PUBLIC

Code Assessment

of the Conic Protocol

Smart Contracts

February 26, 2024

Produced for

& CONIC

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG

13
14
15
19
37
39

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Conic with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Conic Protocol according to
Scope to support you in forming an opinion on their security risks.

Conic implements Omnipools for Curve that allow to deposit a single asset into multiple Curve pools. The
exposure to different Curve pools is changed in fixed time intervals by Governance vote.

The most critical subjects covered in our audit are functional correctness, oracle security and internal
accounting. Security regarding all aforementioned subjects is high.

Functional correctness is good. Issues like Execution of wrong governance change and some smaller
problems have been adequately fixed.

Newly created pools allowed Endless rebalancing due to a flaw in the handling of oracle prices. This has
been addresses by rebalancing rewards being activated by governance as long as this is done in a
correct manner considering TVL of the pool and CNC price.

The internal accounting of some tokenomics contracts was flawed due to Reward double counting and
Wrong accounting in Bonding. These issues have also been addressed.

It should be noted that the security of funds is dependent on parameters like the imbalance buffers of the
Curve oracle. These must be chosen with care (considering Curve pool fees, the share of a Conic pool's
Curve LP tokens etc.) to avoid the possibility of arbitrage opportunities.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

(EIED-Severity Findings 2
Y Code Corrected 2
CIZ)-Severity Findings 2
¥ Code Corrected 2
(Medium)-Severity Findings 11
§'Cose Corrcted) 0
Wik Accopied 2
(Low)-Severity Findings 17
Y Code Corrected 13
o) 1
WRisk Accepted 3
@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Conic Protocol repository based on
the documentation files.

The following files are in scope:
* /contracts/BaseConicPool.sol
* /contracts/ConicPool.sol
* /contracts/ConicEthPool.sol
« [contracts/LpToken.sol
* /contracts/RewardManager.sol
* /contracts/Controller.sol
* /contracts/ConvexHandler.sol
* /contracts/CurveHandler.sol
« [contracts/CurveRegistryCache.sol
* /contracts/adapters/CurveAdapter.sol
* /contracts/access/GovernanceProxy.sol
« [contracts/access/SimpleAccessControl.sol
* /contracts/oracles/ChainlinkOracle.sol
* /contracts/oracles/CurveLPOracle.sol
* /contracts/oracles/GenericOracle.sol
» /contracts/tokenomics/CNCLockerV3.sol
* /contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol
* /contracts/tokenomics/InflationManager.sol
« /contracts/tokenomics/LpTokenStaker.sol
* /contracts/tokenomics/Bonding.sol
* /contracts/zaps/EthZap.sol
* /libraries/ArrayExtensions.sol
* /libraries/CurvePoolUtils.sol
« [libraries/MerkleProof.sol
* /libraries/ScaledMath.sol

* /libraries/Types.sol

In (Version 5), the following file was added to the scope:
« /contracts/ConicPoolWeightManager.sol

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note
V

09 October a411b13335bc847ab009009a374f03 | Initial Version
1| 2023 f147e18f28

01 90470671992514a47592af04bladf9 | Second Version
2| December abce44df86

2023

18 75cfad6de09827479c98ee974aba24 | Third Version
3| December 7cc5a9321d

2023

22 6474507abc7c00b9683e415d121c79 | Fourth Version
4| December 3f9e5ff04a

2023

15 January 92272b77c99b9a723d88ec48420f45 | Refactored BaseConicPool for smaller
5| 2024 0d446932ff bytecode

29 January 9dblacd46b52a63caebcal872e8d71 | Deployed version
6| 2024 18b25fc478

For the solidity smart contracts, the compiler version 0. 8. 17 was chosen.

2.1.1 Excluded from scope

Third-party libraries, tests, and other files not listed above are excluded from the scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Conic offers Omnipools, liquidity pools that optimally allocate a single underlying asset as liquidity for
several Curve pools in order to derive the most yield in term of fees and liquidity mining rewards.

Multiple Conic pools exist, each one has a single underlying (ex. USDC, USDT, crvUSD, ETH). The
underlying supplied by the user is supplied one-sided to Curve pools selected by governance, in a ratio
selected by governance. Curve LP tokens that are received by the protocol are staked in Convex reward
pools which gives rights to a share of CRV and CVX rewards (Convex Finance allows CRV holders to
pool their CRV stakes in the Curve Vote Escrow under a single account, which rewards Convex Finance
with a big boost for CRV emitted by Curve Liquidity Gauges).

Users supplying liquidity to Conic receive Conic LP tokens, which can be redeemed for the supplied
underlying, or which can be staked in a special staking contract. Staking Conic LP tokens entitles the
staking user to a share of the CRV and CVX rewards received by Conic. It also entitles the staker to a
share of the CNC token emission, the Conic governance token, which is directly emitted by Conic.

Each Conic pool allocates the supplied underlying as liquidity in multiple Curve pools. The target amount
allocated per Curve pool, as a percentage of the total amount of underlying, is decided by governance
according to the results of a vote occurring in fixed time intervals (with a target of two weeks). When the
actual allocation to Curve pools deviates from the target allocation due to result of a voted weight
change, a Curve pool LP token value increase or the depegging of one of the underlying assets in a

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Curve pool, new deposits and withdrawals will contribute to the rebalancing of the Conic pool. To provide
an economical incentive to the rebalancing of Conic pools, rewards are enabled after a weight change or
a depeg rebalancing, awarding CNC to users who reduce the overall underlying deviation in a
mechanism similar to Dutch auctions where each second after the update, the amount of emitted CNC
increases.

2.3 Conic pools

The main functionality of Conic pools is implemented in BaseConicPool. ConicPool and ConicEthPool
derive from it, with ConicPool being used when the underlying is an ERC20 stablecoin, while
ConicEthPool is used with WETH as underlying.

2.3.1 Depositing and Withdrawing

Holders of the underlying token for a Conic pool can acquire a share of the pool by depositing the
underlying through the deposi t () or deposit For () functions. The provided amount of underlying is
transferred from the user to the pool, and deposited to under-allocated Curve pools. The total underlying
value of the Conic pool is estimated to compare the target allocation of each Curve pool with their current
allocated values. In under-allocated pools, the underlying is unilaterally added as liquidity up to the target
allocation when rebalancing rewards are active, or up to target allocation plus a deviation tolerance when
rebalancing rewards are not active. The Curve LP tokens obtained by the Conic pool are staked in
Convex finance in order to earn CRV and CVX rewards. The total value of the Conic pool is computed
before and after adding liquidity to the Curve pools. The LP tokens supply for the Conic pool is increased
proportionally to the increase in value, or to the supplied underlying, whichever is the least, so that
positive price slippage benefits existing liquidity providers, and negative slippage is paid by the current
depositor. Querying of the price oracle for Curve LP Tokens, before and after the deposit, ensures that
Curve pools are balanced, within the defined imbalance margins (explained later in this section). The
Conic LP token amount minted to the depositor is optionally staked in the LpTokenStaker. Finally, if
rebalancing rewards are active, the deviations to the target allocations before and after the deposit are
compared, and an amount of CNC proportional to the reduction is minted to the depositor as a reward.

Conic LP holders can withdraw and receive the underlying token back. The underlying is withdrawn from
Curve pools with over-allocated capital. As with depositing, positive slippage benefits the totality of
liquidity providers, while negative slippage costs are paid by the withdrawer. A slippage protection should
be specified when calling wi t hdraw() or unst akeAndW t hdr aw() . Rebalancing rewards are not
awarded when withdrawing from a Conic pool.

2.3.2 Safety checks for reentrancy in ETH pools

Curve pools containing ETH or WETH might be subject to read-only reentrancies. An attacker's operation
on an ETH Curve pool can generate a callback to the attacker while the Curve pool is in an invalid state.
For example, renmove_liquidity() might call back to the attacker while the native token is
transferred. At this point, the LP tokens have already been burned but some tokens are yet to be
transferred out, leaving an imbalance between token balances and the total supply of the pool's LP token.
Therefore, if the attacker interacts with systems that rely on the state of such a Curve pool during the
callback, those systems can be tricked into reading invalid values when querying t ot al Suppl y(),
bal ances(), pri ce_oracl e(), and more. While newer Curve pools implement reentrancy protection
on vi ew methods, or disallow low level calls, querying the state of generic Curve pools requires extra
care in detecting whether the call happens in the context of a reentrancy.

Conic implements read-only reentrancy detection through the i sReentrant Cal |l () method of the
CurveHandler. i sReent rant Cal | () first compares the code hash of the specified Curve pool with two
known versions that implement reentrancy guards in the price_oracle() view method. The
pri ce_oracl e() method is queried not for its result but simply to check for reversing execution which
indicates a reentrancy. For Curve pools not implementing those two known versions, a slightly more
complex way of detecting reentrancy is needed. A call to exchange() is executed on the pool, with 0
tokens actually exchanged. exchange() however always implements reentrancy guards. If the call

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

reverts after having consumed less than 5000 gas, it is assumed that it reverted because of the
reentrancy guard and a reentrancy is therefore detected. If it reverts after having consumed more gas, or
it does not revert at all, the reentrancy guard was not triggered, and no reentrancy is therefore detected.
This reentrancy detection is implemented before estimating the prices for all Curve pools included in the
ETH Conic pool.

2.3.3 Flashloan protection

Conic pools LP tokens cannot be minted and burned during the same block. This prevents flashloans
from being used to mint arbitrary amounts of LP tokens for the purpose of pool manipulation. LP tokens
implement a tainting mechanism such that even if transferred, they cannot be burned if the sender minted
/ burned in the same block. A lower threshold must be exceeded by the transfer amount before tainting of
the receiver in order to prevent inexpensive DoS attacks against liquidity providers who want to deposit
or withdraw.

2.3.4 Curve pools

Conic supports Curve pools where pegged assets are traded. The assets in the pool must be stable (or
roughly stable) with respect to the Conic pool underlying. Both StableSwap Curve pools and CryptoSwap
pools are supported, with the condition that CryptoSwap pools must contain assets whose price is closely
correlated (e.g., ETH and cbETH). Curve MetaPools are also supported, with the condition that each
base token is pegged to the Conic underlying. Inclusion of new Curve pools in a Conic pool is subject to a
Governance vote and can be vetoed by a trusted role. The allocation target of the Curve pools backing a
Conic pool is subject to a Governance vote in fixed intervals.

2.3.5 Price oracles

Price oracles are a fundamental component of the Conic system. They are required for pricing the LP
tokens of the Curve pools as well as underlying tokens. When depositing or withdrawing to / from a Conic
pool, the value of the liquidity of Curve pools that the Conic pool holds need to be evaluated before and
after the operation so that the correct number of Conic LP tokens is minted (depositing) or the right
amount of underlying is paid out (withdrawing).

CurvelLpOracle computes the value of a Curve LP token by evaluating the total value of the Curve pool
as the sum of the balances of each token times the value of each token. The total value is then divided by
the supply of Curve LP tokens to get the value per LP token. The value of the individual tokens contained
in Curve pools is returned by the ChainlinkOracle. The computation detailed above has to be robust
against pool manipulation attacks as the total value of a Curve pool can be inflated by unbalancing it. The
Conic price oracles for Curve LP tokens therefore assert that the Curve pools are balanced. That is, they
trade within a close range of the price specified by Chainlink oracles.

Both CurvelLpOracle and ChainlinkOracle are combined into a GenericOracle which also gives the
Governance the ability to add additional, custom oracles per token.

2.3.6 Depeg protection

Conic pools implement a protection mechanism in case one of the tokens present in one of the Curve
pools loses its peg to the Conic pool's underlying token. The effect of a depeg in a Curve pool can be loss
of value for the liquidity providers due to impermanent loss, so the Conic pool implements a mechanism
for setting the target allocation to that pool to 0 and incentivizing users to immediately remove liquidity.

A depeg is identified when the value of the LP token of a Curve pool incurs a difference of more than 3%
(custom values may also be set per Conic pool) with respect to the cached price, stored during the latest
weight update. If a depeg is detected but the underlying asset's value has changed by more than double
this threshold since it was last cached, the depeg of the Curve pool is attributed to the Conic pool
underlying. In that case no action is taken. if the conditions are met, handl eDepeggedCur vePool ()
allows any user to reset a given Curve pool to 0 weight. When a depeg is successfully detected,
rebalancing rewards are enabled to incentivize withdrawing from the affected pool. In contrast to

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

rebalancing rewards of as pool weight update, the reward Dutch auction does not start from this event
but from the last weight update, leading to instant rewards in most cases.

handl eDepeggedCur vePool () implements the same reentrancy protection as deposit() and
wi t hdr aw() which prevents the value of Curve LP tokens in ETH pools from being manipulated through
a reentrancy.

2.3.7 Weight updates and rebalancing rewards

Curve pool weights within a Conic pool are updated in fixed intervals, following a governance vote,
through the updat eWei ght s() privileged function that can be called by the GovernanceProxy. If, after a
weight update, the total deviation of pool allocations exceeds the configured maximum deviation
(maxDevi at i on), rebalancing rewards are activated.

Rebalancing rewards are emitted as CNC tokens, proportionally to the reduction in allocation deviation
following a call to deposi t() or rebal ance(), and proportionally to the time elapsed since the last
weight update. The r ebal ance() function of the CNCMintingRebalancingRewardsHandler performs
both deposit and withdraw and compares the deviation before the two operations to the deviation after. It
overrides the Conic pool LP token flashloan protection, so it can be triggered by flashloans. The reward
amount per dollar rebalanced increments as time passes since the weight update, linearly going from 0 to
a maximum value reached after 21 days. The proportional coefficient
cncRebal anci ngRewar dPer Dol | ar Per Second can be set by governance in
CNCMintingRebalancingRewardsHandler. A maximum of 1.9M CNC tokens can be minted as
rebalancing rewards.

2.3.8 Access control and privileged functions

Conic pools implement two roles, control | er and owner. The control | er role is assigned to the
Conic Controller, and is able to pause a Conic pool, shut down a Conic pool, and update the weights. The
owner role is assigned directly to the GovernanceProxy. Governance has access to guarded functions
that allow the configuration of Conic pools, such as setting maximum deviation parameters, setting the
depeg threshold, and adding and removing Curve pools.

2.4 LP Token staking and rewards distribution

Conic LP tokens accrue the fees earned in the underlying Curve pools but they do not directly accrue
CRV and CVX rewards earned by the Curve LP tokens staked in Convex. Liquidity providers earn their
share of CVX and CRV rewards from Convex plus CNC rewards from Conic by staking their Conic pool
LP tokens in the LpTokenStaker.

Staking entitles the LP to a share of the rewards of the Conic pool proportional to the staked amount. The
LpTokenStaker is coupled to RewardManager contracts which are deployed for every pool. The
RewardManager keeps track of CRV and CVX rewards earned by a Conic pool on Convex and attributes
them fairly among staking liquidity providers. The RewardManager also tracks the CNC tokens awarded
by Conic to its pools. A portion of the CRV and CVX rewards can be forwarded to users who lock CNC in
CNCLockerV3 if enabled by governance.

The RewardManager also handles extra rewards awarded by Curve or Convex, in the form of other
tokens (e.g. LDO). The extra rewards are swapped on predefined Curve pools, or on SushiSwap, for
CNC and the CNC is accrued to the total rewards.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.4.1 CNC emissions

Beside rebalancing rewards, which are awarded for Conic pool rebalancing in CNC, CNC is also minted
at a fixed time rate in every inflation rate period of 365 days and distributed among the Conic pools
according to their relative total value. That is, every year a fixed amount of CNC rewards are minted and
distributed among the pools according to their relative weight during that year. This mechanism is
implemented in the InflationManager. Every year, the CNC emissions that are awarded to Conic pools
decrease by 60%, starting with an initial value of 1.5M CNC per year.

2.4.2 Checkpointing logic

To keep track of the rewards awarded by each user, a mechanism is used similar to the accounting in
Synthetix' StakingRewards, or Curve's Gauges. At the Conic pool level, a global index keeps track of the
amount of reward tokens awarded for every staked token. Every time reward tokens are accrued, this
index is incremented by the amount awarded divided by the total amount staked. Each user has its own
checkpoint of the global index, which provides information on the last time awards have been accrued to
the user claimable balance. Every time the staked balance of a user changes, the difference between the
current global index and the user checkpointed index is multiplied with the previous user stake,
incrementing the user's claimable balance. The user checkpointed index is then updated to the current
global index.

2.4.3 Time boost

The contract LpTokenStaker keeps track of a boost for each user which can be queried through
get Boost () . The boost is composed of a time boost, and a stake boost component. The stake boost
grows proportionally to the user's share of the total staked amount. The time boost component grows
from 0.1 to 1 over a period of 30 days. The two boost amounts are multiplied, and the result is clipped
between 1 and 10 to get the total boost. This boost is used as a multiplying factor when evaluating the
voting power of a user in CNCLockerV3.

Users that do not stake any LP tokens receive a boost of 0.1.

2.5 Vote locking and bonding

Holders of CNC tokens can lock them in CNCLockerV3 in order to receive part of the RewardManager
fees and be entitled to voting power for Conic governance in snapshots. CNC can be locked for a period
between 120 and 240 days, earning the locking user a boost between 1 and 1.5. This boost is multiplied
with an optional airdropped boost. The total boosted amount for the lock, which contributes to the voting
power of the user when queried through bal anceO (), is the locked amount of CNC multiplied with the
boost. This amount is further multiplied with the LpTokenStaker boost. The airdropped boost can be
claimed by selected users for the first 182 days of the contract, and its value is a multiplier between 1 and
3.5. The airdropped boost can only be claimed in the first 182 days, but can be used indefinitely in the
future, on the next lock created by the claiming user.

Multiple locks can be created per user, through the methods | ock() and | ockFor (). Locks can be
extended by setting the rel ock_ flag in | ock() or | ockFor () and through functions r el ock() and
rel ockMul tiple(). Expired locks can be unlocked through executeAvai |l abl eUnl ocks(),
execut eAvai | abl eUnl ocksFor (), and execut eUnl ocks() .

Locks that are not unlocked by their owner after a grace period of 28 since their expiration can be
removed in an unpermissioned way through ki ck(), returning the locked amount to the owner minus a
kick penalty of 10% of the lock value up to 1000 CNC. This is needed because unlockable balances still
accrue fees until they are actively removed.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.5.1 Bonding

The Bonding contract implements a multi-epoch Dutch action wherein LP tokens for the crvUSD Conic
pool can be used to buy CNC. The amount of CNC which is initially present in the Bonding contract is
sold in equal amounts in a defined number of epochs. The starting price is determined as the last price at
which CNC was acquired during the preceding epoch, multiplied by a factor. The price decreases linearly
during an epoch from the starting price down to 0. The proceeds of the auction, the LP token for the
crvUSD Conic pool, are gradually distributed to users over the next epoch proportionally to their
t ot al Rewar dsBoost () in CNCLockerV3.

2.6 Changes in Version 2

of the protocol introduced the following changes:
1. Rebalancing rewards start at 0 and increase with a different factor when a pool is marked as
depegged.
2. The inflation rate is no longer automatically updated on reward claims.
3. Bonding requires a minimum amount (up to 1,000 tokens).

4. Bonding can claim earnings of staked LP tokens and send them to the debt pool via the new
method cl ai nFeesFor Debt Pool ().

5. CNCLockerV3 requires a minimum lock amount and allows no more than 10 locks per account.
6. CNCLockerV3 contains a new function bat chKi ck() for kicking multiple locks at once.

7. A feeRecipient is introduced so that fees can be sent to other contracts apart from
CNCLockerVa3.

2.7 Governance and Trust model

Contracts of the Conic codebase implementing an onl yOmer modifier are assumed to be owned by the
Conic GovernanceProxy. Voting for Conic governance happens off-chain through a snapshot
mechanism. Governance decisions are then relayed on-chain by a trusted wallet holding the
GOVERNANCE_ROLE in GovernanceProxy. The GOVERNANCE ROLE user has the right to
request Change(), cancel Change() and grant Rol e() / revokeRol e(). Another trusted role is
VETO_RCLE which has the right to cancel Change() .

In the GovernanceProxy, a change is a list of external calls. A selector mapping is queried with the
function selectors in the external calls returning the delay for every selector (0 by default). The delay of
the overall change is the maximum of the delays of each external call. If the delay is O, the calls are
immediately executed. Otherwise, the change is recorded in storage for future execution. After the delay
has elapsed, an unpermissioned call to execut eChange() will perform the external calls and mark the
change as executed. While a change is pending, that is it has not been executed yet, users with the
VETO_RCLE are allowed to cancel it.

We assume that care is taken when setting parameters in the protocol as the following parameters are
critical and could lead to loss of funds if not set carefully:

e cust om nbal anceBuf f er s in CurveLpOracle.
» ext raRewar dsCur vePool in ‘RewardManager.

e cust onOr acl es in GenericOracle.

It is also important that the deployment process of Conic pools involves the deployment of ConicEthPool
over ConicPool whenever there is a possibility that a Curve pool with underlying ETH or WETH can be
added.

We further assume that GOVERNANCE RCLE and VETO ROLE are multi-sig accounts that are distributed
between parties that can be expected to act in the best interest of the protocol.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG

12

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 2

» Exchange Rate Rounding Errors GIESaEEE
* No Governance Default Delay GESAEETIE

(Low)-Severity Findings 4
« Instant Rewards
« Missing Checks {)

* No Reward Checkpoint When Unstaking
« Stale Oracle Price Means Token Is Not Supported

5.1 Exchange Rate Rounding Errors
(Design LTI (RITIRY| Risk Accepted

BaseConi cPool . deposi t () allows users to add funds to the protocol while no shares are minted. On
a new pool, a user can donate some tokens to the contract before calling deposit() with an
under | yi ngAnount of 0. The donated tokens are then added to the contract holdings while no shares
are minted for the user. After that, the user can deposit 1 wei of tokens, minting them exactly 1 wei of
shares.

CS-CCP-006

The exchange rate is skewed:
tot al Underlyi ng_. di vDown(I pSupply);

Since the amount of deposited tokens by other users is divided by this exchange rate to determine the
amount of minted shares, the results can include large rounding errors. Users that are not depositing
multiples of the initially deposited amount will incur slippage (up to 100%) which results in either Denial of
Service or, if they choose a loose slippage parameter, loss of funds.

For example, a donation of 10,000 USDC and a subsequent deposit of another user of 15,000 USDC
would result in the second user getting only 1 wei of LP tokens, thus losing 2,500 USDC to the first user.

It is also possible to burn LP tokens without decreasing the underlying in wi t hdr aw() .

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Risk accepted:

Conic accepts the risk claiming that all pools will be atomically seeded by the team on deployment. In that
case, the mentioned attack is not possible.

5.2 No Governance Default Delay

(Security |CIT DI Risk Accepted)

Conic governance decisions are computed off-chain. Based on the results, a multi-sig address with the
GOVERNANCE_RCLE on the GovernanceProxy can then request changes and execute them.
Depending on the function signatures these changes are going to call, a delay is invoked so that a
separate multi-sig address (VETO_ROLE) that belong to different entities can veto the change.

CS-CCP-008

However, no default delay is enforced which means that the GOVERNANCE_RCLE can perform any
actions that have not explicitly been marked directly, evading any possible vetos.

Risk accepted:
Conic accepts the risk with the following statement:

We do not want a delay for all the functions. The community and veto multisig can easily check which
functions have a delay and which does not.

5.3 Instant Rewards

D (Cow) (Version 1) (ETEETED)

Rewar dvanager performs reward calculations and actual reward claiming in separate steps. Only when
certain conditions are met, rewards are actually claimed. This approach is, however, flawed for Convex'
extra rewards as the reward calculation is only performed during the claim step here. If claiming has not
occurred for a longer period, the accrued extra rewards are added to the earned rewards of all users in
bulk the next time they are claimed.

CS-CCP-018

User that have deposited LP tokens to the LpTokenSt aker can call
Rewar dvanager . cl ai nPool Ear ni ngsAndSel | Rewar dTokens() directly after staking and instantly
receive some CNC rewards in this case.

Risk accepted:
Conic accepts the risk with the following statement:

Very few pools have extra rewards (not any that we currently support) and the chances of these
rewards becoming an important part of the APR is low enough for us to accept this risk.

5.4 Missing Checks
D (Low) (Version 1)) Risk Accepted

CS-CCP-021

The protocol is missing some checks that could potentially lead to a problematic state:

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

* Rewar dvanager . addExt r aRewar d() checks that the added reward token is not an LP token of
one of the Curve pools of the associated LP tokens. If, however, a Curve pool is added to the Conic
pool at a later stage, its LP token might have already been added.

* Rewar dvanager . addExt r aRewar d() does not check whether there is a valid SushiSwap or
Curve pool for a given reward token.

* Neither Rewar dManager . set Ext r aRewar dsCur vePool () nor
_swapRewar dTokenFor Wet h() check whether a given Curve pool actually holds the asset that is
going to be swapped on it.

* Rewar dvanager . r enoveExt aRewar d() does not check that the specified argument is
successfully removed from the extra rewards list.

* Bondi ng. st art Bondi ng() does not check whether an epochPri cel ncr easeFact or is set.
Since there exists a minimum for the factor, it should be set before starting the bonding period.

Code partially corrected:
Bondi ng. st art Bondi ng() now checks if the epochPri cel ncr easeFact or has already been set.
Risk accepted:
Conic accepts the risk for all other missing checks with the following statement:
We accept the risk for the extra rewards.

5.5 No Reward Checkpoint When Unstaking
D) (Low) (Version 1) (ETEEETED)

LpTokenSt aker . unst akeFor () does not call Rewar dvanager . account Checkpoi nt () when the
staker is shut down. Users unstaking on such a shut down staking contract will lose their rewards since
the last checkpoint but users that call account Checkpoi nt () before unstaking will keep their rewards.

CS-CCP-022

Risk accpted:
Conic accepts the risk with the following statement:

This is an extremely rare event, in which case we will inform our users beforehand so that they claim
their rewards.

5.6 Stale Oracle Price Means Token Is Not

Supported
D (Low) (Version 1) (I

Chai nl i nkOracl e. i sTokenSupported() calls get USDPri ce() to determine whether a token is
supported by the oracle. If the price is stale (older than the heartbeat), the function erroneously returns
fal se.

CS-CCP-024

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Risk accepted:
Conic accepts the risk with the following statement:
We only use isTokenSupported in two places:
1. When adding a new curve pool to the registry. If it fails here, we can retry later.

2. When claiming extra token rewards. In the unlikely event that it fails here, we accept the
slippage risk when swapping extra rewards.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 2
y g

* Endless Rebalancing (RS uEal

* Execution of Wrong Governance Change (SJRSuiCal

(C)-Severity Findings 2

* Depeg Due to Oracle Manipulation (Sl eI]
* Wrong Accounting in Bonding (SRS

(Medium)-Severity Findings 9

» Bonding lastCncPrice Manipulation With Leftover Dust
» Extra Reward Tokens Not Sent to RewardManager

« Higher Imbalance Tolerance in Metapools

« Incomplete Pool Balance Check

« Oracle Price Manipulation

» Reward Double Counting

» Slippage Losses Are Socialized
» Weight Update Rounding Errors
 Wrong Denomination of Deviation Delta

(Low)-Severity Findings 13

» Possible Zeroed Pool Weight Increase
« Reward Factor Override

» Boost After Shutdown

» CNCLockerV3 Lock Squatting

» Claimable Rewards Potentially Wrong

* Enabled Fee Not Reset (LRI
* Endless Loop (LR eIfEEEr
* Lock Spam DoS (LRI

* Minimum Tainted Transfer Amount Can Be Circumvented {&ele eIl =]
* Rebalancing Reward After Depeg (SRSl
* Unreachable Imbalance Buffers (Sl efIfle =)

* Wrong TVL Factor (&l {e)
* Wrong Time to Full Boost (Sl

Informational Findings 9

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

» removeDuplicates Not Working With 0 Elements

» Fees Without Locked CNC

« Exchange Rate Race Condition

» Interface Differences

+ Ambiguous Naming

» Typographical Errors

« Rebalancing Reward Formula Mismatch

 Missing Events (L CRSIEET
* Shadowed Variables (&S eIl

6.1 Endless Rebalancing

As detailed in Depeg due to oracle manipulation, Curve pools can be depegged wilfully at any time. On
new Conic pools, or pools with very low TVL, this is even more problematic because an infinite amount of
rebalancing rewards can be claimed.

CS-CCP-001

This is possible by donation of Curve LP tokens to the Conic pool. When the attacker is the only liquidity
provider on a Conic pool, or if they hold most of the LP tokens, all donated value is given straight back to
them. Therefore, the donations are free (or almost free), enabling this attack:

1. The attacker deposits to an empty Conic pool.
2. The attacker depegs one of the underlying Curve pools, enabling rebalancing rewards.

3. The attacker rebalances the Conic pool to almost the maxDevi ati on threshold, so that the
rebalancing rewards are still active.

4. The attacker adds liquidity directly to the Curve pool, sends these tokens to the Conic pool.
5. The attacker repeats step 3 and step 4 as often as possible.
6. The attacker withdraws their LP tokens from the Conic pool (in the next block).

As long as the attacker gains more CNC rewards per iteration than they lose to other Conic LPs (only
relevant if they are not the only LP), the attack is profitable and can be performed indefinitely, allowing
them to mint CNC up to the _ MAX_REBALANCI NG REWARDS. The only cost is the amount of tokens
needed to increase the LP token price of a given Curve pool by the depeg threshold. Therefore, small
Curve pools are more vulnerable.

Code corrected:

A new (off-chain) threshold for a pool's TVL is introduced which has to be passed before rebalancing
rewards are activated. In practice, this is done via governance change that calls the function
BaseConi cPool . set Rebal anci ngRewar dsEnabl ed() . Additionally, rebalancing rewards now start
from O after a pool has been marked as depegged. This ensures that the attack does not become
instantly profitable. With a reward factor of 10, the attacker has to wait 1.4 days to achieve the same
result as before.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.2 Execution of Wrong Governance Change

Code Corrected

Gover nancePr oxy. execut eChange() gets a storage pointer to the change corresponding to a given
ID, deletes the change from storage and then tries to execute the change.

CS-CCP-002

The change is deleted in the following way:

pendi ngChanges|[i ndex| pendi ngChanges| pendi ngChanges. | ength 1];
pendi ngChanges. pop() ;

If the change is the last one in the pendi ngChanges array, then nothing is executed at all. If the change
is any other change, the last change in pendi ngChanges will be executed instead of the correct one.

Code corrected:

A given pending change is now deleted after all calls have been performed. To ensure that the change
cannot re-execute itself, a new state Execut i ng has been introduced that is set over the duration of the
calls. Only Pendi ng changes can be executed.

6.3 Depeg Due to Oracle Manipulation
(Correctness [High WZZTTB)] Code Corrected)

Deposit and withdraw functions of ETH pools are protected against reentrancy from Curve pools which
disables the ability of attackers to manipulate the t ot al Suppl y() function of Curve and therefore the
manipulation of the CurveLPOracl e. Furthermore, the oracle checks that a given Curve pool is
balanced by comparing the Chainlink oracle prices of the underlying tokens with the actual price of the
tokens on the Curve pool (using get _dy()). This ensures that an attacker cannot perform large trades
on the pool before calling Conic, which would also skew the LP token price.

CS-CCP-003

There exists, however, another possibility: Fee accrual on the Curve pool that results in the LP token
price becoming (permanently) inflated. While this is not a problem for deposits and withdrawals, the
mechanism can be used to call BaseConi cPool . handl eDepeggedCur vePool () and set the weight
of the pool to 0. This automatically enables rebalancing rewards. An attacker can then rebalance the pool
and gain the rebalancing rewards. The fees can be accrued with a single, large, bi-directional trade.

Since handl eDepeggedCur vePool () does not set the timestamp for pool weight updates, the reward
for rebalancing is instantly available. If a pool is depegged right before a weight update (which is
estimated to happen around every 14 days), the reward can be as high as 280 CNC per 10.000 USD
value rebalanced.

Consider the following example:

1. A Conic pool exists that contains two Curve pools with 3 assets holding 100k tokens each. Weights
are[0.5, 0.5].

2. An attacker (iteratively) adds 900k tokens liquidity per asset to the first Curve pool (by adding the
Conic pool's underlying via Conic and the rest via Curve). The attacker also has to add liquidity to
the other Curve pool to ensure that everything keeps balanced. These tokens can be withdrawn
again later.

3. The first Curve pool's value is now roughly 3M. With the aforementioned fee donation attack, the
attacker increases the value of the pool to 3.09M.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

4. The attacker now depegs the first Curve pool and rebalances 900k on Conic, netting them ~25k
CNC tokens.

5. The attacker withdraws liquidity from Conic and Curve. They get back up to 90% of the donated
90k fees to Curve (depending on the Curve pool setup) as they hold 90% of the liquidity of the pool.

6. Depending on the amount of fees the attacker gets back, and the current market value of CNC, this
attack becomes profitable.

The attack can be scaled infinitely with sufficient holdings and also becomes more profitable.
Rebalancing and liquidity provision to Curve can be done with flash loans while the liquidity provision
to Conic requires capital as a deposit cannot be withdrawn in the same block.

Code corrected:

Depegs are now identified by comparing Chainlink prices of all underlying tokens to their cached price.
As there are no longer any LP token prices involved, there is no possibility for manipulation (except broad
market manipulation).

6.4 Wrong Accounting in Bonding
CIZIED (7D (Version 1) CIILIETD

Bondi ng. _checkpoi nt Account () calculates the already accrued stream of LP tokens that can be
unstaked by multiplying the user's rewards boost with the difference of the total integral and the user's
integral since the last checkpoint:

CS-CCP-004

ui nt 256 account Boost edBal ance cnclLocker . t ot al Rewar dsBoost (account) ;
per Account St r eamAccr ued| account | account Boost edBal ance. rmul Down(

st ream nt egr al per Account St reand nt egr al [account |
)

per Account St reanl nt egr al [account | stream ntegral ;

The stream nt egr al is computed with CNCLocker V3. t ot al Boost ed() amount which is the total of
the locked CNC times the boosts of each user. The accrued stream of users is computed with
t ot al Rewar dsBoost () which also contains balances of the old CNCLocker V2 contract and does not
contain CNC of locks that have already expired:

function total Rewar dsBoost (address account) public view override returns (uint256) ({
return
| ockedBoost ed[account |
unl ockabl eBal anceBoost ed(account)
| CNCVot eLocker (V2_LOCKER) . bal anceOf (account) ;

}
Since t ot al Boost ed() is smaller than the sum of t ot al Rewar dsBoost () for all users, there can be
more claims than could be satisfied. Consider the following scenario:
1. User 1 has at ot al Rewar dsBoost () of 1000 tokens.
2. User 2 has at ot al Rewar dsBoost () of 0.
3.total Boosted() isO.
4. User 2 calls bondCncCr vUsd() with an amount of 1000 LP tokens and gets a bonding price of 1.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

5. After 2 epochs, user 1 calls checkpoi nt Account (). streanl nt egral is setto 1. Since user 1
has a balance of 1000 tokens in t ot al Rewar dsBoost () but their account integral has not been
set yet, per Account St r eamAccr ued for user 1 is updated to 1000 tokens.

6. User 1 calls cl ai n5t r eaned() and receives 1000 LP tokens.

7.User 2 can still accrue 1000 tokens in perAccount StreamAccrued by calling
checkpoi nt Account (). But they cannot claim the stream anymore, since the 1000 LP tokens
have already been unstaked.

Additionally, it is problematic that the integral calculation with t ot al Boost ed() does not consider
unlockable CNC as the calculation might result in an integral smaller than it should be.

Code corrected:

Bonding now uses the function CNCLockerV3.total StreanBoost () instead of
t ot al Rewar dsBooost () to calculate the integral of individual accounts. This function only returns the
locked boost of a user which matches the calculation for the total integral.

6.5 Bonding lastCncPrice Manipulation With
Leftover Dust

() (Vi) (Version 1) XD

During every bonding epoch, there will likely be some CNC dust left-over since it is hard to estimate the
exact amount of LP tokens to bond in order to acquire all the CNC up to the last decimal. Some of this
CNC dust can however be acquired just before the epoch ends for the purpose of manipulating
| ast CncPri ce to be M N_CNC_START_PRI CE, even if the actual bonding happened at a much higher
price.

CS-CCP-005

Code corrected:

A i nBondi ngAnount has been added that can be set to up to 1,000 LP tokens. This ensures (if set to
a sensible value) that leftover dust cannot be acquired.

6.6 Extra Reward Tokens Not Sent to
RewardManager

(Medium] [Version 1] Code Corrected

Rewar dManager . _swapRewar dTokenFor Wt h() assumes the extra rewards reside on the contract.
This is not true as all tokens are sent to the corresponding Conic pool and are never sent to the
Rewar dvanager . No approvals from Conic pools to their reward managers exist for these extra tokens.

CS-CCP-007

Code corrected:

BaseConi cPool now has a function updat eRewar dSpendi ngApproval () that allows to set
approvals of arbitrary tokens to the Rewar dManager . It is called each time a new reward token is added.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

_sel | Rewar dTokens() now transfers tokens from the respective Conic pool to the Rewar dVanager
before they are swapped.

6.7 Higher Imbalance Tolerance in Metapools

(D (Miedium) (Version 1) (ST

In Cur veLPOr acl e. get USDPri ce(), the pool balancing for Metapools is checked twice, once for the
wrapping Metapool, and once for the base pool. This allows both pools to be unbalanced up to the
maximum threshold, which is twice the imbalance threshold that would apply to a single pool.

CS-CCP-044

Code corrected:

A new cust onml nt er nal | mbal anceBuf f er s storage mapping has been added that allows to set
custom imbalance buffers for LP tokens of a base pool. If these parameters are set in the right way, the
threat can be mitigated.

6.8 Incomplete Pool Balance Check

(D (Miedium) (Version 1) (SR

CurvePool Uti | s. ensur ePool Bal anced() compares Chainlink prices to the prices returned by a
Curve pool's get _dy() function. The checks are always performed from the first asset to all other
assets. In pools with more than 2 assets, this can become problematic.

CS-CCP-045

Consider the following scenario:
1. A Curve pool with 3 assets holds exactly 1000 tokens per asset (perfectly balanced).
. The Curve pool accrues 0 fees (for simplicity) and has an A parameter of 2000.
. An attacker trades 900 tokens from asset 1 to asset 2.
. The attacker also trades 800 tokens from asset 1 to asset O.
.get _dy(0, 1) returns ~1.04.
.get _dy(0, 2) returns ~0.96.
7.g9et _dy(1, 2) returns~0.92.

o O~ WDN

With an imbalance buffer of 4% (simply for demonstration purposes, in production this would be smaller),
the pool would still be considered balanced while there is an imbalance of 8% between asset 1 and 2.

Code corrected:

The function now checks all combinations of tokens in a given pool.

6.9 Oracle Price Manipulation

(D) (Vidium) (Version 1) CXEEIED

CS-CCP-009

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Deposit and withdraw functions in Conic ETH pools are protected against reentrancy from a Curve pool
that can potentially manipulate LP token prices. This is, however, not true for some other functions.

I nfl ati onManager . updat ePool Wi ght s() can be called by reentering from a Curve pool resulting
in skewed pool weights as the calculation relies on prices of the CurvelLpOracl e which can be
manipulated by removing liquidity from a Curve pool that holds ETH and then reentering to the function in
the callback.

BaseConi cPool . handl el nval i dConvexPi d() allows to manipulate the
t ot al Devi ati onAft er Wi ght Updat e storage variable which is, however, not used anywhere in the
code.

Furthermore, onl yOaner functions that are called from the Gover nancePr oxy (if they have a delay)
are also principally open to this manipulation as the changes can be executed by any user.
Control | er. updat eWei ght s() and updat eAl | Wi ght s() can be tricked into writing wrong LP
token prices into the _cachedPri ces of BaseConi cPool , which can then be used to set the weight of
a Curve pool to 0 with handl eDepeggedCur vePool ().

Code corrected:

All mentioned functions are now executing reentrancy checks similarly to the deposit and withdraw
functions.

6.10 Reward Double Counting
(Correctness | TTHT)WCETTY Code Corrected)

Rewar dManager . pool Checkpoi nt () accrues rewards by storing a total integral and holdings since
the last checkpoint per reward token:

CS-CCP-010

function _updat eEar ned(
byt es32 key,
ui nt 256 hol di ngs,
ui nt 256 ear ned,
ui nt 256 _t ot al Suppl y
) internal {
_rewar dsMet a key] . ear nedl nt egr al ear ned. di vDown(_t ot al Suppl y) ;
_rewar dsMet al key] . | ast Hol di ngs hol di ngs;

}
After claiming the regular rewards, _cl ai nPool Ear ni ngsAndSel | Rewar dTokens() claims extra
rewards on Convex and swaps them for CNC. These additional CNC rewards are then added to the total
integral. The last holdings, however, are not updated accordingly.

if (_total Staked 0)
_rewardshMet al _CNC_KEY] . ear nedl nt egr al recei vedCnc_. di vDown(_t ot al St aked) ;

As the CNC holdings of the contract increase, but the last holdings do not, the next checkpoint will count
these tokens as new rewards again and add them to the integral again:

cncHol di ngs CNC. bal anceO (coni cPool) ;

ui nt 256 cncEar ned cncHol di ngs _rewar dshMet a| _CNC_KEY] . | ast Hol di ngs;

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

_updat eEar ned(_CNC_KEY, cncHol di ngs, cncEarned, _total Staked);

Code corrected:

_cl ai mPool Ear ni ngsAndSel | Rewar dTokens() now correctly sets the | ast Hol di ngs for CNC
after selling reward tokens. Additionally, if rewards have to be claimed in cl ai nEar ni ngs(), the
account share of the calling user is updated again after the rewards tokens have been swapped to
ensure that the user receives the extra reward in the same call.

6.11 Slippage Losses Are Socialized
(Design | (LTI CCETTBY] Code Corrected

BaseConi cPool . deposi t For () calculates the amount of LP tokens a user receives based on the
value of the whole pool. When slippage is incurred, this is problematic as the depositor might receive
more LP tokens than they should, resulting in a loss for all other liquidity providers. Consider the following
example with simplified numbers:

CS-CCP-040

1. A Conic pool contains one Curve pool with two tokens, 1000/1000 liquidity, 2000 LP total supply,
token prices of 1 and an LP price of 1.

. The Conic pool holds 1000 of the LP tokens and the Conic LP token has a total supply of 1000.
. A user deposits 1000 token 0 to Conic.

. Conic receives 900 LP tokens from Curve (slippage of 10%).

ga b~ W DN

. The Curve pool now holds 3000 USD value and has 2900 LP tokens total supply. Conic owns 1900
of these LP tokens.

. Due to the slippage, the LP price of the Curve pool according to Conic now increased to 1.0345.
.under | yi ngBal anceAft er therefore is now 1965, so the delta is 965.

. The user now receives 965 Conic LP tokens for their deposit of 1000 tokens.

© 00 N O

. The Conic pool holds a total of 1900 Curve LP tokens which means the user's share of the Curve
LP tokens now is 933 while the Conic pool only received 900 Curve LP tokens for the user's
deposit.

Code corrected:

If the price of a Curve pool's LP token increases during a deposit, the price before the deposit is used to
calculate the amount of LP tokens the user receives.

6.12 Weight Update Rounding Errors
(Correctness | IZITWEETTY Code Corrected)

BaseConi cPool . _set Wi ght ToZer o() sets the weight of a given pool to 0 and scales the weights of
all other pools accordingly to reach at a total weight of 1. This is done by computing a scale factor which
involves a division. This division can result in rounding errors which will be passed to the upscaled

CS-CCP-011

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

weights. Therefore, it is possible that the total weight after the operation is slightly smaller than 1,
breaking the invariant that the sum of all weights must equal exactly 1.

In turn, this can become problematic when rebalancing rewards are active (which is the case after the
function has been called) as deposit / withdrawal maximums are now calculated without maxDevi at i on
gaps.

Consider the following example:

1.A Conic pool has two Curve pools with weights
[666666666666666667, 333333333333333333].

2. The first pool is depegged, resulting in the following weights: [999999999999999999] .

3. A user deposits 101 tokens with 18 decimals. _get Deposi t Pool () returns a maximum amount
of 100.999999999999999899 tokens that can be deposited to the Curve pool. Including the 1e2
constant in _deposi t ToCur ve(), the user's deposit can not completely be satisfied and the call
results in a revert after a second iteration of get Deposi t Pool () .

Code corrected:

_set Wi ght ToZer o() now adds the remaining weight to the last element that is not equal to the pool
being set to 0-weight instead of multiplying its weight with the scaling factor. This ensures that all weights
always sum up to 1. However, in (Version 2) if the last pool had already 0-weight, it will incorrectly receive
the remaining weight, setting the pool weight to a non-zero value as explained in Possible zeroed pool
weight increase.

6.13 Wrong Denomination of Deviation Delta

[Medium] [Version 1] Code Corrected

CNCM nt i ngRebal anci ngRewar dsHandl er . conput eRebal anci hgRewar ds() computes
rebalancing rewards with the following formula:

CS-CCP-012

(el apsedSi nceUpdat e cncRebal anci ngRewar dPer Dol | ar Per Second) . nul Down(
devi ati onDel t a. convert Scal e(deci mal s, 18)

)i

The cncRebal anci ngRewar dPer Dol | ar Per Second factor is per Dollar. It is therefore assumed that
devi ati onDel t a should be in USD denomination. This is, however, not the case as the value is in
underlying.

For example, rebalanced deviation of 10.000 USDC would net ~0.833 CNC per hour, while a rebalanced
deviation if 5 ETH (roughly the same value as the 10.000 USDC) would only net ~0.0004166 CNC.

Code corrected:

The formula has been corrected by multiplying the amount with the current price of the underlying token.

6.14 Possible Zeroed Pool Weight Increase

(Correctness JETINEEETE)] Code Corrected

CS-CCP-041

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

BaseConi cPool . _set Wi ght ToZer o() sets the weight of the last pool that is not the pool whose
weight is set to O to the leftover weight so that the total weights equal to exactly 1.

If this pool has already been set to 0 weight previously, the weight might increase again by some dust.

Code corrected:
The function now filters out all pools with 0 weight before performing the scaling.

6.15 Reward Factor Override

(Coreectness Y OWEERTIR Code Corrected)

In BaseConi cPool . handl eDepeggedCur vePool , the r ebal anci ngRewar dsFact or is set even
when rebalancing rewards are not activated. If rebalancing rewards have been activated before due to a
weight update and the function is called on an empty pool, the reward factor is set regardless.

CS-CCP-042

Code corrected:

The reward factor is now only set when rebalancing rewards are activated.

6.16 Boost After Shutdown
D (Low) (Version 1) YD)

LpTokenSt aker . unst akeFron() calculates _st aker Checkpoi nt () even after the contract has
been shut down, further increasing the boost of the users.

CS-CCP-013

Code corrected:

unst akeFronm() now checks if the contract has been shut down before calling
_st aker Checkpoi nt () (and Rewar dManager . account Checkpoi nt ()).

6.17 CNCLockerV3 Lock Squatting
EZII (Low) (Version 1) XY

Similarly to issue Lock spam DoS, a user who wants to avoid having its lock ever kicked (for example to
use an airdropped boost indefinitely) can create a very big amount of 1 wei locks before and after the lock
they wish to protect. Unlocking those locks will be very gas expensive for other users, and the cost will
surpass the kicking reward. Kicking will not be possible since the gas cost of running
_get Lockl ndexByl d() will exceed the block gas limit.

CS-CCP-014

Code corrected:

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

A _M N_LOCK_AMOUNT of 10 CNC has been introduced. Additionally, _MAX LOCKS restricts the amount
of locks a single account can hold to 10. It is now impossible to create enough locks for an account to be
able to squat a certain lock.

6.18 Claimable Rewards Potentially Wrong
(Correctness JETIINZTEITR) Code Corrected

Rewar dvanager . cl ai mabl eRewar ds() returns O if the balance of a Conic pool is 0 in the
LpTokenSt aker . This is not correct if the pool already accrued some rewards and later all tokens are
unstaked (for example after shutdown).

CS-CCP-015

Code corrected:

cl ai mabl eRewar ds() now does not return early if the balance of a Conic pool is 0 and instead returns
the correct value.

6.19 Enabled Fee Not Reset
D (Low) (Version 1) (YD)

Rewar dManager . set FeePer cent age() does not reset f eesEnabl ed to f al se when the fee is set
back to 0.

CS-CCP-016

Code corrected:

f eesEnabl ed is now set to f al se when the fee is set to 0.

6.20 Endless Loop
D (Low) (Version 1) (CIIITIED)

Rewar dManager . pool Checkpoi nt () claims rewards from Convex and the LpTokenSt aker if
certain conditions are met (either if there are not enough funds to cover fees or if the Convex cliff is
approaching). If one of the conditions is met, and additionally the current _| NFLATI ON_RATE_PERI OD
has ended in the | nf | ati onManager, then the function executes an endless loop that calls back to
itself (because the conditions are still met at the time of the callback) until the transaction runs out of gas.
The callpath is as follows:

CS-CCP-017

1. Rewar dManager . pool Checkpoi nt ().
. Rewar dManager . _cl ai nPPool Ear ni ngsFor Qi ff () (optional).
. Rewar dManager . _cl ai nPool Ear ni ngsAndSel | Rewar dTokens() .

.LpTokenSt aker . cl ai mCNCRewar dsFor Pool ().

2

3

4. Rewar dManager . _cl ai mPool Ear ni ngs() .

5

6. LpTokenSt aker. _cl ai mMCNCRewar dsFor Pool () .
7

.I'nfl ati onManager . execut el nfl ati onRat eUpdat e() .

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

8.1 nfl ati onManager. execut el nfl ati onRat eUpdat e() .
9.1 nfl ati onManager . updat ePool Wi ght s() .
10. Rewar dManager . pool Checkpoi nt ().

It is also worth to note that the subsequent calls of LpTokenSt aker . cl ai mMCNCRewar dsFor Pool ()
increase the amount of CNC minted every time since the pool Shar es are only reset after the call to
I nfl ati onManager . execut el nfl ati onRat eUpdat e() while the shares are minted before. A fix of
the issue should take this into consideration.

Code corrected:

LpTokenSt aker . _cl ai nCNCRewar dsFor Pool () no longer calls
I nfl ati onManager . execut el nfl ati onRat eUpdat e() so there is no loop anymore.

6.21 Lock Spam DoS
7D (Low) (Version 1) CXSIZET)

CNCLocker V3. | ockFor () allows anyone to create a lock for a given account. An attacker can create a
big amount of 1 wei locks on a victim account, such that if a legitimate lock is then created unlocking it
becomes impossible as the cost of running _get Lockl ndexByl d() exceeds the block gas limit.

CS-CCP-019

This attack allows an actor to effectively freeze any CNC that is to be locked by a specific user. It is
extremely costly though (Around $27k in gas fees at gas price 45 Gwei and ETH value $2000).

Code corrected:

A _M N_LOCK_AMOUNT of 10 CNC has been introduced. Additionally, _ MAX LOCKS restricts the amount
of locks a single account can hold to 10. It is now impossible to create enough locks for an account to be
able DoS it. However, as described in note Locking in CNCLockerV3 can potentially fail if too many locks
exist , some annoyance could be caused by an attacker willing to spend 100 CNC to create 10 locks for
another user.

6.22 Minimum Tainted Transfer Amount Can Be
Circumvented

D (Cow) (Version 1) CXIEIRED

LpToken sets a flag on accounts that mi nt () or burn() that disables them from minting or burning
again in the same block. Since LP tokens can be transferred, the flag also has to be set on all addresses
that the tokens are sent to.

CS-CCP-020

To prevent cheap DoS attacks on arbitrary accounts that deposit or withdraw on a Conic pool, there
exists a minimum threshold. Minting / burning of less than this amount will not set the flag.

The tainting mechanism is not in use when users stake their minted tokens directly in the
LpTokenSt aker. Only when the tokens are withdrawn again, the flag is set. This can be abused to
circumvent the minimum tainted transfer amount in the following way:

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

1. Call BaseConi cPool . deposi t () with at least the minimum tainted transfer amount to a Conic
Pool and set the st ake argumenttotr ue.

2. Calll pTokenSt aker . unst akeFor () with an amount of 1 wei and the address you want to DoS.

3. In the next block, withdraw the rest if the deposited amount.

Code corrected:

The transferred amount is now passed to LpToken.taint() (the function called by
| pTokenSt aker . unst akeFor () to taint a transfer) and the function checks for the minimum taint
amount.

6.23 Rebalancing Reward After Depeg
(Correctness JETINZTZITI) Code Corrected

BaseConi cPool . handl eDepeggedCur vePool () automatically enables rebalancing rewards. This is,
however, not necessary if the allocation of the given pool is already below the
_MAX_USD VALUE_FOR_REMOVI NG_PQOOL threshold.

CS-CCP-023

Code corrected:

handl eDepeggedCur vePool () now checks if the value of a Curve pool is below the threshold and
does not start rebalancing rewards in that case.

6.24 Unreachable Imbalance Buffers

(D (Cow) (Version 1) CRTIEEIEED)

CurvePool Util s. ensurePool Bal anced() compares prices of token pairs on Curve with their
respective Chainlink prices using an imbalance buffer as threshold. The imbalance buffers are set for
individual tokens. A pair of two tokens will only ever be compared to the imbalance buffer of input token.
Depending on the Curve pool configuration, this can result in the inability to set a buffer for a certain
token.

CS-CCP-025

For example, in an ETH/rETH Curve pool that contains WETH as the 0-token, it is not possible to use the
imbalance buffer of rETH:

for (uint256 i 0; i pool Met a. nunber O Coi ns 1, i++) {
fox (uint256 j i 1, j pool Met a. nunber O Coi ns; j ++) {
;[;)Act ual | Cur vePool V2(pool Met a. pool). get _dy(i, j, fromBal ance);
.r.e.qui re(

_isWthinThreshol d(t oExpect ed, toActual, pool Fee, pool Meta.inbal anceBuffers[i]),
"pool is not bal anced"

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Code corrected:
The function now uses the minumum of the imbalance buffers of each token pair.

6.25 Wrong TVL Factor
D (Low) (Version 1) IR0

Conic stated that the TVL_FACTOR in LpTokenSt aker is supposed to work in a way that gives the full
boost to a user that holds 20% of the total staked amount using the following calculation:

CS-CCP-027

ui nt 256 st akeBoost Scal edivat h. ONE
user St akedUSD. di vDown('t ot al St akedUSD) . nul Down(TVL_FACTCR) ;

With the given TVL_FACTOR of 50, the full boost of 10 is already achieved with a share of 18%. The
correct TVL_FACTOR for 20% would be 45.

Code corrected:
The TVL_FACTOR has been changed to 45.

6.26 Wrong Time to Full Boost
(Correctness (ETYAIETIRY Code Corrected)

LpTokenSt aker. get Ti meToFul | Boost () returns the time for a given user until their full boost is
active:

CS-CCP-028

function get Ti mneToFul | Boost (address user) external view returns (uint256) ({
ui nt 256 ful | Boost At _ boost s|[user] . | ast Updat ed | NCREASE_PERI OD;
if (full Boost At _ bl ock. ti mestanp) return O;
return full Boost At _ bl ock. ti mest anp;

}

This calculation is not correct. For example, the function returns the full | NCREASE_PERI OD for a user
that just reached their full boost amount in the current block, while it should return 0. | ast Updat ed is the
point in time when a user's boost has been updated the last time. The function is therefore only correct
for users that have just created a new position.

Code corrected:

The function get Ti meToFul | Boost () has been removed.

6.27 Ambiguous Naming
[Informational] [Version 1]

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

CS-CCP-029
The following code parts contain symbols that are not precise and could be misunderstood:

* Chai nl i nkOracl e. _get Price() defines a boolean argument shoul dRevert. Contrary to the
name of the argument, the function can still revert when it is set to true.

* I nfl ati onManager . hasPool Rebal anci ngRewar dHandl ers() allows to check a single
handler address while the function name contains the word "handlers" in plural.

* LpTokenSt aker . unst akeFor () allows a user to unstake their own tokens to a specific address.
It does not, as opposed to the naming, allow a user to unstake for another address.

Code corrected:

All aforementioned function names have been changed except for the function unst akeFor () because
it is a public interface that has already been in use before.

6.28 Exchange Rate Race Condition
(Informational] [Version 1]
CS-CCP-032

BaseConi cPool . deposi t () allows to instantly stake the freshly minted LP tokens with the following
flow:

1. Mint tokens.
2. Stake tokens on the LpTokenSt aker .
3. Update the _cachedTot al Under | yi ng.

LpTokenSt aker . st akeFor () calls BaseConi cPool . usdExchangeRate() in step 2. It is
implemented in the following way:

function usdExchangeRate() external view virtual override returns (uint256) ({
ui nt 256 underlyi ngPrice controller.priceOacl e().getUSDPrice(address(underlying));
return _exchangeRat e(cachedTot al Under | yi ng()) . mul Down(under | yi ngPri ce) ;

}

function _exchangeRat e(uint256 total Underlying) internal view returns (uint256) {
ui nt 256 | pSuppl y | pToken. t ot al Suppl y();
it (lpSupply 0 t ot al Under | yi ng_ 0) return Scal edVat h. ONE;

return total Underlying_. di vDown(| pSuppl y);
}

As can be seen, the exchange rate is calculated by dividing the cached total underlying (which is not yet
updated in the call) by the total supply of the LP token (which has already been increased due to the
minting in step 1). The exchange rate is therefore erroneously deflated.

However, this exchange rate is used in a way that completely factors it out in this call which makes this
call safe after all.

Code corrected:

_cachedTotal Underlying is now updated before the «calls to LpToken.mnt() and
LpTokenSt aker. st akeFor ().

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

6.29 Fees Without Locked CNC
[Informational] [Version 1]

Rewar dvanager . set FeePer cent age() only allows to set a fee if the
CNCLocker V3. t ot al Boosted() > 0. Once the fee is set, fees are however still accrued even if the
amount of locked CNC goes down back to O.

CS-CCP-033

Specifiaction changed:
set FeePer cent age() now no longer requires CNCLocker V3. t ot al Boosted() > O.

6.30 Interface Differences

[Informational] [Version 1]

The following parts of the code have non-uniform interfaces:

CS-CCP-035

* BaseConi cPool . deposi t For () allows the minted LP tokens to be instantly staked by setting a
boolean parameter. wi t hdr aw() does not expose such a boolean parameter for unstaking LP
tokens. Instead, a separate function unst akeAndW t hdr aw() must be used. This interface is
non-uniform.

* Rewar dManager contains a function account Checkpoi nt () while Bondi ng contains a function
checkpoi nt Account ().

Code corrected:

Bondi ng. checkpoi nt Account () has been renamed to Bondi ng. account Checkpoi nt (). The
withdraw function names are kept as-is for backwards compatibility.

6.31 Missing Events
(Informationalj [Version 1]

The following state-changing functions are not emitting events (the list is non-exhaustive):

CS-CCP-036

* Rewar dManager . pool Checkpoi nt ().
« All functions in Si npl eAccessContr ol .
e Chai nlinkCracl e. set Heart beat ().

Code corrected:

Events have been added to most functions where it makes sense.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

6.32 Rebalancing Reward Formula Mismatch

[Informational] [Version 1] Specification Changed

The doc comments of
CNCM nt i ngRebal anci ngRewar dsHandl er . conput eRebal anci ngRewar ds() describe the
following formula:

CNC =t * CNC/s * (1 - (Adeviation / initialDeviation))

This is different to the actual implementation:

CS-CCP-037

(el apsedSi nceUpdat e cncRebal anci ngRewar dPer Dol | ar Per Second) . mul Down(
devi ati onDel ta. convert Scal e(deci mal s, 18)

)

The formula in the comments is also likely wrong as it would imply lower rewards the higher the deviation
delta is.

Specification changed:

The formula has been updated.

6.33 Shadowed Variables
[Informationalj [Version 1]

The LpToken constructor's arguments nane and synbol shadow the storage variables of the ERC20
contract.

CS-CCP-038

Code corrected:

The variable names have been changed.

6.34 Typographical Errors
(Informational) (Version 1)

Typographical errors have been identified in the following parts of the code:

CS-CCP-039

1. BaseConi cPool . deposi t For () and shut downPool () define an error message that contain
the word "shutdown" as a verb.

2. Doc comments of BaseConi cPool . handl el nval i dConvexPi d() contain the word "shutdown"
as a verb.

3. Doc comments of BaseConi cPool . handl el nval i dConvexPi d() contain the word "outcomu".
4. Doc comments of BaseConi cPool . handl el nval i dConvexPi d() contain the word "unilkely".

5. Doc comments of ETH FACTORY_POOL_CODE HASH 1 in Cur veHandl| er contain the phrase "a
optimization"”.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

6. Error string "convex pool pid is shut down" in
BaseConi cPool . handl el nval i dConvexPi d() is inconsistent with the check performed.

Code corrected:
All errors have been fixed.

6.35 renoveDupl i cat es Not Working With 0
Elements

[Informational] [Version 1]

ArrayExt ensi ons. renoveDupl i cat es() does not work correctly if the array passed as arguments
contains the 0-address. It will be filtered out.

CS-CCP-043

Code corrected:

The function now correctly checks for 0 elements.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Code Copies

(Informational] [Version 1]

CS-CCP-030

The project contains multiple functions that share a similar or even identical codebase. The common
functionality should be refactored into separate functions to minimize the risks of future changes resulting
in different functions behaving differently when they should behave the same way.

Examples are:
* BaseConi cPool . _wi t hdrawFr onCur ve() and _deposit ToCurve().
e LpTokensSt aker . pool Checkpoi nt () and cl ai mabl eCnc().
* Multiple functions in CNCLocker V3.

7.2 Events Emitted on No Change
[Informationalj [Version 1](j

CS-CCP-031
Some functions emit events even when no change in storage has occurred. Here are some examples:
1. BaseConi cPool . updat eDepegThr eshol d().
2.Controll er.setCurveHandl er ().
3. Rewar dManager . addExt r aRewar d() .

4. Rewar dManager . r enoveExt raRewar d() .

Code corrected:

Most of the functions have been corrected to only emit events when the state changes.

7.3 Gas Optimizations
(Informational] [Version 1]

CS-CCP-034
Some code parts can be optimized for better gas efficiency.
1. Redundant calls. For example:

» BaseConi cPool . deposi t For () calls the price oracle for the underlying price. The same
call is then performed in _exchangeRat e() and potentially _i sBal anced() .

*In CurveHandl er. _version_0_renmove_liquidity _one_coin(), the call
Cur veRegi st ryCache. coi ns() is executed in each loop iteration.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

* Rewar dvanager . pool Checkpoi nt () could send fees directly from a Conic pool to the
CNCLocker V3.

* CurveAdapt er. _st akedCur velLpBal ance() calls
| ConvexHandl er (control | er. convexHandl er ()) . get Rewar dPool () which in turn
calls Cur veRegi st ryCache. get Rewar dPool () . This function could be called directly.

* The call to CurveRegi stryCache. nCoi ns() in CurveLpOracl e. get USDPri ce() can
be omitted as the number of coins is already available.

*GenericOracl e. get USDPri ce() calls ChainlinkOracle.isTokenSupported()
which calls ChainlinkOracle.getUsdPrice(). It then proceeds to call
Chai nl i nkOracl e. get USDPri ce() .

2. Redundant storage reads. For example:

» BaseConi cPool . _get Deposi t Pool () loads all pool s and wei ght s in each iteration of
_deposi t ToCurve().

» BaseConi cPool . _deposit ToCurve() loads the pool address from storage when it could
have just been passed back by _get Deposi t Pool ().

* CNCLocker V3. _f eeCheckpoi nt () loads accruedFeesl ntegral Crv and
accruedFeesl nt egr al Cvx multiple times from storage.

e LpTokenSt aker. cl ai nCNCRewar dsFor Pool () loads pool Shar es from storage instead
of using the return value of checkpoi nt ().

3. Redundant storage writes. For example:

* Gover nancePr oxy. _endChange() writes data to the pending change in storage before
deleting it from storage.

4. Unnecessary computation. For example:

* The loop in BaseConi cPool . _get Deposi t Pool () does not continue if the weight of a
given pool is 0.

* The computation of i sEthlndexFirst() in CurveHandl er.isReentrantCall () is
irrelevant.

* Rewar dManager . pool Checkpoi nt () does not set the rewardsd ai med flag when
rewards are claimed due to being within the threshold of the Convex cliff. This results in
cl ai mPool Ear ni ngsAndSel | Rewar dTokens() potentially executing the claiming
functionality two times.

* Rewar dManager . pool Checkpoi nt () does not return early if no rewards have accrued.

5. Unoptimized structs in storage. For example:

» The size of the endedAt field in the Change struct of | Gover nancePr oxy could be reduced
to fit the St at us enum into the same word.

» The Boost struct in LpTokenSt aker could be optimized to only occupy 1 word.

6. chainlinkOracl eand _curvelLpOracl ein Generi cOracl e can be i mut abl e.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Extra Rewards Might Have 100% Slippage

Rewar dManager swaps all extra rewards of a Convex pool to CNC on either SushiSwap or Curve. If the
respective token is not supported by the Generi cOr acl e, no slippage protection is set for these swaps.
It is likely that these swaps will be arbitraged by bots.

8.2 Locking in CNCLockerV3 Can Potentially Fall
If Too Many Locks EXxist

No more than _MAX_LOCKS can exist in CNCLocker V3 for every user. If a user has created more, or if
an attacker targets a user, they could be prevented from creating new locks according to their intentions.
New locks can always be created by using the r el ock option of | ockFor (), however that requires the
duration to be longer than any of the existing locks.

If it is not possible to create new locks for an address, an alternative address will have to be used. If an
airdrop cannot be used because of having reached _MAX LOCKS, the airdrop can still be used on
another address through | ockFor () .

8.3 RewardManager Can Become Temporarily
Insolvent

Rewar dManager handles CVX rewards by calculating the current amount of earnings for the current
Convex cliff period. If the end of the cliff period approaches, earnings are finally claimed. It is, however,
possible that there are no interactions with the contract for a longer period which would result in this claim
being missed before the period ends. In that case, the amount of CVX rewards in the contract are inflated
as the actual claimable reward is lower than the reward that has been calculated before. It is therefore
possible that not all claims can be served until the new incoming CVX reward reach the previously
calculated amount of CVX rewards that should be in the contract.

Users that stake after this incident also do not accrue CVX rewards in favor of older stakers.

8.4 Rewards of Rebalance Function

CNCM nt i ngRebal anci ngRewar dsHandl er. r ebal ance() allows users to easily rebalance a Conic
pool and earn rewards. This includes rewards for wi t hdr aw() which are not granted if the function is
called directly.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

The setup allows for additional reward handlers to be added to a Conic Pool. These reward handlers,
however, will only grant rewards for deposits even when the r ebal ance() function is used.

@ Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Conic pools
	2.3.1 Depositing and Withdrawing
	2.3.2 Safety checks for reentrancy in ETH pools
	2.3.3 Flashloan protection
	2.3.4 Curve pools
	2.3.5 Price oracles
	2.3.6 Depeg protection
	2.3.7 Weight updates and rebalancing rewards
	2.3.8 Access control and privileged functions

	2.4 LP Token staking and rewards distribution
	2.4.1 CNC emissions
	2.4.2 Checkpointing logic
	2.4.3 Time boost

	2.5 Vote locking and bonding
	2.5.1 Bonding

	2.6 Changes in Version 2
	2.7 Governance and Trust model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Exchange Rate Rounding Errors
	5.2 No Governance Default Delay
	5.3 Instant Rewards
	5.4 Missing Checks
	5.5 No Reward Checkpoint When Unstaking
	5.6 Stale Oracle Price Means Token Is Not Supported

	6 Resolved Findings
	6.1 Endless Rebalancing
	6.2 Execution of Wrong Governance Change
	6.3 Depeg Due to Oracle Manipulation
	6.4 Wrong Accounting in Bonding
	6.5 Bonding lastCncPrice Manipulation With Leftover Dust
	6.6 Extra Reward Tokens Not Sent to RewardManager
	6.7 Higher Imbalance Tolerance in Metapools
	6.8 Incomplete Pool Balance Check
	6.9 Oracle Price Manipulation
	6.10 Reward Double Counting
	6.11 Slippage Losses Are Socialized
	6.12 Weight Update Rounding Errors
	6.13 Wrong Denomination of Deviation Delta
	6.14 Possible Zeroed Pool Weight Increase
	6.15 Reward Factor Override
	6.16 Boost After Shutdown
	6.17 CNCLockerV3 Lock Squatting
	6.18 Claimable Rewards Potentially Wrong
	6.19 Enabled Fee Not Reset
	6.20 Endless Loop
	6.21 Lock Spam DoS
	6.22 Minimum Tainted Transfer Amount Can Be Circumvented
	6.23 Rebalancing Reward After Depeg
	6.24 Unreachable Imbalance Buffers
	6.25 Wrong TVL Factor
	6.26 Wrong Time to Full Boost
	6.27 Ambiguous Naming
	6.28 Exchange Rate Race Condition
	6.29 Fees Without Locked CNC
	6.30 Interface Differences
	6.31 Missing Events
	6.32 Rebalancing Reward Formula Mismatch
	6.33 Shadowed Variables
	6.34 Typographical Errors
	6.35 removeDuplicates Not Working With 0 Elements

	7 Informational
	7.1 Code Copies
	7.2 Events Emitted on No Change
	7.3 Gas Optimizations

	8 Notes
	8.1 Extra Rewards Might Have 100% Slippage
	8.2 Locking in CNCLockerV3 Can Potentially Fail if Too Many Locks Exist
	8.3 RewardManager Can Become Temporarily Insolvent
	8.4 Rewards of Rebalance Function

