the Vat.

Further, RwaUr n2 integrates with the Aut hGemJoi n to generate gem balances in the Vat. The
authenticated gem join adapter provides the function j oi n, which creates gem balances within the Vat
while pulling funds from the callers (expected to only be the respective RWA urn). The exi t function
allows arbitrary addresses to exit gem balances as RWA tokens. Notably, the function is not privileged,
ensuring that during system shutdown exits can be performed by arbitrary addresses.

Note that, despite representing a RWA, the RWA token does not formally provide a claim to the RWA
assets.

Both the RWA urn and the join adapter provide the authenticated r el y and deny functions to assign and
revoke the governance role to and from given addresses. Similarly, the RWA urn provides governance
with hope and nope to manage the operator role. Additionally, the RWA urn allows governance to
update the following parameters with RnaUr n2. fi | e:

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 6

https://docs.usdd.io/developers/deployment-addresses
https://web.archive.org/web/20250527133126/https://docs.usdd.io/developers/deployment-addresses
https://chainsecurity.com

* output conduit: destination of USDD when drawing/quitting

* jug: contract managing rate updates which should always correspond to the vat's jug.

The RwaUr nCl oseHel per can be set as an operator on the urn to add functionality allowing to close an
urn by wiping all debt. Namely, the cl ose function estimates the debt to repay so that all collateral can
be freed and calls wi pe in the urn accordingly.

Output Conduits. Output conduits are the designated recipients for USDD generated by the RWA urns.
Their core functions are designed for managing fund transfers.

The two main functions of the output conduit are:

* pi ck: Operators pick any bud (whitelisted by governance with ki ss and di ss) as the destination
for the funds (not necessarily USDD is sent).

e push: "Mates" execute the fund transfers to the chosen destination address. After a transfer, the
destination address is automatically reset to 0x0, preventing further pushes until a new destination
is set.

Note that the provided output conduits differ in their exact operation. Below is more detailed information
on the implemented output conduits:

* RnwaCut put Condui t 2: push pushes the full USDD balance held by the conduit to the destination.

*« RwaSwapQut put Condui t : The contract integrates with a PSM on push and, hence, converts the
held USDD to the PSM's gem by swapping on the PSM. Additionally, qui t is provided to mates and
allows moving the held USDD to a qui t To address. Governance can choose the PSM and qui t To
with f i | e, and can withdraw any token from the conduit with yank.

Input Conduits. Input conduits are used to deposit tokens to repay outstanding debt. They primarily
feature a push function, accessible by mates, which transfers the conduit's local token balance to a
specified t o address.

* Rwal nput Condui t 2: Designed to receive USDD tokens. Its push function transfers the USDD
balance to a pre-defined, immutable t o address.

* RnaSwapl nput Condui t : Expects to receive the gem tokens of the configured PSM. When push is
called, it sells these gem tokens for USDD and directs the resulting USDD to the t o address. Mates
can also use qui t to retrieve gem tokens from the conduit and send them to a qui t To address.
Governance can configure the PSM, to, and quitTo addresses using fil e. Furthermore,
governance can assign/revoke governance and mate roles with rely / deny and nate / hate
respectively, and can yank any token from the conduit.

Valid destinations for the input conduits include the RWA urn (for debt repayments) and the RwaJar
which facilitates direct stability fee payments into the system's surplus. The RWA jar burns the received
USDD to contribute Vat-internal usdd balances to the Vow, thereby building up a surplus buffer. It
achieves this with the functions voi d and t oss. The former uses the balance held by the jar to build up
the surplus buffer while the latter pulls USDD from the caller.

Liquidations and Price Oracle. To price RWAs the system uses DSVal ue, allowing privileged
addresses to update the prices with poke. However, unlike typical on-chain liquidations triggered by
price changes, RWA liquidations are initiated manually by governance through the
RwalLi qui dati onOr acl e. Specifically, the liquidation oracle provides governance with the functionality:

i ni t: Initializes an ilk on the liquidation oracle by deploying a DSVal ue contract (owned by the
liquidation oracle) and poking it with the agreed-upon value, configuring the remediation period t au
and publishing the hash of the off-chain agreement. For re-initialization, the remediation period and
document hash can be updated. Note however, that the remediation period can only be lengthened,
and not shortened.

* bunp: Allows updating the underlying oracle, but strictly limits updates to increasing the RWA's
value.

(S: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

et el | : Initiates the liquidation process for an ilk, starting the remediation period during which debt
should be repaid. Governances spells triggering t el | should set ilk's line to zero, preventing further
borrowing.

e cur e: If the issue causing the liquidation has been resolved, governance can stop the liquidation.
Governance spells stopping the liquidation should also consider restoring the line if necessary.

e cul | : Once the remediation period ends and governance determines no further debt will be repaid,
a write-off can be triggered which sets the RWA's value to zero and reclassifies any unpaid debt as
system debt.

«fil e: Allows setting the Vow.

2.2.2 RWA Spells

Two RWA spell templates are provided as templates for governance spells.
RWA Initialization Spell. The RwaSpel | serves as a template to initialize an RWA ilk.

Note that the common process of deployment and initialization is that an EOA deploys a contract and
hands over the ownership of the deployment to the pause proxy. Then, the spell is deployed and the
contracts and spell are carefully examined by governance before scheduling the spell execution.
Eventually, the spell will be executed by the pause proxy through a delegatecall.

The RwaSpel | performs the following actions:
1. Sanity checks on the constructor parameters of the relevant contracts.
2. Initialization of the RWA ilk on the Vat and Jug as well a debt ceiling configurations.

3. Configuration of DSValue as the oracle on the spot as well as poking the spot so that the value is
published to the Vat.

4. Authorization of the authenticated gem join and liquidation oracle on the vat so that sl i p and gr ab
can be called. Similarly, the RWA urn is authorized for the gem join.

5. One operator is assigned the operator and mate roles on the urn and the conduits. The qui t To is
set as the urn for the output conduit and as the user for input conduits. Further, the user is set as
the whitelisted recipient (bud) on the output conduit. Note that spell is expected to use swap
conduits and non-swap conduits cannot be configured with it.

Liquidation Spell. The RwaLi qui dati onSpel I implements a template for the governance-initiated
liquidation process. Namely, it reduces the debt ceiling by the configured one. Then, the liquidation is
initiated, and the debt is written off. Finally, the spot is notified about the new price (zero) and publishes
the new price to the Vat.

2.2.3 Changelog

In (Version 2), inconsistencies between RwaQut put Conduit2 and RwaSwapQut put Conduit were
resolved. In prior versions, the fund recipients could be arbitrary addresses in the RwaCQut put Condui t 2,
and RwaSwapQut put Condui t could make all addresses mates and operators by assigning 0x0 the
respective role.

2.3 Trust Model

The system implements several roles:

« Governance: Fully trusted. Governance could file malicious output conduits on urns or setup
malicious operators that could drain the system (or configure a malicious PSM, yank the gem
balances, ..). Further, governance is expected to validate and configure the deployment
meaningfully. Note that governance is fully trusted in the core as it could maliciously mint stablecoins
against bad ilks.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

« Urn Operator: Trusted to respect the agreement by locking collateral and repaying debt eventually.
« Conduit Mates: Trusted to operate accordingly and push and quit whenever deemed necessary.
» Conduit Operators: Trusted to responsibly choose among whitelisted recipient addresses.

« Conduit Buds: Expected to be trusted addresses controlled by the RWA partner that respect the
off-chain agreement.

« RWA partner: Fully trusted. The RWA partner has no incentive to repay the debt but is expected to
respect off-chain agreements and repay debt according to the agreement. The reserves are
expected to be monitored and governance is expected to take swift action in case of misbehavior.
The damage is limited to the line that was configured.

Note that the full RWA system highly relies on trust and respect for off-chain agreements. Parameters
should be carefully chosen to ensure that damage is limited so that the peg of USDD can be protected.

2.3.1 Changelog

In (Version 2), the trust model was further unified. In prior versions, Conduit Operators were trusted to pick
only trusted addresses as destinations if no buds mapping was available.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 2

« Governance Can Bypass Liquidation Delay Mechanism
« Liquidation Spell Will Fail

5.1 Governance Can Bypass Liquidation Delay
Mechanism

[Correctness TN Risk Accepted)

In the RwalLiquidationOracle contract, the t el | function initiates a repayment window (defined by t au)
during which the borrower can repay their debt. If the repayment does not occur within this period,
governance can call cul | to write off the borrower's debt.

CS-USDD-RWA-002

However, note that the repayment window check in cul | ignores the case when t oc is O:

requi re(bl ock. ti mestanp add(il ks[ilk].toc, ilks[ilk].tau), "RwaOracle/early-cull");

Note that t oc remains set to 0 while t el | has not been called. Therefore, governance can bypass the
remediation window by calling cul | beforet el | duetot oc being 0.

Moreover, even if t el | was called, the cur e function can be used to reset t oc to 0. This also allows
cul | to bypass the grace period, effectively enabling governance to liquidate the position at any time.

Risk accepted:

Decentralized USD accepts the risk and states:

Thi s behavior is controlled exclusively through the governance process. In practice, the expected flowis

- tell - cure (repaynment during the renediation period), or
- tell - cull (liquidation after the delay expires).

Wiile it is technically possible to call cull before tell, this is not a concern under the assuned

governance nodel, where such actions are subject to transparent decision-making and community oversight.
Therefore, we consider this risk acceptable in the context of our governance-controlled operation

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5.2 Liquidation Spell Will Fall
(I (Low) (Version 1) G

In the RwalLiquidationSpell contract, the set up function calls the t el | function of RwaLiquidationOracle,
initiating the liquidation process. Immediately afterward, it calls the cul | function to liquidate the vault.
However, cul | can only be called after the time window defined by the ilk's t au variable, during which
the debt can still be repaid, has elapsed. As a result, if this grace period is set to a nonzero value, the
spell will revert.

CS-USDD-RWA-003

Risk accepted:
Decentralized USD accepts the risk and states:

We have provided a liquidation spell tenplate assuming tau = 0, where tell and cull are executed
within the sane transaction. For cases where tau > 0, the tell and cull steps are separated and executed
in different spell flows to respect the required del ay.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 0
y g
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1
ty g
« Frontrunning in Conduits
Informational Findings 1

* Code Inconsistencies (ElyeIiTe =N

6.1 Frontrunning in Conduits

D (Low) (Version 1) CXIEIRED

There are griefing vectors in RwaSwapOutputConduit.

CS-USDD-RWA-001

The pi ck function can effectively be called permissionlessly by setting can[address(0)] == 1 via
hope(address(0)). Since pick allows to to be set to address(0), and push fails when
to == address(0), this enables frontrunning attacks that cause push calls to fail.

Additionally, the onl yMat e-restricted functions push and qui t can also be called permissionlessly by
setting may[address(0)] == 1 via mat e(address(0)). An attacker can frontrun legitimate push
calls by calling push(ui nt 256) with a small amount, setting t o to addr ess(0) during execution and
causing the subsequent call to revert.

These attacks are made cheaper and more feasible due to low transaction costs on the TRON chain.

Code corrected:

The pi ck function in RwaSwapOutputConduit was updated to eliminate the fallback behavior where any
address could act as the operator if addr ess(0) was set. This prevents front-runners from setting
to = address(0) via pi ck to disrupt subsequent push calls.

Similarly, the onl yMat e modifier was modified to prevent any address from acting as a mate when
addr ess(0) was set. This blocks frontrunning attackers from setting t o = addr ess(0) by calling
push with small amounts. As a result, front-running attempts to trigger push reverts are no longer
possible.

6.2 Code Inconsistencies

(Informational] [Version 1]

CS-USDD-RWA-004

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The codebase is inconsistent on several occasions. Below is a non-exhaustive list of inconsistencies:

* No-swap and a swap output conduits are provided. However, they unnecessarily differ in terms of
access control:

* The swap conduit whitelists all addresses as mates if 0x0 is a mate. Consequently, push
and quit access can be granted to everyone for swap conduits. In contrast, the no-swap
conduit does not support such functionality.

« For the output conduits, the swap conduit requires the destination address t o, picked by
the operators, to be a whitelisted bud while the no-swap conduit does not require this.

«In most of the contracts the math functions revert with an error message. However, the math
functions in RwaToken do not revert with an error message.

Code corrected:

1. The onl yMat e modifier was updated to remove the logic that previously allowed any address to
qualify if addr ess(0) was set as a mate.

2. The bud mapping was reintroduced to manage access control. The ki ss and di ss functions were
added to grant and revoke bud status, respectively. The pi ck function now includes a check to
ensure that who is either a bud or equal to addr ess(0) .

3. Not corrected. However, given that most of the inconsistencies have been resolved, we marked the
issue as resolved as the remaining one has low relevance.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Events Not Emitted
(Informational] [Version 1](]

CS-USDD-RWA-005

Some contracts do not emit events consistently. The following is a non-exhaustive list of not emitted
events:

* In RnaToken, the constructor should emit the Tr ansf er event as per ERC20 standard. While not
strictly required by the standard, emitting the event could be helpful for frontends and indexers.

* In RnaSwapl nput Condui t , the constructor should emit the Fi | e event since the PSM and the t o
address are initialized.

* In RwaSwapQut put Condui t, the constructor should emit the Fi | e event since the PSM address is
initialized.

Acknowledged:

Decentralized USD acknowledges the issue.

7.2 Gas Optimizations
(Informational) (Version 1)()

CS-USDD-RWA-006
Below is non-exhaustive list of code sections that could be optimized to consume less gas:
* RnaToken: t ot al Suppl y could be declared as immutable since no further minting can occur.
* Rwal nput Condui t 2: usdd and t o could be declared as immutables.
* RnwaCQut put Condui t 2: usdd could be declared as immutable.
* RwalLi qui dati onOr acl e: vat could be declared as immutable.

*Rwalrn2: vat, gemlJoin and usddJoin could be declared as immutables. Similarly,
gemJoi n. i | k, gemJoi n. gemand usddJoi n. usdd could be declared as immutables.

* RwalLi qui dati onOracl e: i nit, bunp, cull, cure and good perform several extra storage
reads of the variable i | ks[i | K] .

* RwaSwapCQut Condui t : _doPush performs one extra storage read of the variable t 0. Similarly,
_doQui t performs a duplicate read to qui t To.

Acknowledged:

Decentralized USD acknowledges the issue.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7.3 Inaccurate Documentation
(Informational] [Version 1](](

CS-USDD-RWA-007

The documentation outlines a set of roles and the actions they are allowed to perform. However, some
descriptions do not match the implementation.

Confusing Roles. The operator and the user roles are seemingly confused either by the naming of
variables, the documentation or the implementation.

In particular, the role "User" is described as follows:
Sets the recipient address for funds. Applies to: RwaSwapQut put Conduit: pick

While the "Operator2" role is described as:

Has the authority to initiate token transfers. Applies to: RwaSwapQutputConduit: push, quit [...]

However, the RnaSpel | gives RWAO01_OPERATOR (similar name to role "Operator2") the permission to
call push. However, it does not give RWA0O01_USER (similar name to role "User") the permission to pi ck
but whitelists the address to receive the funds:

RwaQut put Condui t Li ke(RWAOOL_A_OUTPUT_CONDUI T) . ki ss(RWAOO1_USER) ;

Additionally, the inline comment hints that RAVAOO01_USER should be able to pick the receiving address,
which is not the case.

Ultimately, the operator will call pi ck while the user will be a whitelisted destination for funds.

Inaccuracies. The documentation specifies that the authority to call RwaUrn2. quit is anyone,
suggesting that the function is permissionless. However, that is only the case when the Vat is not live and
the shutdown has been initiated. During regular operations, the role "Operatorl" has authority over the
function.

Code partially corrected:

Decentralized USD has changed the inline comment in RwaSpel | _mai nnet to clarify that
RWAOO1_USER is the whitelisted recipient of the funds, and not the user able to pick the receiving
address.

Acknowledged:

The documentation still suggests that RwaUr n2. qui t can be called by anyone, which is not the case
during regular operations.

7.4 NatSpec Mismatches and Inaccuracies
(Informational] [Version 1](][

CS-USDD-RWA-008
NatSpec may inform users with descriptive comments about the functionality of contracts.
Some NatSpec is inaccurate. Below is a non-exhaustive list of NatSpec mismatches and inaccuracies:

* RnaTokenFact ory. RwaTokenCr eat ed: The event's NatSpec lacks the t oken parameter of the
event. Ther eci pi ent is documented as Token address reci pi ent which is vague.

* RwaUr n2. construct or: The parameters are commented in the wrong order (e.g. the jug is
described as the gem join).

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

e RwalJar . construct or: The vow_ parameter remains undocumented.

Some contracts are missing NatSpec comments. Below is a non-exhaustive list of contracts missing
NatSpec documentation:

* RnaToken

* DSVal ue and DSAut h

* RwaLi qui dati onOracl e
* Aut hGemJoi n

Code partially corrected:

Decentralized USD has addressed the inaccuracies in RnaTokenFact ory, RnaUr n2, and RnaJar .
Acknowledged:

Decentralized USD acknowledges that NatSpec comments are still missing from the following contracts:
RwaToken, DSVal ue, DSAut h, RwaLi qui dati onOr acl e, and Aut hGemioi n.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bypassing Stability Fee

The RwaUr n2. wi pe function suggests that the rate will be updated prior to wiping the debt:
jug.drip(ilk);
vat .frob(ilk, address(this), address(this), address(this), 0, -int256(dart));
However, governance should be aware that jug.drip should be called frequently if the rate

corresponds to interest greater than 0% since the call to dri p, enforced by the RWA urns wi pe function,
can be trivially bypassed by operators (or any other address) by calling Vat . f r ob directly to wipe debt.

8.2 Init Spell References Chainlog

The documentation specifies that no Chainlog contract is present in the system:
The USDD system currently does not include the chainlog contract [...]

However, the init spell RwaSpel | references the Chainlog to publish the addresses with set Addr ess.
Additionally, Decentralized USD specified that the Chainlog will be deployed prior to the execution of the
spell. It is important to note that if Chainlog is not deployed prior to spell execution, the spell could revert

8.3 Spells Are Templates
(D) (Version 1)

Governance should be aware that the spells need to be adjusted prior to deployment to set the expected
parameters. Otherwise, incorrect default parameters could be configured for RWAs.

8.4 Vow Is Immutable in RWA Jar
(D) (Version 1)

Governance and users should be aware that the vowin RwaJar is immutable. In contrast, the liquidation
oracle allows for updating the vowwith fi | e.

In case the Vow is replaced, the RWA jar should be redeployed to reflect the change.

I:$: Decentralized USD - RWA - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 RWA Contracts
	2.2.2 RWA Spells
	2.2.3 Changelog

	2.3 Trust Model
	2.3.1 Changelog

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Governance Can Bypass Liquidation Delay Mechanism
	5.2 Liquidation Spell Will Fail

	6 Resolved Findings
	6.1 Frontrunning in Conduits
	6.2 Code Inconsistencies

	7 Informational
	7.1 Events Not Emitted
	7.2 Gas Optimizations
	7.3 Inaccurate Documentation
	7.4 NatSpec Mismatches and Inaccuracies

	8 Notes
	8.1 Bypassing Stability Fee
	8.2 Init Spell References Chainlog
	8.3 Spells Are Templates
	8.4 Vow Is Immutable in RWA Jar

