PUBLIC

Code Assessment

of the Crypto Pool Update

Smart Contracts

September 03, 2024

Produced for

$ CONIC

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o b~ WDN P

Notes

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG

© 0 01 W

10
13
16

https://chainsecurity.com

1 Executive Summary

Dear Conic,

Thank you for trusting us to help Conic with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Crypto Pool Update
according to Scope to support you in forming an opinion on their security risks.

Conic implements a new oracle for pricing LP tokens of Curve Crypto pools. Additionally, Conic
implements a new contract for determining the share of CNC rewards that is distributed to each Conic
pool.

The most critical subjects covered in our audit are functional correctness and resistance to oracle
manipulations. The contracts are functionally correct and are, in most cases, resistant against oracle
manipulations under the assumptions that:

1. Curve's pri ce_or acl e() cannot be manipulated to a lower value during a maximum of 2 blocks.
2. Curve pool imbalances are efficiently arbitraged every block.
3. Crypt oPool O acl e is not used for StableSwap pools.

4. The underlying Curve pools experience regular usage.

However, some certain edge conditions can enable oracle manipulation attacks that are able to extract
value: Oracle manipulation during withdrawal. Conic, for now, accepts this risk and tries to find an optimal
solution.

In summary, we find that the codebase provides an improvable level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

“)

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Crypto Pool Update repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note

1 | 11 July 2024 d0870eb522ccf4d345ce336394aaaa8bccad8alb Initial Version

2 | 14 August 2024 860c08429274949a23e49h783d89158¢c16d683fc Second Version
3 | 30 August 2024 5430462cal0b53ed246bd51136f2eb5cdfd1e483 Final Version

For the solidity smart contracts, the compiler version 0. 8. 17 was chosen.
The following contracts were in scope of the review:
1. contracts/tokenomics/InflationManagerV2.sol

2. contracts/oracles/CryptoPoolOracle.sol

In (Version 2), the following contracts have been added to the scope:
1. contracts/ConicCryptoPool.sol

2. contracts/LpTokenCrypto.sol

2.1.1 Excluded from scope

Excluded from scope are any other contracts including third party libraries and external interactions.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Conic offers liquidity pools that allocate deposits of a single underlying token to various Curve pools and
deposit the resulting LP tokens into Convex. Additionally, Conic offers reward contracts that handle the
rewards paid by Curve, Convex and Conic itself.

Formerly, only deposits into Curve Stable pools were possible. This report examines a new update to the
protocol that enables deposits into Curve Crypto pools. Additionally, it examines a new distribution
method for the Conic rewards. To see a system overview of the general Conic protocol, please refer to
our Conic Protocol Report.

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 5

https://cdn.prod.website-files.com/65d35b01a4034b72499019e8/663b5dd035914ebdd0dd549a_ChainSecurity_Conic_Conic_Protocol_audit_compressed.pdf
https://chainsecurity.com

2.2.1 CryptoPoolOracle

Conic determines the value of deposited funds by multiplying the LP balance of each underlying Curve
pool with an oracle price. For Stable pools, this is oracle price is determined by the Cur veLPOr acl e
which calculates the LP value in the following way:

n
Z balancel(i) * oraclePrice(i)
i=0

i=

totalSupply

As this calculation is easily manipulatable, the Cur veLPOr acl e reverts if token prices on a given Curve
pool deviate from the Chainlink prices of the respective tokens by more than a pre-defined imbalance
buffer. Since Stable pools allow trading in a rather wide range without incurring much slippage, this
system works fine as long as the imbalance buffers are chosen correctly for the respective A values of
each Curve pool.

Crypto pools, however, incur more slippage during regular trading, which would result in regular Denial of
Service if the Cur veLPOr acl e were used. To support Crypto pools, the new Cr ypt oPool O acl e has
been created. Instead of computing the LP prices directly from pool balances, it uses the | p_pri ce()
function of Curve pools (pools without that function are not supported). The | p_pri ce(), which states
the price of an LP token denominated in token O of a pool, is then simply multiplied with the Chainlink
oracle price of token 0. If no Chainlink oracle price of token 0 is available, it converts the LP price to a
denomination of one of the other underlying tokens and multiplies it with that token's Chainlink oracle
price:

pool. Ip_price() * chainlink. latestRoundData(pool. coins(i))
pool. price_oracle(i — 1)

I p_price() is dependent on the price_oracl e() function which, in most Curve pools, is an EMA of
a the pool's token prices denominated in token O.

2.2.2 InflationManagerV2

Depositors on a Conic pool get Conic LP tokens in return. These tokens can be staked in the
LpTokenSt aker contract to receive rewards. Besides CRV and CVX, these rewards consist of CNC,
Conic's governance token. To determine the amount of CNC that are rewarded, the LpTokenSt aker
fetches an inflation rate from the | nf | ati onManager contract for each existing Conic pool. The total
inflation rate is divided equally between pools as per their total value.

A new InflationManagerV2 contract has been created that will replace the existing
I nfl ati onManager . Instead of automatically setting each pool's share of the inflation according to the
pool's value, the contract exposes a function set Pool Wi ght s() that allows the owner (the Conic
governance) to set the share manually.

2.2.3 Changes in Version 2

In VERSONZ2, the following changes have been added:
1. The Coni cCr ypt oPool implementation.
2. The LpTokenCr ypt o for crypto pools.

Coni cCr ypt oPool is a new contract that inherits from BaseConi cPool and disables price caching
and asset depegging. LpTokenCrypt o is a new contract that inherits from LpToken and enables
tainting over multiple blocks.

2.2.4 Roles & Trust Model

Crypt oPool O acl e is set by the owner of the Generi cOracl e contract, either by replacing the
existing LP oracle or by setting a custom oracle for each LP token that should be priced by this oracle.
The owner is fully trusted to set the right oracle contract. Misconfigurations can result in losses.

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The owner of the | nf | at i onManager V2 can set the weights of each Conic pool arbitrarily. The owner
is partially trusted to set fair weights. Apart from decreasing the CNC rewards of certain Conic pools, no
harm can be done.

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E

(C)-Severity Findings 0

(Medium)-Severity Findings 1
« Oracle Manipulation During Withdrawal (I Risk Accepted)

(Low)-Severity Findings 2

» Boost Can Be Manipulated Through Read-Only Reentrancy
« Unfair Unbalanced Pool Withdrawals

5.1 Oracle Manipulation During Withdrawal
(EZD) (Miedium) (Version 1) [Risk Accepted

CS-COIM-001

Withdrawals are performed in a way that balances out value distribution among underlying Curve pools
according to the chosen weights. The actual distribution of withdrawals to the Curve pools is, however,
subject to the LP price of the pools. Consider the following example:

1. Fees are assumed to be zero for simplification.
. Curve pool #1 holds 1000A / 1000B liquidity, an LP price of 1 and a supply of 2000 LP tokens.
. Curve pool #2 holds 1000A / 1000C liquidity, an LP price of 1 and a supply of 2000 LP tokens.

. All tokens have a price of 1.

a b~ W DN

. A Conic pool is comprised of Curve pool #1 and #2 with underlying A and [50, 50] weights. It holds
1000 LP tokens of each pool and a total supply of 2000 Conic LP tokens. Max deviation is 0.

6. A user that wants to withdraw 1000 Conic LP tokens, withdraws exactly 500 LP tokens from each
Curve pool (assuming no slippage for simplification).

7. If the user performs an oracle manipulation on pool #1 that increases the LP price to 2 and then
withdraws 1000 LP tokens, they withdraw 625 LP tokens from pool #1 and 250 LP tokens from pool
#2. This is unprofitable but shifts the weights.

8. However, if the user backruns a weight update to [100, 0], they withdraw 1000 LP tokens from pool
#2 and an additional 250 LP tokens from pool #1.

LP prices of Curve pools can be manipulated over 2 blocks as the price_oracl e() is an EMA. A
manipulation over 2 blocks can be achieved by increasing the price extremely in the last transaction of a
block and then trading back in the first transaction of the next block. Such attacks are possible for

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

validators: A validator can know two epochs in advance which block they will propose. They can then get
access to the previous block's last transaction via Flashbots or similar services.

Code partially corrected:

Conic has introduced a new LP token LPTokenCr ypt o that allows to extend the tainting mechanism to
more than 1 block. This helps against attacks where the attacker deposits only after they see a weight
update in the mempool. However, if an attacker has deposited some other time before, the attack is still
possible.

Additionally, it should be noted that, depending on the size of the manipulation, it takes some additional
blocks for a manipulated Curve pool's oracle price to return to normal. A suitable taint period should
therefore be chosen carefully.

Risk accepted:

Conic states that the remaining issue requires a more thorough solution and thus accepts the risk until
such a solution is found.

5.2 Boost Can Be Manipulated Through
Read-Only Reentrancy

D (Low) (Version 1) (EITETED)

LpTokenSt aker . updat eBoost () can be manipulated through read-only reentrancy. This can be
exploited since the call might rely on Crypt oPool Or acl e which depends on the curve pool contract
when calling | p_pri ce().

CS-COIM-002

Risk accepted:

Conic accepted the risk stating:

This attack woul d require substantial capital and tine conmm tment (including |ocking of governance tokens). W therefore accept the risk.

5.3 Unfair Unbalanced Pool Withdrawals
D) (Low) (Version 1) (ETIEETED)

BaseConi cPool . wi t hdraw() determines the amount that should be withdrawn by calculating the pool
value with Curve's | p_price() (if Crypt oPool O acl e is used). When the Curve pool is unbalanced
in favor of the underlying token, the actual withdrawn amount is greater than the calculated amount. The
withdrawing user, however, does not receive any benefits of this re-balancing as their withdrawal amount
is capped:

CS-COIM-005

ui nt 256 underlyi ngWthdrawn_ = m n(
under | yi ng. bal anceOf (address(this)),
under | yi ngToRecei ve_

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The remaining balance stays on the contract and now increases the total value of the pool, giving
subsequent withdrawers higher payouts.

Risk accepted:

Conic will not address this issue to avoid creating potential new attack vectors but plans to display a
warning to users in the UL.

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CLZ)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 2

* Missing Base Implementations (LRSI
* Missing Sanity Check (SR ia)

Informational Findings 4

» Gas Optimizations (Xl

« currentPoolWeights Has No Initial Value (Sl

* Unused Variable (el
* Redundant Checks (el =TT

6.1 Missing Base Implementations

D (Lo Version 1) CIXTRTTD)

This review was conducted on the implementation of the Cr ypt oPool Or acl e contract. It is used to
provide some pricing for future usage of Curve's Crypto pools. However, this future usage requires some
additional contracts and/or changes to be implemented. This includes, for example, a contract inheriting
from the BaseConi cPool contract that disables price caching and asset depegging and enables
reentrancy checks when necessary.

CS-COIM-003

Code corrected:

Coni cCr ypt oPool contract was added to the codebase. It inherits from the BaseConi cPool contract
and disables price caching and asset depegging. It also enables reentrancy checks by default.

6.2 Missing Sanity Check
D (Low) (Version 1) (CXIITID)

The caller of I nf | at i onManager V2. set Pool Wi ght s() can freely choose the pool s list. It can be
any arbitrary list of Conic pools containing duplicates, as long as the size is equal to the amount of active
pools.

CS-COIM-004

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

If such duplicates exist in the array, it is possible that the invariant
t ot al Pool Wi ght == Scal edMvat h. ONE is violated.

Code corrected:

The code now iterates over the list of active pools obtained from the controller instead of a user-supplied
list.

6.3 Gas Optimizations

[Informational] [Version 2]

I nfl ati onManager V2. set Pool Wi ght s() uses two f or loops to check for duplicates in the input
array, which is inefficient. Also, in this case, the supposed array composition is known in advance and
thus can be fetched instead of supplied by the user (Control | er. | i st Acti vePool s()).

CS-COIM-009

Code corrected:

set Pool Wi ght s() now iterates over the already fetched active pools.

6.4 Redundant Checks
[Informational] [Version 1]

Some checks exist in the contracts that are not required / redundant:

CS-COIM-006

1. I nfl ati onManager V2. updat ePool Wi ght s() performs runSani t yChecks() but does not
call any Curve functions.

2.1 nfl ati onManager V2. _execut el nfl ati onRat eUpdat e() calls updat ePool Wi ght s()
but the call is only required when a pool is shut down.

Code corrected:
1.runSani t yChecks() is removed from | nf | ati onManager V2. updat ePool Wi ght s() .

2. updat ePool Wi ght s() is removed from
I nfl ati onManager V2. execut el nfl ati onRat eUpdate() and replaced by a simple
checkpoint of each pool.

6.5 Unused Variable
(Informational] [Version 1]

I nfl ati onManager V2. tot al Lpl nfl ati onM nt ed is declared but never used.

CS-COIM-007

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code corrected:

The unused variable has been removed.

6.6 current Pool Wi ght s Has No Initial Value
[Informational] [Version 1]

I nfl ati onManager V2. cur r ent Pool Wei ght s is a mapping from pool address to the pool's weight.
These weights are, however, neither set in the initializer nor the constructor. Doc comments of
initializelnflationData() indicate that the function should be called in the same transaction the
inflation manager is updated in the Cont r ol | er . However, it is not mentioned that the pool weights also
should be set in that same transaction as they are not copied from the old manager.

CS-COIM-008

Code corrected:

Inflati onManagerV2.initializelnflationData() now also sets the pool weights (equally
distributed). Note that this reverts if the number of active pools is 0

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Deposit DoS
(D) (Version 1

On deposit, pools determine the amount of LP tokens a user receives by dividing the supplied
amount by the exchange rate. The exchange rate is calculated as a sum of each underlying Curve
pool's LP balance with its LP price. It is possible for threat actors to manipulate the LP price upwards
(slightly in one block or more extremely over two blocks). Such manipulations will result in depositors
receiving noticeably less LP tokens. The depositors now have the choice of either losing money (by
setting a low slippage protection) or not depositing at all until the LP price has normalized.

This risk is, however, rather low due to the high cost of such a manipulation.

@ Conic - Crypto Pool Update - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 CryptoPoolOracle
	2.2.2 InflationManagerV2
	2.2.3 Changes in Version 2
	2.2.4 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Oracle Manipulation During Withdrawal
	5.2 Boost Can Be Manipulated Through Read-Only Reentrancy
	5.3 Unfair Unbalanced Pool Withdrawals

	6 Resolved Findings
	6.1 Missing Base Implementations
	6.2 Missing Sanity Check
	6.3 Gas Optimizations
	6.4 Redundant Checks
	6.5 Unused Variable
	6.6 currentPoolWeights Has No Initial Value

	7 Notes
	7.1 Deposit DoS

