PUBLIC

Security Audit

of DAOSTACK’s Smart Contracts

January 15, 2019

Produced for

@ DAOstack

by

C CHAINSECURITY

Table Of Content

Foreword 1
Executive Summary e e 1
Audit OVerview 2
1. Scopeofthe Audit e 2
2. Depthof Audit. o o 3
3. Terminology 3
Limitations 5
System OVerview 6
1. Reputation 6
2. Fixed Reputation Allocation e 6
3. Auctionfor Reputation e 6
4. Locking ETH for Reputation 6
5. Locking Token for Reputation 6
6. External Locking for Reputation 7
7. Forwarder 7
8. Making External Calls 7
Best Practices in DAOSTACK’S Project o e 8
1. Hard Requirements e 8
2. Soft Requirements e 8
Security ISSUES L e 9

1. Unlimited redemption of reputation 0 9

2. Potential of locked tokens in LockingToken4Reputation due to unsafe math 0 .. 9

3. Nonuse of SafeMath results in theoretical overflows v Addressed | 9
4. Enforcing continuation of ICO after cap has been reached 0 11

https://chainsecurity.com

https://chainsecurity.com

5. Division Before Multiplication ~~ FANSQEWERRERY 12
6. Dependence on block.timestamp ‘i‘ v/ AcKN oW edg e | 12

Trust Model and Implications 13

1. Trust in schemes and technical competence of agents m v Acknowledged [N 13

2. Owner of proposal may vote one behalf of users PGl - - - - oo 13
3. Contract owner can obtain unearned reputation m v/ Addressed | 13
Design Issues 14
1. No benefit of using the RealMath library m 14

2. Wrong unit denomination 0 15

3. Inconsistent interpretation of voting parameters m 16
4. Minor code duplication in Controller ; 17
5. Unexpected results when a proposal does not exist ‘: 17
6. Missing check for zero address i 17

7. Rounding issues in schemes m 17

8. Uncatched exception when making a call proposal =~ [PUGRGEN - - - - - -« oo 18
9. Inefficientstructstorage . REEED - - - o oo 19

10. Unchecked return value m 19
11. Strong incentives for delayed bidding m v/ Acknowledged | 20

12. Redundant operation when burning reputation *: 20
13. Compilation with experimental pragma ©.5.0 fails :‘: 21

ChainSecurity Security Audit Report

14. High complexity of execution ~ PANGGIIERRERR, 21
15. Imprecise estimation of block numbers a v/ Acknowledged | 21

16. Unused event RefreshReputation %Ei 22
17. Used ERC20 instead of TERC20 . PERERD - - - - o o oo e 22
18. Unused imports ::‘ 22
19. Type of argumentreputationReward unclear [ZNREGREN - - - - -+« v oo 23
20. Wasteful conversion :7: 23
Recommendations / Suggestions e 24
Disclaimer. 27

https://chainsecurity.com

https://chainsecurity.com

Foreword

We first and foremost thank DAOSTACK for giving us the opportunity to audit their smart contracts. This
documents outlines our methodology, limitations, and results.

— ChainSecurity

Executive Summary

The DAOSTACK smart contracts have been analyzed under different aspects, with a variety of tools for auto-
mated security analysis of Ethereum smart contracts and expert manual review.

Overall, we found that DAOSTACK employs good coding practices and has clean code. However, the sys-
tem in its current state needs to be documented more exhaustively. CHAINSECURITY was able to uncover
several issues in the newly introduced schemes which were successfully fixed by DAOSTACK before deploy-
ment.

ChainSecurity Security Audit Report

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were received
on December 10, 2018 ' and an updated version on January 14, 2019 2:

File

SHA-256 checksum

arc/../controller/Avatar.sol

d423cb5a662a5d91e6b182a8ed54ab12e7ba08dcd8777c819774a1454a9ea50b8

arc/../controller/Controller.sol

81b79db8103c92495f561e3edea2566bcd5e52c27b45069d9a406d50b62a3582

arc/../controller/Controllerinterface.sol

97ba611b8b99bf5fee8cf5b4856e957c32ebf3deddd4edda86aal4del103ff6ed

arc/../controller/DAOToken.sol

bb959c7ee7e119bd49b0731d55cb707£fb26ef0979b309d6ecefd812ef9efOe77

arc/../controller/UController.sol

211a96cce968930502c9275533e4b0e62228£0f0e74719bead45eabead77b33d

arc/../globalConstraints/GlobalConstraintInterface.sol

££163ced46cc520151f2cad1829aab389c6327a7d20afb7d2a9ebb0d510b3fb6c

arc/../globalConstraints/TokenCapGC.sol

a311ec70483485231637f96baa2561537dad3ec5cbbbff4deadedba77227dc56e

arc/../libs/SafeERC20.sol

28257a72747aad58edbfead1de7d97£27e5657£c438906984348634791ed6739

arc/../schemes/Auction4Reputation.sol

31073aa879fdcd6ee40be7e4c3b28d8014ae6c89c41e2a7eb26cbca9laacc268

arc/../schemes/ExternalLocking4Reputation.sol

4c59484d8ed8a85705b05e37bb69ea2603d594552c3b78368b65683647988124

arc/../schemes/FixedReputationAllocation.sol

3c1814b16b62945c64764bclefadcce383d7b98175464adbdcac230aabadd946

arc/../schemes/Forwarder.sol

618aed64d5a300£51124a46c2d55bbe38739ef08fb671efcfd5c66db21d340e6

arc/../schemes/Locking4Reputation.sol

9b4faa92197dd2a6bd0ca37c00c7b1d88ef850dcd2a89134721ccf52051a3ela

arc/../schemes/LockingEth4Reputation.sol

2232c799bbd4d508dc559a6162e8a33fal3f5c390e5409accec935¢c9ec9749d65

arc/../schemes/LockingToken4Reputation.sol

64a726c5fc057246cafb1£668398afc93d7a79397369242322a4a8cbdb09bd8e

arc/../schemes/PriceOraclelnterface.sol

a3ac76b863791feca2b89c3e5d59e35d4eabb9563a1350f4e6268£45£02£5757¢

arc/../universalSchemes/ContributionReward.sol

dd30309a56d2c9405d2cf513acddef c54521c5312d3297409a9552dccdbd0720

arc/../universalSchemes/DaoCreator.sol

7a9a491aa7d668fbddeal89b49a0cd82603a072ad27251e13baeadccObcf348a

arc/../universalSchemes/GenericScheme.sol

57a769e8552a7187a2998d4d391717e25bd35ee1229af£292a55217f0belbedc

arc/../universalSchemes/GlobalConstraintRegistrar.sol

b4c£0293abd033083d432afd9d1d9cbf414fd3d8ce0d3d9a7£e5990188c97fef

arc/../universalSchemes/OrganizationRegister.sol

85017d44551e46e4b1129b9£5b29148aa198c7ee4276e6b4£31d3c8d1184ed6e

arc/../universalSchemes/SchemeRegistrar.sol

d549a6£b390c092397af756a50087cd396c064b01bb231b02e094£827324533e

arc/../universalSchemes/UniversalScheme.sol

2d6£9d46ce0aadl1c274b6674d0366009a6f20ccb2f74de405bedf46ee64f£749

arc/../universalSchemes/UniversalSchemelnterface.sol

162081708d9574031abd655117d9e7c632dfcb14d2da0a090c5d483511abdbab

arc/../universalSchemes/UpgradeScheme.sol

bcf3e4672deBaafc9177e3eb28b3310eca204803944d3984b7f4a2ccc695cb8d

arc/../universalSchemes/VestingScheme.sol

2c62d692caa92e38aa0290c337724bf9007a4b5d2edfd4bafe154cb00fbOee33

arc/../universalSchemes/VoteInOrganizationScheme.sol

£8331766e2bd22c5d1c38027d908affb76cb96df59deabed4bf40e4317dd55e3

arc/../utils/Redeemer.sol

9¢19551002194bc9df cc8b56d8c7b4216b0b2a09f6779dc78728c4£09789b09%a

arc/../votingMachines/VotingMachineCallbacks.sol

33913ae6738240e5da7fe141a3b91c7££7926197a8e6e0d885eb0918fc935a8f

"https://github.com/daostack/arc/tree/c75e9b8f9647e2f876£2205cdbc00077a418¢cco1,

https://github.com/daostack/

infra/tree/823194f3ba89139d82b6709bf4aace53f3c9634c

2https://github.com/daostack/arc/tree/bcb7d5c868d5a53fc73bd8669001de447df61643
infra/tree/2d74f5e8862617a3c3f18c3dfbf301ledc507acae

https://github.com/daostack/

https://chainsecurity.com

https://github.com/daostack/arc/tree/c75e9b8f9647e2f876f2205cdbc00077a418cc91
https://github.com/daostack/infra/tree/823194f3ba89139d82b6709bf4aace53f3c9634c
https://github.com/daostack/infra/tree/823194f3ba89139d82b6709bf4aace53f3c9634c
https://github.com/daostack/arc/tree/bcb7d5c868d5a53fc73bd86ee001de447df61643
https://github.com/daostack/infra/tree/2d74f5e8862617a3c3f18c3dfbf301edc507acae
https://github.com/daostack/infra/tree/2d74f5e8862617a3c3f18c3dfbf301edc507acae
https://chainsecurity.com

File SHA-256 checksum

infra/../Reputation.sol 44b4830278c014ecc0083d54373d063daad8feef0c87db55e2e496e1495200be
infra/../libs/RealMath.sol 172£01£498882e3254af53824f06617396ac1ae80ee60664975e2b8335690£50
infra/../votingMachines/AbsoluteVote.sol £de68e53790d88ce3b0247e5d21d588398780610416fd82defd62321c99ea746
infra/../votingMachines/GenesisProtocol.sol 892c0addb3ccc3abdf7a6£36d1e6952324d72609ab3£2028271619fda1027cc3
infra/../votingMachines/GenesisProtocolLogic.sol 57d932b943ec478a20eaa9e58b367£430639bf 1da9cf13755dale9675c431912
infra/../votingMachines/IntVotelnterface.sol fc2b493abf3a9ed6e714882144d97149b7cla3c478c80aed1e620557128833db
infra/../votingMachines/ProposalExecutelnterface.sol 28cba373af75109b255aac4abadde9ebab64cd8d78e7c35861203c662f57ebel
infra/../votingMachines/QuorumVote.sol 77e0debf6e03ae1997d0b326e24d5abe7532fbe09ecd502295c68920322¢cc84c

infra/../votingMachines/VotingMachineCallbacksInterface.sol cd40dc8falb337bb34674ccbel7dc5a8f669ct6fefaf7c7£001892£950273d4d

Please note that only the updated versions of GenesisProtocol.sol and GenesisProtocollLogic.sol
have been audited.

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

e Scan the contracts listed above for generic security issues using automated systems and manually in-
spect the results.

e Manual audit of the contracts listed above for security issues.

Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology?).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.
Impact specifies the technical and business related consequences of an exploit.

Severity is derived based on the likelihood and the impact calculated previously.

We categorize the findings into 4 distinct categories, depending on their severities:

Low: can be considered as less important
° m Medium: should be fixed
° 0 High: we strongly suggest to fix it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD

Shttps://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

ChainSecurity Security Audit Report

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

During the audit concerns might arise or tools might flag certain security issues. After careful inspection of
the potential security impact, we assign the following labels:

o A no security impact
o : during the course of the audit process, the issue has been addressed technically
o PGl N: issue addressed otherwise by improving documentation or further specification

o ANGLIERo[SIel: issue is meant to be fixed in the future without immediate changes to the code

Findings that are labelled as either or PALYLIEERET] are resolved and therefore pose no security
threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

https://chainsecurity.com

https://chainsecurity.com

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

ChainSecurity Security Audit Report

System Overview

Reputation

Agent’s votes are weighted by their reputation. User reputation is similar to a user’s token balance with the
difference that reputation is not transferable. Reputation can however be minted and burned by the contract
owner. A user’s reputation is tracked over time to form reputation history in the form of checkpoints. Every time
the reputation amount changes either through minting or burning, a new checkpoint which stores the current
block number and the new reputation amount, is added to the user history. This enables the system to know
exactly how much reputation a user had at any block number.

There are multiple schemes in the DAO implementing different distributions of reputation.

Fixed Reputation Allocation

Contract FixedReputationAllocation implements a scheme that allocates a predefined amount of reputa-
tion to whitelisted beneficiaries. The owner sets the amount of reputation reward to be distributed, adds all
beneficiaries to the whitelist and enables the redemption. Beneficiaries have to call redeem() to collect their
reputation.

Auction for Reputation

Contract Auction4Reputation implements a scheme to auction off a certain amount of reputation in exchange
for a given ERC20 token. The auction runs within a certain timeframe and may be divided into multiple sub-
auctions. All parameters, the reputation reward to be distributed, the start time of the auction, the end time
of the auction, the amount of auctions during this timeframe and the time from which on users can claim their
reputation are set by the owner upon initialization. Furthermore the ERC20 token accepted as payment and
the address which can claim these must be set.

The total amount of reputation to be distributed is split equally among all sub-auctions. All participants
during an auction pay the amount of tokens they contribute using the bid function. The amount of reputation
one receives is the percentage of one’s contribution during the sub-auction multiplied by the reward to be
distributed per auction, rounded down.

Only after all auctions are completed and the redemption is enabled can users claim their reputation using
the redeem function. The owner can transfer the collected tokens to the wallet address defined during the
initialization, once the auction has reached its end.

Locking ETH for Reputation

Contract LockingEther4Reputation implements a scheme to distribute reputation in exchange for locking up
ETH for a certain amount of time.

Parameters are: total reputation reward to be distributed, the locking start time, the locking end time, the
redemption start and the maximum locking period. These are set by the owner upon initialization.

Users can participate by calling lock with the intended parameters and msg.value. Furthermore, calls to
release to retrieve the funds and to redeem to claim the rewards are necessary interactions after the respective
times elapsed.

Locking Token for Reputation

Contract LockingToken4Reputation implements a scheme to distribute reputation in exchange for locking up
tokens for a certain amount of time.

A price oracle returns the exchange rate for the supported tokens.

Parameters are: total reputation reward to be distributed, the start time of the lockings, the end time of the
lockings, the start time of the redemption, the maximum locking period and the address of the price oracle.
These are set by the owner upon initialization.

Users can participate by calling 1ock with the desired parameters. Furthermore calls to release to retrieve
the funds and redeem to claim the reward are necessary interactions after the respective timeframes have
elapsed.

m https://chainsecurity.com

https://chainsecurity.com

External Locking for Reputation

Contract ExternallLocking4Reputation implements a scheme to distribute reputation in exchange for locking
up tokens in an external contract.

The external locking contract address and all other parameters, like the total reputation reward to be dis-
tributed, the claiming start time, the claiming end time and the time users are able to redeem their reputation
is set by the owner upon initialization.

Users interact with the claim function which handles the interaction with the external locking contract. If
the call to the external contract was successful it locks the returned amount of tokens.

Users must call redeem() once the time has advanced past the redeemEnableTime to claim their reputa-
tion.

Note that the locking and retrieval of the locked funds happens in the external contract.

Forwarder

Contract Forwarder implements a scheme which forwards all calls via the fallback function to a defined con-
tract. This contract is intended to be an avatar. The defined contract and the expiration time, after which any
call will revert are set by the owner upon initialization. The only exception is an unregisterSelf functionality,
allowing anyone to unregister the scheme after the expiration time has passed. This scheme is intended to
forward calls to a dao.

Making External Calls

The GenericScheme contract implements a new universal scheme that enables proposing and executing
calls to arbitrary functions. Any user is able to propose that a given avatar executes a call to an external
function and a set of parameters as provided by the proposal maker. The voting options are either for or
against the execution of the call.

Should the proposal be accepted, the call will be executed through the controller contract which now
supports making generic contracts using the organization’s avatar.

ChainSecurity Security Audit Report

Best Practices in DAOSTACK’s project

Projects of good quality follow best practices. In doing so, they make audits more meaningful, by allowing
efforts to be focused on subtle and project-specific issues rather than the fulfillment of general guidelines.
Avoiding code duplication is a good example of a good engineering practice which increases the potential
of any security audit.
We now list a few points that should be enforced in any good project that aims to be deployed on the
Ethereum blockchain. The corresponding box is ticked when DAOSTACK’s project fitted the criterion when the
audit started.

Hard Requirements

These requirements ensure that the DAOSTACK’s project can be audited by CHAINSECURITY.
IZ The code is provided as a Git repository to allow the review of future code changes.
m Code duplication is minimal, or justified and documented.

Libraries are properly referred to as package dependencies, including the specific version(s) that are
compatible with DAOSTACK’s project. No library file is mixed with DAOSTACK’s own files.

The code compiles with the latest Solidity compiler version. If DAOSTACK uses an older version, the
reasons are documented.

|Z[There are no compiler warnings, or warnings are documented.

Soft Requirements

Although these requirements are not as important as the previous ones, they still help to make the audit more
valuable to DAOSTACK.

m There are migration scripts.

IZ There are tests.

|Z[The tests are related to the migration scripts and a clear separation is made between the two.

m The tests are easy to run for CHAINSECURITY, using the documentation provided by DAOSTACK.

D The test coverage is available or can be obtained easily.

m The output of the build process (including possible flattened files) is not committed to the Git repository.

The project only contains audit-related files, or, if not possible, a meaningful separation is made between
modules that have to be audited and modules that CHAINSECURITY should assume correct and out of
scope.

m There is no dead code.
m The code is well documented.

The high-level specification is thorough and allow a quick understanding of the project without looking at
the code.

D Both the code documentation and the high-level specification are up to date with respect to the code
version CHAINSECURITY audits.

m There are no getter functions for public variables, or the reason why these getters are in the code is given.

m Function are grouped together according either to the Solidity guidelines*, or to their functionality.

“https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions

m https://chainsecurity.com

https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions
https://chainsecurity.com

Security Issues

In the following, we discuss our investigation into security issues. Therefore, we highlight whenever we found
specific issues but also mention what vulnerability classes do not appear, if relevant.

Unlimited redemption of reputation o

TheFixedReputationAllocation scheme is intended to allocate a predefined reputation amount to whitelisted
beneficiaries. A beneficiary can call redeem() repeatedly and each time his reputation gets increased by the
value of the beneficiaryReward. Consequently, the total reputation to be distributed is not limited to the value
of the state variable reputation reward, which is described by “the total reputation this contract will reward”.

Likelihood: High
Impact: High

Fixed: A beneficiary is now removed from the beneficiaries map after redeeming their reputation. This
prevents multiple successful calls to the redeem function by the same beneficiary.

Potential of locked tokens in LockingToken4Reputation due to unsafe math 0

A LockingToken4Reputation contract allows users to lock up tokens and earn reputation. This contract may
support multiple tokens, depending on the priceOracle.

Irregardless of the token to be locked up, the 1ock function is called which calls the internal _lock function
with the respective parameters. The contract keeps track of the amount of tokens currently locked up. The
new amount is calculated with totalLocked += _amount; using the standard addition operation. Note that
there is one counter only for all different tokens. Next totallockedLeft is updated with the new amount
of totallLocked: totallLockedLeft = totallocked;. Thus if the previous addition overflowed, the variable
totallLocked will be significantly smaller than the actual amount of locked tokens.

When releasing tokens, the contract keeps track of how many tokens are left locked up, notably this is
done with a SafeMath subtraction: totallLockedLeft = totallockedlLeft.sub(amount); This transaction
cannot underflow as SafeMath would make it revert, thus the release of tokens would not be possible anymore
if the amount of tokens to be released is > totallLockedLeft.

Likelihood: Low
Impact: High

Fixed: DAOSTACK solved the problem by using SafeMath instead of the standard addition operation, this
prevents any overflow and thus removes the risk of locked tokens.

Non use of SafeMath results in theoretical overflows | XLl

The SafeMath library is not consistently used throughout the code base resulting in possible overflows during
arithmetic operations. A separate issue has been opened for an overflow with an actual and direct impact on
the system, while this issue summarizes overflows which are less probable.

Unauthorized token withdrawals

Only possible in theory, as overflowing a uint256 by incrementing it by one inside the large and gas-heavy
lock function is not feasible for any attacker. Nonetheless CHAINSECURITY wants to raise awareness for the
following scenario: The vulnerability itself is in the Locking4Reputation contract but will be exploited through
LockingToken4Reputation which inherits from Locking4Reputation. We assume the attacker controls two
addresses, 0xA and 0xB.

e The attacker, using 0xA, locks 10000 cheap tokens and we assume the token is deployed at address
0xL0. This token must be known to the priceOracleContract s.t. the locking is successful.

ChainSecurity Security Audit Report _

A lockingId will be created: keccak256(abi.encodePacket(this, lockingsCounter). Note that no
address is not included. This will result in that both 0xA and 0xB will be able withdraw “their” tokens in
the end. The lockingId will be used to create a locking in the storage at the place lockers[0xA] [
lockingId].

e lockingsCounter is a counter which gets incremented with 1ockingsCounter++.

e Finally lockedTokens[lockingId] is set to the address of the worthless token at @xL0. Now we need
to wait until the counter overflows or make this happen, since we want to create a new locking with the
same lockingld.

e After the counter overflowed, the attacker, using ©xB, locks one unit of a high value token deployed at
OxHI with the same lockingId.

e Again, the lockingId will be created with keccak256(abi .encodePacket(this, lockingsCounter).
Note that this will create a locking in the storage at the place lockers[0xB] [lockingId]

e The attacker uses 0xA and 0xB so he can withdraw everything. Otherwise he would overwrite it and could
only withdraw the latter. At this point lockedTokens[lockingId] is overwritten by the address of the
high value token at ©xHI.

e Now, using 0xA, the attacker releases his tokens by calling release(). Everything will pass and the
amount of locked up tokens will be transferred with the transfer function of the address stored in the
lockedTokens[lockingId]. Note that this was initially the address of the cheap token at 0xL0 but has
just been overwritten by address the high value token at @xHI.

e Hence, despite 0xA locking up 1000 worthless tokens at @xL0, the attacker now can get a transfer of 1000
high value tokens at @xHI.We remark that for this to work the contract must have enough funds of the
higher value token, but this will likely be the case, e.g. tokens of other users which are currently locked
up. More so, legitimate users with locked up tokens will not be able to release their tokens anymore if the
contract doesn’t have enough tokens anymore.

Fixed: Inthe updated code this is not possible anymore as SafeMath is now used which prevents an overflow
of lockingsCounter.

Execution of proposal with few votes
In infra contract AbsoluteVote: Proposals can be executed when following condition holds:
if (proposal.votes[cnt] > totalReputationsprecReq/100)

Note that precReq can only be between 1 and 100. The totalReputation is not necessarily bounded
and may as high as 22°¢ — 1. The total reputation is set by the owner when setting up the distribution of the
reputation. It is noteworthy that if the proposal has multiple choices, the first choice which fulfill this condition
is executed.

Addressed: This issue was address by moving the division forward which leads to a loss of precision. This
is described in a separate issue, namely Division before Multiplication. CHAINSECURITY recommends
to consider another fix or use the original code.

Overflowing reputation through ContributionReward

The redeemReputation function defined in the universal scheme ContributionReward calculates the
reputation using:

229 reputation = int(periodsToPay) * _proposal.reputationChange;

ContributionReward.sol

In the highly unlikely event that the multiplication parameters are sulfficiently high the operation may overflow.

m https://chainsecurity.com

https://chainsecurity.com

Fixed: DAOSTACK added validation of the proposal parameters which ensures that the maximum amount of
periods times the reputationChange does not overflow.

Overflow in GenesisProtocolLogic possible
The GenesisProtocollLogic._execute function makes an untrusted call to getTotalReputationSupply()
function of the contract VotingMachineCallbacksInterface which returns a uint256 number and gets
stored in totalReputation. This is then multiplied by the queuedVoteRequiredPercentage which is between
50 to 100. Hence the value of executionBar can be manipulated by the proposer to some extent.

491 wuint totalReputation = VotingMachineCallbacksInterface(proposal.callbacks).
getTotalReputationSupply(_proposalld);
492 uint executionBar = totalReputation % params.queuedVoteRequiredPercentage/100;

GenesisProtocolLogic.sol

In function redeem of GenesisProtocollogic contract, the operation below would result in an integer
underflow if expirationCallBountyPercentage is 100. This can be set in the executeBoosted function.

271 uint _totalStakes = ((totalStakes*(100 — proposal.
expirationCallBountyPercentage))/100) — proposal.daoBounty;

GenesisProtocolLogic.sol
A further theoretical integer overflow, although practically mostly impossible to exploit is:

287 uint preBoostedVotes = proposal.preBoostedVotes[YES] + proposal.
preBoostedVotes [NO] ;

GenesisProtocolLogic.sol

CHAINSECURITY recommends to fix both integer overflow issue by using the SafeMath library.

Addressed: DAOSTACK has acknowledged that the totalReputation can have max value for uint256 type.
DAOSTACK has fixed or addressed other reported overflow issues. Due to a corner case where the value of
expirationCallBountyPercentage is 100, totalStakes can still underflow.

Likelihood: Low
Impact: High

Enforcing continuation of ICO after cap has been reached o

start() of SimpleICO is public and may be invoked by anyone for any existing avatar on the condition that
this avatar has no currently running ICO in this contract and getParametersFromController() returns a
hash were the parameter cap is non-zero. Parameters for the ICO will be provided by the Controller and are
retrieved by a call to getParametersFromController (). Clear specifications of the expected behavior of this
function are missing, implicitly it is assumed that it only returns a hash of parameters when it’s ready to open
an ICO which is not documented however and may not hold.

If the ICO reaches its max. funding before the endBlock, anyone may “restart” it immediately by calling
start(). This works under the assumption that getParametersfromController() returns the same hash
again which hold in the current implementation.

start () can be called successfully because as the funding goal was reached isActive() will return false
. A new organization struct will be initialized with the paramsHash, the new avatarContractlCO and overwrite
the old organizationsICOInfo[_avatar].

Calls to the mintToken(') function will still go to the same contract as before, the outcome depends on this
function.

Likelihood: Low
Impact: High

ChainSecurity Security Audit Report

Fixed: DAOSTACK removed the SimpleICO contract.

Division Before Multiplication | = YT

The division operation may be performed before the multiplication as the order of evaluation of the expression
is not guaranteed for same precedence operators. This could result in possible fractional errors in the result.

494 uint256 executionBar = (totalReputation/100) % params.
queuedVoteRequiredPercentage;

GenesisProtocolLogic.sol

253 if (proposal.votes[cnt] > (totalReputation/100)xprecReq) {

AbsoluteVote.sol

27 if (proposal.totalVotes > totalReputationkprecReq/100) {
QuorumVote.sol

CHAINSECURITY recommends to explicitly perform multiplication before division operation.

Likelihood: Low
Impact: Medium

Acknowledged: DAOSTACK acknowledged that the totalReputation can be max of uint256 type. DAOSTACK
is aware of the fractional errors and they are bearable.

Dependence on block.timestamp v Acknowledged

Time critical events such as the start/end of an auction or the redemption period use now, an alias for block
.timestamp for determining the time.CHAINSECURITY wants to make DAOSTACK aware that miners are able
to manipulate this value. According to the Ethereum Yellowpaper, the only condition for a block’s timestamp
is that it is bigger than the timestamp of it’s parent’s block. Popular clients as Geth and Parity accept blocks
with timestamps up to 15 seconds in the future. CHAINSECURITY recommends to consider the best practices
regarding the use of timestamps in solidity®.

If the time dependent event can vary by 15 seconds, the usage of timestamps is acceptable.

Likelihood: Low
Impact: Medium

Acknowledged: DAOSTACK is aware of the best practices and confirms this is no issue for their set of con-
tracts.

Shttps://consensys.github.io/smart-contract-best-practices/recommendations/#timestamp-dependence

g https://chainsecurity.com

https://consensys.github.io/smart-contract-best-practices/recommendations/#timestamp-dependence
https://chainsecurity.com

Trust Model and Implications

The issues described in this section are not security issues but describe functionality which is not fixed inside
the smart contract and hence requires additional trust into DAOSTACK, including in DAOSTACK’s ability to deal
with such powers appropriately.

CHAINSECURITY raises these issues to increase awareness about what roles have which powers and what
consequences can be encountered in case of collusion, corruption or malicious behaviour, as this is important
to consider for both DAOSTACK and its users.

Trust in schemes and technical competence of agents m v Acknowledged

Upon creation of a new proposal, the callback address is set to msg.sender. This callback contract is sup-
posed to provide all required functionality for a VotingMachineCallbacksInter face, namely functionality to
execute the proposal executeProposal () and related to the reputation getTotalReputationSupply() and
reputationOf(). It is important to note that participating users need to trust the implementation of these
functions. Proposals to be voted on are created by registered schemes. A malicious scheme may not execute
the supposed choice as expected.

Initially schemes are added when an organization is forged. DaoCreator features a setSchemes () function
where the avatar decides which schemes are added. Users either need to trust the organization or need a high
level of technical competence to fully understand what the bytecode of the registered schemes is doing.

Contract SchemeRegistrar allows an organization to vote on the registering of new schemes while the
organization is already operating. Users need to be very careful to really understand what the bytecode of
the scheme at the given address is actually doing so that a malicious scheme does not get added to the
organization.

Acknowledged: DAOSTACK acknowledges that malicious schemes can do harm to the system but assumes
that such schemes will not be registered to the organization in the first place. Additionally, schemes can be
verified on platforms such as Etherscan before they are registered through voting.

Owner of proposal may vote one behalf of users © =

The AbsoluteVote contract features an ownerVote function which allows the owner of a proposal to vote on

behalf of anyone with reputation if the allowOwner flag of the proposal is true. This creates a trust issue for

users, especially as the owner can not only vote but also override any already casted vote. Note that only

registered schemes may be able to exploit this in a meaningful way. Please refer to issue Trust in Schemes
and technical competence of agents regarding trust in schemes.

Fixed: DAOSTACK replaced the allowOwner with the voteOnBehal f functionality which resolves the problem
of overwriting casted votes of unsuspecting users while providing a proxy for votes functionality. This approach
gives a clean separation between the two modes of operations, either no voteOnBehal f address is set or the
address set for voteOnBehal f needs to vote as proxy on behalf of every participating address.

Contract owner can obtain unearned reputation 0 v Addressed

Auction4Reputation auctions of reputation for tokens, enabling users to buy voting power according to their
token contribution. Users participating in this scheme must understand the underlying assumption that the
owner is trusted and this should be clearly documented.

As all collected tokens will be transferred to the wallet address of the owner, the owner may simply partici-
pate in the auction. However instead of paying for the reputation with his own tokens, the owner just locks up
the other contributor’s tokens in the wallet address for a certain amount of time. Consequently the owner has
voting power without a matching token contribution, which is misleading and unfair to the users participating in
this scheme.

Addressed: DAOSTACK notes that the wallet address should be a trusted account and claims that in most
cases the wallet will be the avatar address.

ChainSecurity Security Audit Report “

Design Issues

The points listed here are general recommendations about the design and style of DAOSTACK’s project. They
highlight possible ways for DAOSTACK to further improve the code.

No benefit of using the RealMath library 0

The RealMath library used actually provides no benefit regarding precision but significantly increases the gas
consumption of the execution.

For doing a multiplication, using RealMath provides no benefit if both values are converted just prior using
toReal() as they won’t have a fractional part. Performing RealMath.div keeps fractions decimals, however
just after doing the division the result is converted using fromReal() which truncates the fractional part. In
sum this behaves just like SafeMath.div or a/b but is significantly more expensive in terms of gas.

This can be observed in the following parts of the implementation:

e | ocking4Reputation.sol

int256 repRelation = int216(score).toReal().mul(int216(reputationReward)

.toReal());
reputation = uint256(repRelation.div(int216(totalScore).toReal())

.fromReal());

e FixedReputationAllocation.sol

beneficiaryReward = uint256(int216(reputationReward)
.div(int256 (numberOfBeneficiaries)). fromReal());

e Auction4Reputation.sol

int256 repRelation = int216(bid).toReal().mul (int216(
auctionReputationReward)
.toReal());
reputation = uint256(repRelation.div(int216(auction.totalBid).toReal())

. fromReal());

e GenesisProtocollLogic.sol

uint256(int256 (averageDownstakesOfBoosted) +
((int216(proposal .stakes[NO])—int216(averageDownstakesOfBoosted))

.toReal ()
.div(int216(orgBoostedProposalsCnt [proposal .organizationId])

.toReal())).fromReal());

uint256(int216(averageDownstakesOfBoosted
.mul (boostedProposals+1)
.sub(proposal .stakes[NO])).toReal()
.div(int216(boostedProposals).toReal()).fromReal());

uint((int216(proposal .stakes[YES]).toReal()
.div(int216(proposal .stakes[NO]).toReal())). fromReal());

There are only two further uses of functions of the RealMath library:

e GenesisProtocollLogic.sol

ﬂ https://chainsecurity.com

https://chainsecurity.com

int alpha = int216(_params[4]).fraction(int216(1000));
//set a limit for power for a given alpha to prevent overflow
uint256 limitExponent = 4172;//for alpha less or equal 2
uint256 j = 2;
for (uint256 i = 2; i < 16; i = ix%x2) {
if ((uint(alpha.fromReal()) > i) && (uint(alpha.fromReal()) <= i

x2)) |
limitExponent = limitExponent/j;
break;

}

J++;

Note that this can easily be implemented without RealMath. Furthermore please refer to issue Wasteful
conversion.

function threshold(bytes32 _paramsHash, bytes32 _organizationId) public
view returns(uint256) ({
int256 power = int216(orgBoostedProposalsCnt[_organizationId]).toReal
QF

Parameters storage params = parameters[_paramsHash];

if (power.fromReal() > int(params.limitExponentValue)) ({
power = int216(params.limitExponentValue).toReal();
}

return uint(params.thresholdConst.pow(power).fromReal());

}

CHAINSECURITY advises DAOSTACK to remove the unnecessary and complex RealMath library. The
required pow() functionality may be implemented directly.

Fixed: DAOSTACK removed the redundant RealMath usage and reduced the library functionality to only the
exponentiation operation.

Wrong unit denomination m

The SimpleICO contract features following variables to store ETH related values:
e totalEthRaised
e uint cap, described asCap in Eth
e uint price, described as Price represents Tokens per 1 Eth
e uint incomingEther

e uint change

These variables are implicitly assumed to store values in ether units. However, they interact directly with
msg.value without any prior conversion and msg.value is denominated in wei®. Consequently, there is a
mismatch in orders of magnitude.

Note, that while DAOSTACK has tests, these test were done with hard-coded numerical values assumed to
be ETHs while actually all test operations handled some small wei amounts only. Any real ETH transaction to
the donate () function would have uncovered the mismatch immediately.

Fixed: DAOSTACK removed the SimpleICO contract.

6h‘ctps ://solidity.readthedocs.io/en/v0.4.25/units-and-global-variables.html#block-and-transaction-properties

ChainSecurity Security Audit Report _

https://solidity.readthedocs.io/en/v0.4.25/units-and-global-variables.html#block-and-transaction-properties

Inconsistent interpretation of voting parameters m

The implementation of the voting machines is not consistent on whether 0 or 1 describes the first choice of
a proposal. 0 is the default value for an uninitialized uint and inside the AbsoluteVote contract a vote for
choice 0 is described as “abstain”. The implementation however treats choice @ no different than any other
choice which can be voted for and executed if the required percentage of votes has been reached.

This has the following implications:

e AbsoluteVote starts counting choices at 0. Hence the maximal number of choices resulting is
MAX_NUM_OF_CHOICES + 1 which might be unexpected.

e QuorumVote, which inherits from AbsoluteVote and only overrides _execute, starts checking choices
from 1 instead of 0, so the 0 proposal can never win or be executed. Note, that through the inherited
_vote() function from AbsoluteVote the 0 choice can still get votes.

e getAllowedRangeOfChoices() returns (1, MAX_NUM_OF_CHOICES) which is again inconsistent as
AbsoluteVote also treats 0 as a valid choice.

e getNumberOfChoices() returns numOfChoices which is currently numOfChoices - 1, as the 0 option is
not included.

e isAbstainAllow() is hardcoded to return true. While one can vote 0 in the current implementation,
this does not necessarily mean to abstain as there may be a valid choice at position 0.
e Depending on what

ProposalExecutelnter face(tmpProposal.callbacks) .executeProposal (_proposalld,int(cnt))
does in case choice @ wins, e.g. if there is a choice 0, the call completes successfully or not.

A generic scheme cannot execute a choice 0 if it won the proposal.

Additionally, contract AbsoluteVote has a state variable MAX_NUM_OF _CHOICES which seems to represent
the maximum number of choices a vote can have.

e In propose() and internalVote() some require() clauses imply that the count is made up to and
including zero, meaning 0 is also already a valid proposal:

require(_numOfChoices > @ && _numOfChoices <= MAX_NUM_OF_CHOICES);
proposal .numOfChoices = _numOfChoices;

require(_vote <= proposal.numOfChoices);

e In _execute() we can observe execution from zero up to and including the number of choices:

for(uint cnt = ©; cnt <= proposal.numOfChoices; cnt++) {

e However in QuorumVote, which inherits from AbsoluteVote we see in _execute() that there are only
checks for proposals starting from 1, but _vote() allows one to also vote for choice 0:

for (uint cnt = 1; cnt<=proposal.numOfChoices; cnt++) {

Fixed: DAOSTACK fixed the issue by consistently implementing 0 as a valid proposal choice. To further aid
consistency, the code was documented to make explicit the assumption that the abstain vote is excluded from
MAX_NUM_OF _CHOICES.

ml https://chainsecurity.com

https://chainsecurity.com

Minor code duplication in Controller

Function unregisterScheme defined in the Controller contract implements its own logic to check if the
scheme to be unregistered has been previously registered.

function unregisterScheme(address _scheme,address _avatar)

{
//check if the scheme is registered
if (schemes[_scheme].permissions&bytes4(1) == bytesd(0)) {
return false;
}
}

However, this logic is already implemented in the internal _isSchemeRegistered function. Thus
unregisterScheme can make an internal function call instead of duplicating code.

Fixed: DAOSTACK removed the code duplication and instead calls the internal function.

Unexpected results when a proposal does not exist 3 i;‘

Function balanceOfStakingToken defined in contract VotingMachineCallbacks takes a StandardToken
address and a proposalId and returns the balance of the proposal’'s avatar for that token.

However, there is no check that the proposal exists in the proposalsInfo mapping. If that is the case then
the following line:

return _stakingToken.balanceOf(address(avatar));

will return the balance of the ZERO address, which is the number of burned tokens. This can give a false
information to the callee of balanceOfStakingToken.

Fixed: DAOSTACK added a check if the proposal exists. For non-existing proposals this function will now
return 0.

Missing check for zero address

Function setParameters in contract SimpleICO creates a new ICO configuration based on the parameters
it receives as input. Two of those parameters are the addresses of the ICO admin and beneficiary. Since
these are critical roles DAOSTACK could consider adding a require statement checking that the addresses
are not mistakenly set to the zero address.

Fixed: DAOSTACK removed the SimpleICO contract.

Rounding issues in schemes 0

The Auction4Reputation contract suffers from two rounding issues:

¢ |: Rewards really distributed are smaller or equal to the rewards initially intended to be distributed

e |l: More auctions can be created than the _numberOfAuctions

I: Rewards really distributed are smaller or equal to the rewards initially intended to be distributed
Checks ininitialize() are insufficient to ensure correct execution:

require(_redeemEnableTime >= _auctionsEndTime)
require((_auctionsEndTime.sub(_auctionsStartTime)).div(_numberOfAuctions) > 0)

ChainSecurity Security Audit Report

However, the division in auctionReputationReward = _reputationReward / _numberOfAuctions; trun-
cates the result and rounds it down to the nearest integer. Resulting in the fact that: actual rewards
distributed is <= total rewards to be distributed. There will be a 0 reputationReward to be dis-
tributed per auction in case reputationReward < numberOfAuctions.

Il: More auctions can be created than the _numberOfAuctions

While the number of auctions is set upon creation by the owner, there may be more auctions due to
rounding issues. During the execution of the constructor the auctionPeriod is set to: auctionPeriod = (
_auctionsEndTime.sub(_auctionsStartTime)).div(_numberOfAuctions); While SafeMath is used, the
operation is performed on uint types and the result of the division will be truncated if necessary. Rounding er-
rors will be encountered when the values _auctionsStartTime, _auctionsEndTime and _numberOfAuctions
have not been carefully chosen, as there are no checks to enforce a specific value range.

When bidding for an auction by calling bid(), the auctionId is calculated as follows: auctionId = (
now — auctionsStartTime)/ auctionPeriod;. As auctionPeriod may have been truncated when it was
calculated, it may be smaller than expected as it lacks the fractional part. The result of this division is conse-
quently higher than expected, which might result in: auctionId > numberOfAuction.

A minimal example demonstrates the vulnerability:

_reputationReward = 1000
_auctionsStartTime = 1225
_auctionsEndTime = 21283
numberOfAuctions = 100

After initialization, we have:

auctionPeriod = (2123-1125)/100 = 9.98 = 9
auctionReputationReward = (1000/100) = 10

reputationRewardLeft = 1000

Edge cases for bids:

bidding at the start:

1225-1225 / 9 = @ — Period 0

bidding at the very end:

2123—-1225 / 9 = 898 / 9 = 110.88 — Period 110

Resulting in a total of 110 possible periods. Thus the auctionReputationReward can be claimed 110
times, however only until the 100th time the auctionReputationReward has been payed out as later transac-
tions will revert due to insufficient reputation remaining. Consequently legitimate contributors can’t redeem
their reputation.

Further rounding risk is depending on the correct functionality of RealMath:

int256 repRelation = int216(bid).toReal().mul(int216(auctionReputationReward).
toReal());

reputation = uint256(repRelation.div(int216(auction.totalBid).toReal()).
fromReal());

Fixed: DAOSTACK resolved this by removing all instances where the result of a division may be truncated.
The duration of a period is not calculated anymore but passed as an argument, which removes the loss of
precision due to truncation. Argument _reputationReward, the total reputation to be distributed, was replaced
by _auctionReputationReward, the reputation to be distributed per auction which removes another source of
rounding errors.

Uncatched exception when making a call proposal
The universal scheme GenericScheme allows users to propose a call on external contracts. The proposeCall
function first fetches the scheme parameters which are registered at the organization’s controller via the
interface function getParametersFromController(_avatar).

However, if the organization of the specified avatar has not registered the GenericCall scheme then the
following call will return a Parameters struct with default values for the fields:

m https://chainsecurity.com

https://chainsecurity.com

Parameters memory params = parameters|[getParametersFromController(_avatar)];

This will cause the execution flow to throw an exception when calling a function on the zero address:

IntVotelnterface intVote = params.intVote;
bytes32 proposalld = intVote.propose(2, params.voteParams,msg.sender,
_avatar);

CHAINSECURITY recommends adding a check whether the organization has registered the scheme so that
the transaction fails gracefully if the condition is not met.

Fixed: DAOSTACK added a require statement to the getParametersFromController function which en-
sures that the scheme is registered or the transaction reverts.

Inefficient struct storage |

There are several cases throughout the codebase where reordering the fields in a struect can reduce gas
costs. Tightly packing smaller data types into one word allows to save significant gas costs.

struct Proposal can save one full storage slot by placing bool open right after address owner. Similar
reorderings can be done in the SchemeProposal struct of the SchemeRegistrar contract and others.

struct Proposal {
address owner; // the proposal’s owner
bytes32 organizationId; // the organization Id
address callbacks;
uint numOfChoices;
bytes32 paramsHash; // the hash of the parameters of the proposal
uint totalVotes;
mapping(uint=>uint) votes;
mapping(address=>Voter) voters;
bool open; // voting open flag

Another way of reducing gas consumption is using optimal datatypes for struct fields. An example instance
is struct Parameters:

struct Parameters {
uint precReq; // how many percentages required for the proposal to be
passed
bool allowOwner; // does this proposal has an owner who has owner rights?

Percentage required can only be values between 1 and 100, so uint256 is unnecessary. Usage of a
smaller datatype may be considered so that the field bool allowOwner fits into the same storage slot.

The field proposalType of the struet GCProposal indicates whether the proposal wants to add or re-
move a global constraint, however takes a full storage slot to do so. This information can be easily stored
in a bool field. The boolean field proposalType can then be placed after address gc in the struct, saving
one full storage slot by allowing the compiler to place them together and hence reducing overall gas costs.
Similar optimizations can be done in the UpgradeProposal struct of the UpgradeScheme contract and in the
SchemeProposal struct of the SchemeRegistrar contract.

Fixed: DAOSTACK optimized the inefficient structs.

Unchecked return value m

There are several examples in the codebase where an external function is invoked but its return value is not
checked before proceeding with the execution.

Firstly, if a choice of a proposal in AbsoluteVote reaches the threshold, executeProposal of the callback
address is invoked. Given the interface this function is supposed to return a boolean. In the current implemen-
tation of AbsoluteVote this return value is not checked and the function returns true hardcoded. DAOSTACK

ChainSecurity Security Audit Report “

is advised to consider the implications and handling of a situation where the execution of the choice fails.

Another instance is when a vote on a vesting proposal is successful and the corresponding voting machine
calls function executeProposal on the VestingScheme contract. As a part of its implementation the function
has to mint the number of vested tokens so that the VestingScheme contract can transfer them to the ben-
eficiary of the vesting when the conditions for that are met. This is done through a call to the controller’s
mintTokens function:

controller.mintTokens(tokensToMint, this,avatar);

This function returns a boolean value which indicates the success of the transaction. However there is no
check that the return value is true and execution of executeProposal continues regardless. Therefore even
if the operation fails the vesting will be created bu the beneficiary will not be able to collect any tokens since
they have not been minted to the VestingScheme contract. Even worse, the beneficiary of the failed vesting
creation may collect tokens allocated for a different user since all recipients get their tokens transferred from
the contract’s balance.

Fixed: DAOSTACK solved the problem in the executeProposal function defined in the AbsoluteVote con-
tract by removing the hardcoded return true and replacing it with the actual return value of the call to the
ProposalExecutelnterface().

A require statement has been added to the call to controller.mintTokens() in the VestingScheme
contract to ensure the call was successful.

Strong incentives for delayed bidding o v Acknowledged

By design, a reputation auction may be divided into multiple periods, each auctioning off an equal part of the
total reputation. The reputation to be distributed is divided proportionally to the overall contribution during the
period. Consequently users do not know in advance how much reputation they will obtain, as this largely
depends on the contribution of other parties. Each period will have a different price.

Hence, there is no incentive to contribute early within a period. All rational actors would only commit very
close to the end of a phase, only when favorable conditions exist and more information is available as there
is a strong incentive to maximize ones reputation in the system. This might be done by crafting transactions
which first check that the current block’s timestamp is close the end of the period and the rate is acceptable
before omitting.

On a related note, a malicious miner may choose not to include any related transactions after his own even
though there might be transactions with higher fees trying to get a bid in. Note that a miner may increase the
block.timestamp up to 15 seconds into the future’.

Acknowledged: DAOSTACK is aware that there is an incentive for delayed bidding. A minimum auction period
of 15 seconds is now enforced.

Redundant operation when burning reputation
The owner of the Reputation contract is able to burn a certain value of a user’s reputation through the burn
function. The function is responsible for reducing both the user’s balance and the total supply.

if (curTotalSupply < amountBurned) {
amountBurned = curTotalSupply;

}

uint previousBalanceFrom = balanceOf(_owner);

if (previousBalanceFrom < amountBurned) {
amountBurned = previousBalanceFrom;

}

In case the value to be burned is higher than the total supply or the particular user’s balance, then the value
gets truncated and leaves the user with no reputation. The first operation is checking if the value is larger than
the total supply. This is redundant since in that case the burn amount will get truncated to the user’s balance
in the next step.

"https://consensys.github.io/smart-contract-best-practices/recommendations/#timestamp-dependence

ml https://chainsecurity.com

https://consensys.github.io/smart-contract-best-practices/recommendations/#timestamp-dependence
https://chainsecurity.com

Fixed: DAOSTACK removed the redundant check if the value to be burned is higher than the current total
supply.

Compilation with experimental pragma ©.5.0 fails =~
Due to missing external visibility modifiers, compilation with experimental pragma ©.5.0 fails. Fallback func-
tions in contracts Avatar and SimpleICO should be defined as external.

Fixed: All contracts now compile with solc 0.5.2.

The GenesisProtocollLogic._execute() function has a high cyclomatic complexity which is 17. The complex
methods might have some unintended paths in the code, which could result in security issues. More complex
methods tend to have less readability and more maintenance resources required.

Regarding the code flow, below is the state chart diagram for a proposal.

Queued
‘oting allowed |

PreBoosted

woting allowsd

ExpiredinQueue

Acknowledged: DAOSTACK acknowledges the issue.

Imprecise estimation of block numbers m v Acknowledged

The GenesisProtocollogic.executeBoosted() function ensures that the expirationCallBounty is given
to the transaction initiator who executes a boosted proposal.

As per specification, a transaction initiator will receive (1 +)% of the upstake held on that proposal, where
t is the number of blocks passing since the boosting-qualification block.

In the executeBoosted function this is implemented as below:

225 uint256 expirationCallBountyPercentage =
226 // solhint-disable-next-line not-rely-on-time
227 (1 + now.sub(proposal.currentBoostedVotePeriodLimit + proposal.times[1]).div

(15));

GenesisProtocolLogic.sol

ChainSecurity Security Audit Report

This code assumes that all blocks are generated within exact 15 second intervals. However, this varies®.
Hence, the calculated expirationCallBountyPercentage is not guaranteed, which, if tolerated, should be
documented clearly.

Acknowledged: DAOSTACK acknowledged that this will be documented clearly to let the users know that the
calculation is not guaranteed.

Unused event RefreshReputation

The RefreshReputation event definition is present in the AbsoluteVote contract. However, it is not being
used anywhere in the code.

Fixed: DAOSTACK has fixed the code and removed the unused event.

Used ERC20 instead of IERC20

DAOSTACK is using Open Zeppelin 2.1.0—rc.2, which has different implementation for ERC20 from the ver-
sion1.12.0. The ERC20 is full implementation of ERC20 standard and IERC20 is an interface. There are some
contracts which are using ERC20 to only use interface definition, it does not require full ERC20 implementa-
tion. Hence, it would cost more gas in the deployment of contract and contains dead code. Following are the
contracts using ERC20 only for the interface purposes:

e infra/votingMachines/GenesisProtocol.sol

e infra/votingMachines/GenesisProtocolLogic.sol

e infra/votingMachines/VotingMachineCallbacksInterface.sol
e arc/controller/Avatar.sol

e arc/controller/Controller.sol

e arc/controller/Controllerinterface.sol

e arc/controller/UController.sol

e arc/globalConstraints/TokenCapGC.sol

e arc/schemes/Auction4Reputation.sol

e arc/schemes/LockingToken4Reputation.sol

e arc/universalSchemes/ContributionReward.sol

e arc/universalSchemes/OrganizationRegister.sol

e arc/universalSchemes/VestingScheme.sol

e arc/utils/Redeemer.sol

e arc/votingMachines/VotingMachineCallbacks.sol
CHAINSECURITY recommends using IERC20 interface, instead of ERC20 to all places where only method

interface is required.

Fixed: DAOSTACK has updated the project to use Open Zeppelin 2.1.1 version. DAOSTACK has fixed all
the above listed files and uses functions using IERC20 interface. This reduces the contract deployment cost.

Unused imports ‘

There are some unused ERC20 import statements present in the following contracts:
e UniversalScheme.sol

e UniversalSchemelnter face.sol

8https://consensys.github.io/smart-contract-best-practices/recommendations/#the-15-second-rule

ﬂ https://chainsecurity.com

https://consensys.github.io/smart-contract-best-practices/recommendations/#the-15-second-rule
https://chainsecurity.com

97

418
419
420
421
422
423
424
425
426
427
428
429

Fixed: DAOSTACK has fixed the issue by removing the unused import statements from these contracts.

Type of argument reputationReward unclear

The initialize function of the FixedReputationAllocation contract takes argument _reputationReward
of type uint256 which sets the total reputation this contract will reward. Once all beneficiaries have been
added, the reward per beneficiary is calculated as below:

beneficiaryReward = uint256(int216(reputationReward).div(int256(
numberOfBeneficiaries)). fromReal());

FixedReputationAllocation.sol

The calculation implicitly assumes the variable reputationReward is already in the RealMath format. This
may be fine however should be clearly documented in the initialize function, as this will easily lead to
unintentional mistakes and lead to unexpected behavior. A more fail-safe version regarding user interaction
with the contract may be to take the normal value as argument and convert it using the toReal () function.

Fixed: DAOSTACK is not converting reputationReward variable using RealMath library. Hence normal val-
ues for _reputationReward argument will be allowed in initialize function.

Wasteful conversion

In the GenesisProtocollLogic contract, the setParameters function contains the following loop:

int alpha = int216(_params[4]). fraction(int216(1000));

//set a limit for power for a given alpha to prevent overflow

uint256 limitExponent = 172;//for alpha less or equal 2

uint256 j = 2;

for (uint256 i = 2; i < 16; i = i%2) {

if ((uint(alpha.fromReal()) > i) && (uint(alpha.fromReal()) <= i*2)) {

limitExponent = limitExponent/j;
break ;

}

J++;

GenesisProtocolLogic.sol

The variable alpha is never written to throughout the loop, however it is converted twice in each iteration in
the if clause. Additionally, the conversion of alpha to a RealMath int before the loop does not make sense as
it is then only accessed as alpha. fromReal (). At the very least, it looks like the conversions in every single
loop iteration can be avoided.

Fixed: DAOSTACK has removed alpha variable and not converting to other datatypes. This removes unnec-
essary conversion and consumes less gas.

ChainSecurity Security Audit Report

Recommendations / Suggestions

The contracts often use the uint type as it defaults to a full-word unsigned integer. A declaration could
be made such that it explicitly highlights the size e.g. uint256

Parameter @param for proposeChangeUpgradingScheme() in the UpgradeScheme contract is described
with @param _params ?7??.

event BeneficiaryAddressAdded(address _beneficiary); intheFixedReputationAllocation con-
tract contains an address parameter which is not indexed. Indexing the parameter would enable to easily
search logs for a given address.

EZj Two contracts of the universalSchemes, ContributionReward and GlobalConstraintRegistrar con-
tain TODO comments. DAOSTACK is advised to resolve remaining TODOs.

|:| The test suite contains tests to ensure that calls to a few hardcoded internal function revert. By design
of the Solidity this is impossible. Even if this would turn out to be possible due to an unknown major
security flaw in the compiler, it will not occur through normal function calls.

Under the assumption of a correct and trusted truffle and solc setup, a more robust way to test this would
be to verify that the ABI only includes the expected external/public functions.

m Contract Reputation defines a public state variable creationBlock which stores the block number
when the contract was created. However, its value is neither referred to internally, nor accessed by any
external contract through the automatically generated getter function.

m The SimpleICO contract has a donate function, which is actually used to purchase tokens as a obvious
comment within the function states:

// Compute how much tokens to buy:

Hence, such naming is misleading users and should be revisited.

m Parameter address owner in the burn function of the Reputation contract may cause confusion, al-
though it is described in the parameter description comment just above. In an onlyOwner function,
owner is usually associated with the owner/administrator of the contract, not the owner of the tokens to
be burned as it is the case here. DAOSTACK may consider to rename it to a more appropriate name like
address user.

EZ] MirrorContractICO inherits Destructible, however for MirrorContractICO contracts having been
deployed in start() of SimpleICO the owner(SimpleICO contract) features no functionality to invoke
the destruct() function nor any other functionality inherited from Destructible. Consequently the
inheritance of Destructible is not used and the unnecessary part of the code just wastes gas.

Note that it is a good thing that MirrorContract cannot simply be destructed during an ongoing ICO as
this would lead to multiple problems, including ETH sent to this address after the contract has been
selfdestructed will be locked forever.

m In the GenesisProtocollLogic contract there are some places where require() error messages are
used inconsistently:

233 require(stakingToken.transfer(msg.sender, expirationCallBounty), "
transfer to msg.sender failed");

GenesisProtocolLogic.sol
304 require(stakingToken.transfer(_beneficiary, rewards[Q]));
GenesisProtocolLogic.sol

CHAINSECURITY recommends to use require() with error messages at required places only. However,
for the same kind of calls, their usage should be consistent.

ﬂ https://chainsecurity.com

https://chainsecurity.com

m There is a function which has its visibility set to public and accepts an array as an argument.

402 function setParameters(

403 uint[411] memory _params, //use array here due to stack too
deep issue.

404 address _voteOnBehalf

405)

406 public

407 returns(bytes32)

GenesisProtocolLogic.sol

CHAINSECURITY recommends changing the visibility of these functions to external®. This makes the
function more efficient in terms of gas costs.

m Code indentation is not consistent in AbsoluteVote contract.

43 mapping(bytes32=>Parameters) public parameters; // A mapping from
hashes to parameters

44 mapping(bytes32=sProposal) public proposals; // Mapping from the ID of
the proposal to the proposal itself.

45 mapping(bytes32 => address) public organizations;

AbsoluteVote.sol

CHAINSECURITY recommends fixing the code indentation to have consistency.

m The internalVote() function present in GenesisProtocollLogic contract has a i f statement which is
bit complex and not readable easily.

686 if (((proposal.state == ProposalState.Boosted) &&

687 // solhint-disable-next-line not-rely-on-time

688 ((now — proposal.times[1]) >= (params.boostedVotePeriodLimit — params.
quietEndingPeriod)) | |

689 (proposal .state == ProposalState.QuietEndingPeriod))) {

GenesisProtocolLogic.sol

When the if statement is normalized, it is checking the condition below: As the && and | | short-circuiting
operator is used in conjunction readability of code is decreased. A reader has to take short-circuiting
operator properties into consideration to understand the actual logic of the if statement as the logic is
not straight forward.

if (
proposal .state == ProposalState.Boosted &&
(now — proposal.times[1]) »>= (params.boostedVotePeriodLimit — params.
quietEndingPeriod) ||
proposal .state == ProposalState.QuietEndingPeriod
)

The GenesisProtocol contract defines the ETH_SIGN_PREFIX constant, which is used to convert the
signature to Ethereum signature.

25 string public constant ETH_SIGN_PREFIX= "\x19Ethereum Signed Message:\
n32";

GenesisProtocol.sol

However, the OpenZeppelin also has the ECDSA library which supports this functionality and could be
imported by DAOSTACK.

9https://solidity.readthedocs.io/en/v0.4.24/contracts.html#visibility-and-getters

ChainSecurity Security Audit Report

https://solidity.readthedocs.io/en/v0.4.24/contracts.html#visibility-and-getters

m ContributionRewards features a new function validateProposalParams(uint[5] memory _rewards

, int256 _reputationChange). Contrary to all other functions and despite the complex input param-
eter _rewards, this one does not feature a docstring documenting the expected input parameters and
return values. CHAINSECURITY recommends to add documentation for better readability and to keep
consistency throughout the codebase.

DAOToken is commented with @dev ERC20 compatible token. It is a mintable, destructible, burnable
token. Note that destructible is ambiguous, there is no reachable SELFDESTRUCT.

Post-audit comment: DAOSTACK has fixed some of the issues above and is aware of all the implications
of those points which were not addressed. Given this awareness, DAOSTACK has to perform no more code
changes with regards to these recommendations.

https://chainsecurity.com

https://chainsecurity.com

Disclaimer

UPON REQUEST BY DAOSTACK, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT PUB-
LIC. THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE
ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT

REMAINS WITH CHAINSECURITY LTD..

ChainSecurity Security Audit Report

	Foreword
	Executive Summary
	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	System Overview
	Reputation
	Fixed Reputation Allocation
	Auction for Reputation
	Locking ETH for Reputation
	Locking Token for Reputation
	External Locking for Reputation
	Forwarder
	Making External Calls

	Best Practices in DAOStack's project
	Hard Requirements
	Soft Requirements

	Security Issues
	Unlimited redemption of reputation repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Potential of locked tokens in LockingToken4Reputation due to unsafe math repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Non use of SafeMath results in theoretical overflows repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Enforcing continuation of ICO after cap has been reached repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Division Before Multiplication repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Dependence on block.timestamp repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Model and Implications
	Trust in schemes and technical competence of agents repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Owner of proposal may vote one behalf of users repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Contract owner can obtain unearned reputation replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	No benefit of using the RealMath library repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Wrong unit denomination repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inconsistent interpretation of voting parameters repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Minor code duplication in Controller repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unexpected results when a proposal does not exist repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Missing check for zero address repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Rounding issues in schemes repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Uncatched exception when making a call proposal repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inefficient struct storage repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unchecked return value repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Strong incentives for delayed bidding repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Redundant operation when burning reputation repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Compilation with experimental pragma 0.5.0 fails repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	High complexity of execution repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Imprecise estimation of block numbers repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unused event !RefreshReputation! repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Used !ERC20! instead of !IERC20! repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unused imports repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Type of argument !reputationReward! unclear repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Wasteful conversion repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Disclaimer

