

PUBLIC

Code Assessment

of the Conic Protocol

Smart Contracts

February 26, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 13

4 Terminology 14

5 Findings 15

6 Resolved Findings 19

7 Informational 37

8 Notes 39

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Conic with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Conic Protocol according to
Scope to support you in forming an opinion on their security risks.

Conic implements Omnipools for Curve that allow to deposit a single asset into multiple Curve pools. The
exposure to different Curve pools is changed in fixed time intervals by Governance vote.

The most critical subjects covered in our audit are functional correctness, oracle security and internal
accounting. Security regarding all aforementioned subjects is high.

Functional correctness is good. Issues like Execution of wrong governance change and some smaller
problems have been adequately fixed.

Newly created pools allowed Endless rebalancing due to a flaw in the handling of oracle prices. This has
been addresses by rebalancing rewards being activated by governance as long as this is done in a
correct manner considering TVL of the pool and CNC price.

The internal accounting of some tokenomics contracts was flawed due to Reward double counting and
Wrong accounting in Bonding. These issues have also been addressed.

It should be noted that the security of funds is dependent on parameters like the imbalance buffers of the
Curve oracle. These must be chosen with care (considering Curve pool fees, the share of a Conic pool's
Curve LP tokens etc.) to avoid the possibility of arbitrage opportunities.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 2

• Code Corrected 2

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 11

• Code Corrected 9

• Risk Accepted 2

Low -Severity Findings 17

• Code Corrected 13

• Code Partially Corrected 1

• Risk Accepted 3

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Conic Protocol repository based on
the documentation files.

The following files are in scope:

• /contracts/BaseConicPool.sol

• /contracts/ConicPool.sol

• /contracts/ConicEthPool.sol

• /contracts/LpToken.sol

• /contracts/RewardManager.sol

• /contracts/Controller.sol

• /contracts/ConvexHandler.sol

• /contracts/CurveHandler.sol

• /contracts/CurveRegistryCache.sol

• /contracts/adapters/CurveAdapter.sol

• /contracts/access/GovernanceProxy.sol

• /contracts/access/SimpleAccessControl.sol

• /contracts/oracles/ChainlinkOracle.sol

• /contracts/oracles/CurveLPOracle.sol

• /contracts/oracles/GenericOracle.sol

• /contracts/tokenomics/CNCLockerV3.sol

• /contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol

• /contracts/tokenomics/InflationManager.sol

• /contracts/tokenomics/LpTokenStaker.sol

• /contracts/tokenomics/Bonding.sol

• /contracts/zaps/EthZap.sol

• /libraries/ArrayExtensions.sol

• /libraries/CurvePoolUtils.sol

• /libraries/MerkleProof.sol

• /libraries/ScaledMath.sol

• /libraries/Types.sol

Version 5In , the following file was added to the scope:

• /contracts/ConicPoolWeightManager.sol

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
09 October
2023

a411b13335bc847ab009009a374f03
f147e18f28

Initial Version

2
01
December
2023

90470671992514a47592af04b1adf9
a5ce44df86

Second Version

3
18
December
2023

75cfad6de09827479c98ee974aba24
7cc5a9321d

Third Version

4
22
December
2023

6474507abc7c00b9683e415d121c79
3f9e5ff04a

Fourth Version

5
15 January
2024

92272b77c99b9a723d88ec48420f45
0d446932ff

Refactored BaseConicPool for smaller
bytecode

6
29 January
2024

9db1acd46b52a63caebca1872e8d71
18b25fc478

Deployed version

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

2.1.1 Excluded from scope
Third-party libraries, tests, and other files not listed above are excluded from the scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Conic offers Omnipools, liquidity pools that optimally allocate a single underlying asset as liquidity for
several Curve pools in order to derive the most yield in term of fees and liquidity mining rewards.

Multiple Conic pools exist, each one has a single underlying (ex. USDC, USDT, crvUSD, ETH). The
underlying supplied by the user is supplied one-sided to Curve pools selected by governance, in a ratio
selected by governance. Curve LP tokens that are received by the protocol are staked in Convex reward
pools which gives rights to a share of CRV and CVX rewards (Convex Finance allows CRV holders to
pool their CRV stakes in the Curve Vote Escrow under a single account, which rewards Convex Finance
with a big boost for CRV emitted by Curve Liquidity Gauges).

Users supplying liquidity to Conic receive Conic LP tokens, which can be redeemed for the supplied
underlying, or which can be staked in a special staking contract. Staking Conic LP tokens entitles the
staking user to a share of the CRV and CVX rewards received by Conic. It also entitles the staker to a
share of the CNC token emission, the Conic governance token, which is directly emitted by Conic.

Each Conic pool allocates the supplied underlying as liquidity in multiple Curve pools. The target amount
allocated per Curve pool, as a percentage of the total amount of underlying, is decided by governance
according to the results of a vote occurring in fixed time intervals (with a target of two weeks). When the
actual allocation to Curve pools deviates from the target allocation due to result of a voted weight
change, a Curve pool LP token value increase or the depegging of one of the underlying assets in a

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Curve pool, new deposits and withdrawals will contribute to the rebalancing of the Conic pool. To provide
an economical incentive to the rebalancing of Conic pools, rewards are enabled after a weight change or
a depeg rebalancing, awarding CNC to users who reduce the overall underlying deviation in a
mechanism similar to Dutch auctions where each second after the update, the amount of emitted CNC
increases.

2.3 Conic pools
The main functionality of Conic pools is implemented in BaseConicPool. ConicPool and ConicEthPool
derive from it, with ConicPool being used when the underlying is an ERC20 stablecoin, while
ConicEthPool is used with WETH as underlying.

2.3.1 Depositing and Withdrawing
Holders of the underlying token for a Conic pool can acquire a share of the pool by depositing the
underlying through the deposit() or depositFor() functions. The provided amount of underlying is
transferred from the user to the pool, and deposited to under-allocated Curve pools. The total underlying
value of the Conic pool is estimated to compare the target allocation of each Curve pool with their current
allocated values. In under-allocated pools, the underlying is unilaterally added as liquidity up to the target
allocation when rebalancing rewards are active, or up to target allocation plus a deviation tolerance when
rebalancing rewards are not active. The Curve LP tokens obtained by the Conic pool are staked in
Convex finance in order to earn CRV and CVX rewards. The total value of the Conic pool is computed
before and after adding liquidity to the Curve pools. The LP tokens supply for the Conic pool is increased
proportionally to the increase in value, or to the supplied underlying, whichever is the least, so that
positive price slippage benefits existing liquidity providers, and negative slippage is paid by the current
depositor. Querying of the price oracle for Curve LP Tokens, before and after the deposit, ensures that
Curve pools are balanced, within the defined imbalance margins (explained later in this section). The
Conic LP token amount minted to the depositor is optionally staked in the LpTokenStaker. Finally, if
rebalancing rewards are active, the deviations to the target allocations before and after the deposit are
compared, and an amount of CNC proportional to the reduction is minted to the depositor as a reward.

Conic LP holders can withdraw and receive the underlying token back. The underlying is withdrawn from
Curve pools with over-allocated capital. As with depositing, positive slippage benefits the totality of
liquidity providers, while negative slippage costs are paid by the withdrawer. A slippage protection should
be specified when calling withdraw() or unstakeAndWithdraw(). Rebalancing rewards are not
awarded when withdrawing from a Conic pool.

2.3.2 Safety checks for reentrancy in ETH pools
Curve pools containing ETH or WETH might be subject to read-only reentrancies. An attacker's operation
on an ETH Curve pool can generate a callback to the attacker while the Curve pool is in an invalid state.
For example, remove_liquidity() might call back to the attacker while the native token is
transferred. At this point, the LP tokens have already been burned but some tokens are yet to be
transferred out, leaving an imbalance between token balances and the total supply of the pool's LP token.
Therefore, if the attacker interacts with systems that rely on the state of such a Curve pool during the
callback, those systems can be tricked into reading invalid values when querying totalSupply(),
balances(), price_oracle(), and more. While newer Curve pools implement reentrancy protection
on view methods, or disallow low level calls, querying the state of generic Curve pools requires extra
care in detecting whether the call happens in the context of a reentrancy.

Conic implements read-only reentrancy detection through the isReentrantCall() method of the
CurveHandler. isReentrantCall() first compares the code hash of the specified Curve pool with two
known versions that implement reentrancy guards in the price_oracle() view method. The
price_oracle() method is queried not for its result but simply to check for reversing execution which
indicates a reentrancy. For Curve pools not implementing those two known versions, a slightly more
complex way of detecting reentrancy is needed. A call to exchange() is executed on the pool, with 0
tokens actually exchanged. exchange() however always implements reentrancy guards. If the call

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

reverts after having consumed less than 5000 gas, it is assumed that it reverted because of the
reentrancy guard and a reentrancy is therefore detected. If it reverts after having consumed more gas, or
it does not revert at all, the reentrancy guard was not triggered, and no reentrancy is therefore detected.
This reentrancy detection is implemented before estimating the prices for all Curve pools included in the
ETH Conic pool.

2.3.3 Flashloan protection
Conic pools LP tokens cannot be minted and burned during the same block. This prevents flashloans
from being used to mint arbitrary amounts of LP tokens for the purpose of pool manipulation. LP tokens
implement a tainting mechanism such that even if transferred, they cannot be burned if the sender minted
/ burned in the same block. A lower threshold must be exceeded by the transfer amount before tainting of
the receiver in order to prevent inexpensive DoS attacks against liquidity providers who want to deposit
or withdraw.

2.3.4 Curve pools
Conic supports Curve pools where pegged assets are traded. The assets in the pool must be stable (or
roughly stable) with respect to the Conic pool underlying. Both StableSwap Curve pools and CryptoSwap
pools are supported, with the condition that CryptoSwap pools must contain assets whose price is closely
correlated (e.g., ETH and cbETH). Curve MetaPools are also supported, with the condition that each
base token is pegged to the Conic underlying. Inclusion of new Curve pools in a Conic pool is subject to a
Governance vote and can be vetoed by a trusted role. The allocation target of the Curve pools backing a
Conic pool is subject to a Governance vote in fixed intervals.

2.3.5 Price oracles
Price oracles are a fundamental component of the Conic system. They are required for pricing the LP
tokens of the Curve pools as well as underlying tokens. When depositing or withdrawing to / from a Conic
pool, the value of the liquidity of Curve pools that the Conic pool holds need to be evaluated before and
after the operation so that the correct number of Conic LP tokens is minted (depositing) or the right
amount of underlying is paid out (withdrawing).

CurveLpOracle computes the value of a Curve LP token by evaluating the total value of the Curve pool
as the sum of the balances of each token times the value of each token. The total value is then divided by
the supply of Curve LP tokens to get the value per LP token. The value of the individual tokens contained
in Curve pools is returned by the ChainlinkOracle. The computation detailed above has to be robust
against pool manipulation attacks as the total value of a Curve pool can be inflated by unbalancing it. The
Conic price oracles for Curve LP tokens therefore assert that the Curve pools are balanced. That is, they
trade within a close range of the price specified by Chainlink oracles.

Both CurveLpOracle and ChainlinkOracle are combined into a GenericOracle which also gives the
Governance the ability to add additional, custom oracles per token.

2.3.6 Depeg protection
Conic pools implement a protection mechanism in case one of the tokens present in one of the Curve
pools loses its peg to the Conic pool's underlying token. The effect of a depeg in a Curve pool can be loss
of value for the liquidity providers due to impermanent loss, so the Conic pool implements a mechanism
for setting the target allocation to that pool to 0 and incentivizing users to immediately remove liquidity.

A depeg is identified when the value of the LP token of a Curve pool incurs a difference of more than 3%
(custom values may also be set per Conic pool) with respect to the cached price, stored during the latest
weight update. If a depeg is detected but the underlying asset's value has changed by more than double
this threshold since it was last cached, the depeg of the Curve pool is attributed to the Conic pool
underlying. In that case no action is taken. if the conditions are met, handleDepeggedCurvePool()
allows any user to reset a given Curve pool to 0 weight. When a depeg is successfully detected,
rebalancing rewards are enabled to incentivize withdrawing from the affected pool. In contrast to

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

rebalancing rewards of as pool weight update, the reward Dutch auction does not start from this event
but from the last weight update, leading to instant rewards in most cases.

handleDepeggedCurvePool() implements the same reentrancy protection as deposit() and
withdraw() which prevents the value of Curve LP tokens in ETH pools from being manipulated through
a reentrancy.

2.3.7 Weight updates and rebalancing rewards
Curve pool weights within a Conic pool are updated in fixed intervals, following a governance vote,
through the updateWeights() privileged function that can be called by the GovernanceProxy. If, after a
weight update, the total deviation of pool allocations exceeds the configured maximum deviation
(maxDeviation), rebalancing rewards are activated.

Rebalancing rewards are emitted as CNC tokens, proportionally to the reduction in allocation deviation
following a call to deposit() or rebalance(), and proportionally to the time elapsed since the last
weight update. The rebalance() function of the CNCMintingRebalancingRewardsHandler performs
both deposit and withdraw and compares the deviation before the two operations to the deviation after. It
overrides the Conic pool LP token flashloan protection, so it can be triggered by flashloans. The reward
amount per dollar rebalanced increments as time passes since the weight update, linearly going from 0 to
a maximum value reached after 21 days. The proportional coefficient
cncRebalancingRewardPerDollarPerSecond can be set by governance in
CNCMintingRebalancingRewardsHandler. A maximum of 1.9M CNC tokens can be minted as
rebalancing rewards.

2.3.8 Access control and privileged functions
Conic pools implement two roles, controller and owner. The controller role is assigned to the
Conic Controller, and is able to pause a Conic pool, shut down a Conic pool, and update the weights. The
owner role is assigned directly to the GovernanceProxy. Governance has access to guarded functions
that allow the configuration of Conic pools, such as setting maximum deviation parameters, setting the
depeg threshold, and adding and removing Curve pools.

2.4 LP Token staking and rewards distribution
Conic LP tokens accrue the fees earned in the underlying Curve pools but they do not directly accrue
CRV and CVX rewards earned by the Curve LP tokens staked in Convex. Liquidity providers earn their
share of CVX and CRV rewards from Convex plus CNC rewards from Conic by staking their Conic pool
LP tokens in the LpTokenStaker.

Staking entitles the LP to a share of the rewards of the Conic pool proportional to the staked amount. The
LpTokenStaker is coupled to RewardManager contracts which are deployed for every pool. The
RewardManager keeps track of CRV and CVX rewards earned by a Conic pool on Convex and attributes
them fairly among staking liquidity providers. The RewardManager also tracks the CNC tokens awarded
by Conic to its pools. A portion of the CRV and CVX rewards can be forwarded to users who lock CNC in
CNCLockerV3 if enabled by governance.

The RewardManager also handles extra rewards awarded by Curve or Convex, in the form of other
tokens (e.g. LDO). The extra rewards are swapped on predefined Curve pools, or on SushiSwap, for
CNC and the CNC is accrued to the total rewards.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.4.1 CNC emissions
Beside rebalancing rewards, which are awarded for Conic pool rebalancing in CNC, CNC is also minted
at a fixed time rate in every inflation rate period of 365 days and distributed among the Conic pools
according to their relative total value. That is, every year a fixed amount of CNC rewards are minted and
distributed among the pools according to their relative weight during that year. This mechanism is
implemented in the InflationManager. Every year, the CNC emissions that are awarded to Conic pools
decrease by 60%, starting with an initial value of 1.5M CNC per year.

2.4.2 Checkpointing logic
To keep track of the rewards awarded by each user, a mechanism is used similar to the accounting in
Synthetix' StakingRewards, or Curve's Gauges. At the Conic pool level, a global index keeps track of the
amount of reward tokens awarded for every staked token. Every time reward tokens are accrued, this
index is incremented by the amount awarded divided by the total amount staked. Each user has its own
checkpoint of the global index, which provides information on the last time awards have been accrued to
the user claimable balance. Every time the staked balance of a user changes, the difference between the
current global index and the user checkpointed index is multiplied with the previous user stake,
incrementing the user's claimable balance. The user checkpointed index is then updated to the current
global index.

2.4.3 Time boost
The contract LpTokenStaker keeps track of a boost for each user which can be queried through
getBoost(). The boost is composed of a time boost, and a stake boost component. The stake boost
grows proportionally to the user's share of the total staked amount. The time boost component grows
from 0.1 to 1 over a period of 30 days. The two boost amounts are multiplied, and the result is clipped
between 1 and 10 to get the total boost. This boost is used as a multiplying factor when evaluating the
voting power of a user in CNCLockerV3.

Users that do not stake any LP tokens receive a boost of 0.1.

2.5 Vote locking and bonding
Holders of CNC tokens can lock them in CNCLockerV3 in order to receive part of the RewardManager
fees and be entitled to voting power for Conic governance in snapshots. CNC can be locked for a period
between 120 and 240 days, earning the locking user a boost between 1 and 1.5. This boost is multiplied
with an optional airdropped boost. The total boosted amount for the lock, which contributes to the voting
power of the user when queried through balanceOf(), is the locked amount of CNC multiplied with the
boost. This amount is further multiplied with the LpTokenStaker boost. The airdropped boost can be
claimed by selected users for the first 182 days of the contract, and its value is a multiplier between 1 and
3.5. The airdropped boost can only be claimed in the first 182 days, but can be used indefinitely in the
future, on the next lock created by the claiming user.

Multiple locks can be created per user, through the methods lock() and lockFor(). Locks can be
extended by setting the relock_ flag in lock() or lockFor() and through functions relock() and
relockMultiple(). Expired locks can be unlocked through executeAvailableUnlocks(),
executeAvailableUnlocksFor(), and executeUnlocks().

Locks that are not unlocked by their owner after a grace period of 28 since their expiration can be
removed in an unpermissioned way through kick(), returning the locked amount to the owner minus a
kick penalty of 10% of the lock value up to 1000 CNC. This is needed because unlockable balances still
accrue fees until they are actively removed.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.5.1 Bonding
The Bonding contract implements a multi-epoch Dutch action wherein LP tokens for the crvUSD Conic
pool can be used to buy CNC. The amount of CNC which is initially present in the Bonding contract is
sold in equal amounts in a defined number of epochs. The starting price is determined as the last price at
which CNC was acquired during the preceding epoch, multiplied by a factor. The price decreases linearly
during an epoch from the starting price down to 0. The proceeds of the auction, the LP token for the
crvUSD Conic pool, are gradually distributed to users over the next epoch proportionally to their
totalRewardsBoost() in CNCLockerV3.

2.6 Changes in Version 2
Version 2 of the protocol introduced the following changes:

1. Rebalancing rewards start at 0 and increase with a different factor when a pool is marked as
depegged.

2. The inflation rate is no longer automatically updated on reward claims.

3. Bonding requires a minimum amount (up to 1,000 tokens).

4. Bonding can claim earnings of staked LP tokens and send them to the debt pool via the new
method claimFeesForDebtPool().

5. CNCLockerV3 requires a minimum lock amount and allows no more than 10 locks per account.

6. CNCLockerV3 contains a new function batchKick() for kicking multiple locks at once.

7. A feeRecipient is introduced so that fees can be sent to other contracts apart from
CNCLockerV3.

2.7 Governance and Trust model
Contracts of the Conic codebase implementing an onlyOwner modifier are assumed to be owned by the
Conic GovernanceProxy. Voting for Conic governance happens off-chain through a snapshot
mechanism. Governance decisions are then relayed on-chain by a trusted wallet holding the
GOVERNANCE_ROLE in GovernanceProxy. The GOVERNANCE_ROLE user has the right to
requestChange(), cancelChange() and grantRole() / revokeRole(). Another trusted role is
VETO_ROLE which has the right to cancelChange().

In the GovernanceProxy, a change is a list of external calls. A selector mapping is queried with the
function selectors in the external calls returning the delay for every selector (0 by default). The delay of
the overall change is the maximum of the delays of each external call. If the delay is 0, the calls are
immediately executed. Otherwise, the change is recorded in storage for future execution. After the delay
has elapsed, an unpermissioned call to executeChange() will perform the external calls and mark the
change as executed. While a change is pending, that is it has not been executed yet, users with the
VETO_ROLE are allowed to cancel it.

We assume that care is taken when setting parameters in the protocol as the following parameters are
critical and could lead to loss of funds if not set carefully:

• customImbalanceBuffers in CurveLpOracle.

• extraRewardsCurvePool in `RewardManager.

• customOracles in GenericOracle.

It is also important that the deployment process of Conic pools involves the deployment of ConicEthPool
over ConicPool whenever there is a possibility that a Curve pool with underlying ETH or WETH can be
added.

We further assume that GOVERNANCE_ROLE and VETO_ROLE are multi-sig accounts that are distributed
between parties that can be expected to act in the best interest of the protocol.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Risk AcceptedExchange Rate Rounding Errors

• Risk AcceptedNo Governance Default Delay

Low -Severity Findings 4

• Risk AcceptedInstant Rewards

• Code Partially Corrected Risk AcceptedMissing Checks

• Risk AcceptedNo Reward Checkpoint When Unstaking

• Risk AcceptedStale Oracle Price Means Token Is Not Supported

5.1 Exchange Rate Rounding Errors
Design Medium Version 1 Risk Accepted

CS-CCP-006

BaseConicPool.deposit() allows users to add funds to the protocol while no shares are minted. On
a new pool, a user can donate some tokens to the contract before calling deposit() with an
underlyingAmount of 0. The donated tokens are then added to the contract holdings while no shares
are minted for the user. After that, the user can deposit 1 wei of tokens, minting them exactly 1 wei of
shares.

The exchange rate is skewed:

totalUnderlying_.divDown(lpSupply);

Since the amount of deposited tokens by other users is divided by this exchange rate to determine the
amount of minted shares, the results can include large rounding errors. Users that are not depositing
multiples of the initially deposited amount will incur slippage (up to 100%) which results in either Denial of
Service or, if they choose a loose slippage parameter, loss of funds.

For example, a donation of 10,000 USDC and a subsequent deposit of another user of 15,000 USDC
would result in the second user getting only 1 wei of LP tokens, thus losing 2,500 USDC to the first user.

It is also possible to burn LP tokens without decreasing the underlying in withdraw().

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Risk accepted:

Conic accepts the risk claiming that all pools will be atomically seeded by the team on deployment. In that
case, the mentioned attack is not possible.

5.2 No Governance Default Delay
Security Medium Version 1 Risk Accepted

CS-CCP-008

Conic governance decisions are computed off-chain. Based on the results, a multi-sig address with the
GOVERNANCE_ROLE on the GovernanceProxy can then request changes and execute them.
Depending on the function signatures these changes are going to call, a delay is invoked so that a
separate multi-sig address (VETO_ROLE) that belong to different entities can veto the change.

However, no default delay is enforced which means that the GOVERNANCE_ROLE can perform any
actions that have not explicitly been marked directly, evading any possible vetos.

Risk accepted:

Conic accepts the risk with the following statement:

We do not want a delay for all the functions. The community and veto multisig can easily check which
functions have a delay and which does not.

5.3 Instant Rewards
Design Low Version 1 Risk Accepted

CS-CCP-018

RewardManager performs reward calculations and actual reward claiming in separate steps. Only when
certain conditions are met, rewards are actually claimed. This approach is, however, flawed for Convex'
extra rewards as the reward calculation is only performed during the claim step here. If claiming has not
occurred for a longer period, the accrued extra rewards are added to the earned rewards of all users in
bulk the next time they are claimed.

User that have deposited LP tokens to the LpTokenStaker can call
RewardManager.claimPoolEarningsAndSellRewardTokens() directly after staking and instantly
receive some CNC rewards in this case.

Risk accepted:

Conic accepts the risk with the following statement:

Very few pools have extra rewards (not any that we currently support) and the chances of these
rewards becoming an important part of the APR is low enough for us to accept this risk.

5.4 Missing Checks
Correctness Low Version 1 Code Partially Corrected Risk Accepted

CS-CCP-021

The protocol is missing some checks that could potentially lead to a problematic state:

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

• RewardManager.addExtraReward() checks that the added reward token is not an LP token of
one of the Curve pools of the associated LP tokens. If, however, a Curve pool is added to the Conic
pool at a later stage, its LP token might have already been added.

• RewardManager.addExtraReward() does not check whether there is a valid SushiSwap or
Curve pool for a given reward token.

• Neither RewardManager.setExtraRewardsCurvePool() nor
_swapRewardTokenForWeth() check whether a given Curve pool actually holds the asset that is
going to be swapped on it.

• RewardManager.removeExtaReward() does not check that the specified argument is
successfully removed from the extra rewards list.

• Bonding.startBonding() does not check whether an epochPriceIncreaseFactor is set.
Since there exists a minimum for the factor, it should be set before starting the bonding period.

Code partially corrected:

Bonding.startBonding() now checks if the epochPriceIncreaseFactor has already been set.

Risk accepted:

Conic accepts the risk for all other missing checks with the following statement:

We accept the risk for the extra rewards.

5.5 No Reward Checkpoint When Unstaking
Design Low Version 1 Risk Accepted

CS-CCP-022

LpTokenStaker.unstakeFor() does not call RewardManager.accountCheckpoint() when the
staker is shut down. Users unstaking on such a shut down staking contract will lose their rewards since
the last checkpoint but users that call accountCheckpoint() before unstaking will keep their rewards.

Risk accpted:

Conic accepts the risk with the following statement:

This is an extremely rare event, in which case we will inform our users beforehand so that they claim
their rewards.

5.6 Stale Oracle Price Means Token Is Not
Supported
Correctness Low Version 1 Risk Accepted

CS-CCP-024

ChainlinkOracle.isTokenSupported() calls getUSDPrice() to determine whether a token is
supported by the oracle. If the price is stale (older than the heartbeat), the function erroneously returns
false.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Risk accepted:

Conic accepts the risk with the following statement:

We only use isTokenSupported in two places:

1. When adding a new curve pool to the registry. If it fails here, we can retry later.

2. When claiming extra token rewards. In the unlikely event that it fails here, we accept the
slippage risk when swapping extra rewards.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 2

• Code CorrectedEndless Rebalancing

• Code CorrectedExecution of Wrong Governance Change

High -Severity Findings 2

• Code CorrectedDepeg Due to Oracle Manipulation

• Code CorrectedWrong Accounting in Bonding

Medium -Severity Findings 9

• Code CorrectedBonding lastCncPrice Manipulation With Leftover Dust

• Code CorrectedExtra Reward Tokens Not Sent to RewardManager

• Code CorrectedHigher Imbalance Tolerance in Metapools

• Code CorrectedIncomplete Pool Balance Check

• Code CorrectedOracle Price Manipulation

• Code CorrectedReward Double Counting

• Code CorrectedSlippage Losses Are Socialized

• Code CorrectedWeight Update Rounding Errors

• Code CorrectedWrong Denomination of Deviation Delta

Low -Severity Findings 13

• Code CorrectedPossible Zeroed Pool Weight Increase

• Code CorrectedReward Factor Override

• Code CorrectedBoost After Shutdown

• Code CorrectedCNCLockerV3 Lock Squatting

• Code CorrectedClaimable Rewards Potentially Wrong

• Code CorrectedEnabled Fee Not Reset

• Code CorrectedEndless Loop

• Code CorrectedLock Spam DoS

• Code CorrectedMinimum Tainted Transfer Amount Can Be Circumvented

• Code CorrectedRebalancing Reward After Depeg

• Code CorrectedUnreachable Imbalance Buffers

• Code CorrectedWrong TVL Factor

• Code CorrectedWrong Time to Full Boost

Informational Findings 9

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• Code CorrectedremoveDuplicates Not Working With 0 Elements

• Specification ChangedFees Without Locked CNC

• Code CorrectedExchange Rate Race Condition

• Code CorrectedInterface Differences

• Code CorrectedAmbiguous Naming

• Code CorrectedTypographical Errors

• Specification ChangedRebalancing Reward Formula Mismatch

• Code CorrectedMissing Events

• Code CorrectedShadowed Variables

6.1 Endless Rebalancing
Design Critical Version 1 Code Corrected

CS-CCP-001

As detailed in Depeg due to oracle manipulation, Curve pools can be depegged wilfully at any time. On
new Conic pools, or pools with very low TVL, this is even more problematic because an infinite amount of
rebalancing rewards can be claimed.

This is possible by donation of Curve LP tokens to the Conic pool. When the attacker is the only liquidity
provider on a Conic pool, or if they hold most of the LP tokens, all donated value is given straight back to
them. Therefore, the donations are free (or almost free), enabling this attack:

1. The attacker deposits to an empty Conic pool.

2. The attacker depegs one of the underlying Curve pools, enabling rebalancing rewards.

3. The attacker rebalances the Conic pool to almost the maxDeviation threshold, so that the
rebalancing rewards are still active.

4. The attacker adds liquidity directly to the Curve pool, sends these tokens to the Conic pool.

5. The attacker repeats step 3 and step 4 as often as possible.

6. The attacker withdraws their LP tokens from the Conic pool (in the next block).

As long as the attacker gains more CNC rewards per iteration than they lose to other Conic LPs (only
relevant if they are not the only LP), the attack is profitable and can be performed indefinitely, allowing
them to mint CNC up to the _MAX_REBALANCING_REWARDS. The only cost is the amount of tokens
needed to increase the LP token price of a given Curve pool by the depeg threshold. Therefore, small
Curve pools are more vulnerable.

Code corrected:

A new (off-chain) threshold for a pool's TVL is introduced which has to be passed before rebalancing
rewards are activated. In practice, this is done via governance change that calls the function
BaseConicPool.setRebalancingRewardsEnabled(). Additionally, rebalancing rewards now start
from 0 after a pool has been marked as depegged. This ensures that the attack does not become
instantly profitable. With a reward factor of 10, the attacker has to wait 1.4 days to achieve the same
result as before.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.2 Execution of Wrong Governance Change
Correctness Critical Version 1 Code Corrected

CS-CCP-002

GovernanceProxy.executeChange() gets a storage pointer to the change corresponding to a given
ID, deletes the change from storage and then tries to execute the change.

The change is deleted in the following way:

pendingChanges[index] = pendingChanges[pendingChanges.length - 1];
pendingChanges.pop();

If the change is the last one in the pendingChanges array, then nothing is executed at all. If the change
is any other change, the last change in pendingChanges will be executed instead of the correct one.

Code corrected:

A given pending change is now deleted after all calls have been performed. To ensure that the change
cannot re-execute itself, a new state Executing has been introduced that is set over the duration of the
calls. Only Pending changes can be executed.

6.3 Depeg Due to Oracle Manipulation
Correctness High Version 1 Code Corrected

CS-CCP-003

Deposit and withdraw functions of ETH pools are protected against reentrancy from Curve pools which
disables the ability of attackers to manipulate the totalSupply() function of Curve and therefore the
manipulation of the CurveLPOracle. Furthermore, the oracle checks that a given Curve pool is
balanced by comparing the Chainlink oracle prices of the underlying tokens with the actual price of the
tokens on the Curve pool (using get_dy()). This ensures that an attacker cannot perform large trades
on the pool before calling Conic, which would also skew the LP token price.

There exists, however, another possibility: Fee accrual on the Curve pool that results in the LP token
price becoming (permanently) inflated. While this is not a problem for deposits and withdrawals, the
mechanism can be used to call BaseConicPool.handleDepeggedCurvePool() and set the weight
of the pool to 0. This automatically enables rebalancing rewards. An attacker can then rebalance the pool
and gain the rebalancing rewards. The fees can be accrued with a single, large, bi-directional trade.

Since handleDepeggedCurvePool() does not set the timestamp for pool weight updates, the reward
for rebalancing is instantly available. If a pool is depegged right before a weight update (which is
estimated to happen around every 14 days), the reward can be as high as 280 CNC per 10.000 USD
value rebalanced.

Consider the following example:

1. A Conic pool exists that contains two Curve pools with 3 assets holding 100k tokens each. Weights
are [0.5, 0.5].

2. An attacker (iteratively) adds 900k tokens liquidity per asset to the first Curve pool (by adding the
Conic pool's underlying via Conic and the rest via Curve). The attacker also has to add liquidity to
the other Curve pool to ensure that everything keeps balanced. These tokens can be withdrawn
again later.

3. The first Curve pool's value is now roughly 3M. With the aforementioned fee donation attack, the
attacker increases the value of the pool to 3.09M.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

4. The attacker now depegs the first Curve pool and rebalances 900k on Conic, netting them ~25k
CNC tokens.

5. The attacker withdraws liquidity from Conic and Curve. They get back up to 90% of the donated
90k fees to Curve (depending on the Curve pool setup) as they hold 90% of the liquidity of the pool.

6. Depending on the amount of fees the attacker gets back, and the current market value of CNC, this
attack becomes profitable.

The attack can be scaled infinitely with sufficient holdings and also becomes more profitable.
Rebalancing and liquidity provision to Curve can be done with flash loans while the liquidity provision
to Conic requires capital as a deposit cannot be withdrawn in the same block.

Code corrected:

Depegs are now identified by comparing Chainlink prices of all underlying tokens to their cached price.
As there are no longer any LP token prices involved, there is no possibility for manipulation (except broad
market manipulation).

6.4 Wrong Accounting in Bonding
Correctness High Version 1 Code Corrected

CS-CCP-004

Bonding._checkpointAccount() calculates the already accrued stream of LP tokens that can be
unstaked by multiplying the user's rewards boost with the difference of the total integral and the user's
integral since the last checkpoint:

uint256 accountBoostedBalance = cncLocker.totalRewardsBoost(account);
perAccountStreamAccrued[account] += accountBoostedBalance.mulDown(
 streamIntegral - perAccountStreamIntegral[account]
);
perAccountStreamIntegral[account] = streamIntegral;

The streamIntegral is computed with CNCLockerV3.totalBoosted() amount which is the total of
the locked CNC times the boosts of each user. The accrued stream of users is computed with
totalRewardsBoost() which also contains balances of the old CNCLockerV2 contract and does not
contain CNC of locks that have already expired:

function totalRewardsBoost(address account) public view override returns (uint256) {
 return
 lockedBoosted[account] -
 unlockableBalanceBoosted(account) +
 ICNCVoteLocker(V2_LOCKER).balanceOf(account);
}

Since totalBoosted() is smaller than the sum of totalRewardsBoost() for all users, there can be
more claims than could be satisfied. Consider the following scenario:

1. User 1 has a totalRewardsBoost() of 1000 tokens.

2. User 2 has a totalRewardsBoost() of 0.

3. totalBoosted() is 0.

4. User 2 calls bondCncCrvUsd() with an amount of 1000 LP tokens and gets a bonding price of 1.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

5. After 2 epochs, user 1 calls checkpointAccount(). streamIntegral is set to 1. Since user 1
has a balance of 1000 tokens in totalRewardsBoost() but their account integral has not been
set yet, perAccountStreamAccrued for user 1 is updated to 1000 tokens.

6. User 1 calls claimStreamed() and receives 1000 LP tokens.

7. User 2 can still accrue 1000 tokens in perAccountStreamAccrued by calling
checkpointAccount(). But they cannot claim the stream anymore, since the 1000 LP tokens
have already been unstaked.

Additionally, it is problematic that the integral calculation with totalBoosted() does not consider
unlockable CNC as the calculation might result in an integral smaller than it should be.

Code corrected:

Bonding now uses the function CNCLockerV3.totalStreamBoost() instead of
totalRewardsBooost() to calculate the integral of individual accounts. This function only returns the
locked boost of a user which matches the calculation for the total integral.

6.5 Bonding lastCncPrice Manipulation With
Leftover Dust
Security Medium Version 1 Code Corrected

CS-CCP-005

During every bonding epoch, there will likely be some CNC dust left-over since it is hard to estimate the
exact amount of LP tokens to bond in order to acquire all the CNC up to the last decimal. Some of this
CNC dust can however be acquired just before the epoch ends for the purpose of manipulating
lastCncPrice to be MIN_CNC_START_PRICE, even if the actual bonding happened at a much higher
price.

Code corrected:

A minBondingAmount has been added that can be set to up to 1,000 LP tokens. This ensures (if set to
a sensible value) that leftover dust cannot be acquired.

6.6 Extra Reward Tokens Not Sent to
RewardManager
Correctness Medium Version 1 Code Corrected

CS-CCP-007

RewardManager._swapRewardTokenForWeth() assumes the extra rewards reside on the contract.
This is not true as all tokens are sent to the corresponding Conic pool and are never sent to the
RewardManager. No approvals from Conic pools to their reward managers exist for these extra tokens.

Code corrected:

BaseConicPool now has a function updateRewardSpendingApproval() that allows to set
approvals of arbitrary tokens to the RewardManager. It is called each time a new reward token is added.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

_sellRewardTokens() now transfers tokens from the respective Conic pool to the RewardManager
before they are swapped.

6.7 Higher Imbalance Tolerance in Metapools
Design Medium Version 1 Code Corrected

CS-CCP-044

In CurveLPOracle.getUSDPrice(), the pool balancing for Metapools is checked twice, once for the
wrapping Metapool, and once for the base pool. This allows both pools to be unbalanced up to the
maximum threshold, which is twice the imbalance threshold that would apply to a single pool.

Code corrected:

A new customInternalImbalanceBuffers storage mapping has been added that allows to set
custom imbalance buffers for LP tokens of a base pool. If these parameters are set in the right way, the
threat can be mitigated.

6.8 Incomplete Pool Balance Check
Design Medium Version 1 Code Corrected

CS-CCP-045

CurvePoolUtils.ensurePoolBalanced() compares Chainlink prices to the prices returned by a
Curve pool's get_dy() function. The checks are always performed from the first asset to all other
assets. In pools with more than 2 assets, this can become problematic.

Consider the following scenario:

1. A Curve pool with 3 assets holds exactly 1000 tokens per asset (perfectly balanced).

2. The Curve pool accrues 0 fees (for simplicity) and has an A parameter of 2000.

3. An attacker trades 900 tokens from asset 1 to asset 2.

4. The attacker also trades 800 tokens from asset 1 to asset 0.

5. get_dy(0, 1) returns ~1.04.

6. get_dy(0, 2) returns ~0.96.

7. get_dy(1, 2) returns ~0.92.

With an imbalance buffer of 4% (simply for demonstration purposes, in production this would be smaller),
the pool would still be considered balanced while there is an imbalance of 8% between asset 1 and 2.

Code corrected:

The function now checks all combinations of tokens in a given pool.

6.9 Oracle Price Manipulation
Security Medium Version 1 Code Corrected

CS-CCP-009

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Deposit and withdraw functions in Conic ETH pools are protected against reentrancy from a Curve pool
that can potentially manipulate LP token prices. This is, however, not true for some other functions.

InflationManager.updatePoolWeights() can be called by reentering from a Curve pool resulting
in skewed pool weights as the calculation relies on prices of the CurveLpOracle which can be
manipulated by removing liquidity from a Curve pool that holds ETH and then reentering to the function in
the callback.

BaseConicPool.handleInvalidConvexPid() allows to manipulate the
totalDeviationAfterWeightUpdate storage variable which is, however, not used anywhere in the
code.

Furthermore, onlyOwner functions that are called from the GovernanceProxy (if they have a delay)
are also principally open to this manipulation as the changes can be executed by any user.
Controller.updateWeights() and updateAllWeights() can be tricked into writing wrong LP
token prices into the _cachedPrices of BaseConicPool, which can then be used to set the weight of
a Curve pool to 0 with handleDepeggedCurvePool().

Code corrected:

All mentioned functions are now executing reentrancy checks similarly to the deposit and withdraw
functions.

6.10 Reward Double Counting
Correctness Medium Version 1 Code Corrected

CS-CCP-010

RewardManager.poolCheckpoint() accrues rewards by storing a total integral and holdings since
the last checkpoint per reward token:

function _updateEarned(
 bytes32 key,
 uint256 holdings,
 uint256 earned,
 uint256 _totalSupply
) internal {
 _rewardsMeta[key].earnedIntegral += earned.divDown(_totalSupply);
 _rewardsMeta[key].lastHoldings = holdings;
}

After claiming the regular rewards, _claimPoolEarningsAndSellRewardTokens() claims extra
rewards on Convex and swaps them for CNC. These additional CNC rewards are then added to the total
integral. The last holdings, however, are not updated accordingly.

if (_totalStaked > 0)
 _rewardsMeta[_CNC_KEY].earnedIntegral += receivedCnc_.divDown(_totalStaked);

As the CNC holdings of the contract increase, but the last holdings do not, the next checkpoint will count
these tokens as new rewards again and add them to the integral again:

cncHoldings = CNC.balanceOf(conicPool);
...
uint256 cncEarned = cncHoldings - _rewardsMeta[_CNC_KEY].lastHoldings;

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

...
_updateEarned(_CNC_KEY, cncHoldings, cncEarned, _totalStaked);

Code corrected:

_claimPoolEarningsAndSellRewardTokens() now correctly sets the lastHoldings for CNC
after selling reward tokens. Additionally, if rewards have to be claimed in claimEarnings(), the
account share of the calling user is updated again after the rewards tokens have been swapped to
ensure that the user receives the extra reward in the same call.

6.11 Slippage Losses Are Socialized
Design Medium Version 1 Code Corrected

CS-CCP-040

BaseConicPool.depositFor() calculates the amount of LP tokens a user receives based on the
value of the whole pool. When slippage is incurred, this is problematic as the depositor might receive
more LP tokens than they should, resulting in a loss for all other liquidity providers. Consider the following
example with simplified numbers:

1. A Conic pool contains one Curve pool with two tokens, 1000/1000 liquidity, 2000 LP total supply,
token prices of 1 and an LP price of 1.

2. The Conic pool holds 1000 of the LP tokens and the Conic LP token has a total supply of 1000.

3. A user deposits 1000 token 0 to Conic.

4. Conic receives 900 LP tokens from Curve (slippage of 10%).

5. The Curve pool now holds 3000 USD value and has 2900 LP tokens total supply. Conic owns 1900
of these LP tokens.

6. Due to the slippage, the LP price of the Curve pool according to Conic now increased to 1.0345.

7. underlyingBalanceAfter therefore is now 1965, so the delta is 965.

8. The user now receives 965 Conic LP tokens for their deposit of 1000 tokens.

9. The Conic pool holds a total of 1900 Curve LP tokens which means the user's share of the Curve
LP tokens now is 933 while the Conic pool only received 900 Curve LP tokens for the user's
deposit.

Code corrected:

If the price of a Curve pool's LP token increases during a deposit, the price before the deposit is used to
calculate the amount of LP tokens the user receives.

6.12 Weight Update Rounding Errors
Correctness Medium Version 1 Code Corrected

CS-CCP-011

BaseConicPool._setWeightToZero() sets the weight of a given pool to 0 and scales the weights of
all other pools accordingly to reach at a total weight of 1. This is done by computing a scale factor which
involves a division. This division can result in rounding errors which will be passed to the upscaled

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

weights. Therefore, it is possible that the total weight after the operation is slightly smaller than 1,
breaking the invariant that the sum of all weights must equal exactly 1.

In turn, this can become problematic when rebalancing rewards are active (which is the case after the
function has been called) as deposit / withdrawal maximums are now calculated without maxDeviation
gaps.

Consider the following example:

1. A Conic pool has two Curve pools with weights
[666666666666666667, 333333333333333333].

2. The first pool is depegged, resulting in the following weights: [999999999999999999].

3. A user deposits 101 tokens with 18 decimals. _getDepositPool() returns a maximum amount
of 100.999999999999999899 tokens that can be deposited to the Curve pool. Including the 1e2
constant in _depositToCurve(), the user's deposit can not completely be satisfied and the call
results in a revert after a second iteration of getDepositPool().

Code corrected:

Version 2

_setWeightToZero() now adds the remaining weight to the last element that is not equal to the pool
being set to 0-weight instead of multiplying its weight with the scaling factor. This ensures that all weights
always sum up to 1. However, in , if the last pool had already 0-weight, it will incorrectly receive
the remaining weight, setting the pool weight to a non-zero value as explained in Possible zeroed pool
weight increase.

6.13 Wrong Denomination of Deviation Delta
Correctness Medium Version 1 Code Corrected

CS-CCP-012

CNCMintingRebalancingRewardsHandler.computeRebalancingRewards() computes
rebalancing rewards with the following formula:

(elapsedSinceUpdate * cncRebalancingRewardPerDollarPerSecond).mulDown(
 deviationDelta.convertScale(decimals, 18)
);

The cncRebalancingRewardPerDollarPerSecond factor is per Dollar. It is therefore assumed that
deviationDelta should be in USD denomination. This is, however, not the case as the value is in
underlying.

For example, rebalanced deviation of 10.000 USDC would net ~0.833 CNC per hour, while a rebalanced
deviation if 5 ETH (roughly the same value as the 10.000 USDC) would only net ~0.0004166 CNC.

Code corrected:

The formula has been corrected by multiplying the amount with the current price of the underlying token.

6.14 Possible Zeroed Pool Weight Increase
Correctness Low Version 2 Code Corrected

CS-CCP-041

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

BaseConicPool._setWeightToZero() sets the weight of the last pool that is not the pool whose
weight is set to 0 to the leftover weight so that the total weights equal to exactly 1.

If this pool has already been set to 0 weight previously, the weight might increase again by some dust.

Code corrected:

The function now filters out all pools with 0 weight before performing the scaling.

6.15 Reward Factor Override
Correctness Low Version 2 Code Corrected

CS-CCP-042

In BaseConicPool.handleDepeggedCurvePool, the rebalancingRewardsFactor is set even
when rebalancing rewards are not activated. If rebalancing rewards have been activated before due to a
weight update and the function is called on an empty pool, the reward factor is set regardless.

Code corrected:

The reward factor is now only set when rebalancing rewards are activated.

6.16 Boost After Shutdown
Correctness Low Version 1 Code Corrected

CS-CCP-013

LpTokenStaker.unstakeFrom() calculates _stakerCheckpoint() even after the contract has
been shut down, further increasing the boost of the users.

Code corrected:

unstakeFrom() now checks if the contract has been shut down before calling
_stakerCheckpoint() (and RewardManager.accountCheckpoint()).

6.17 CNCLockerV3 Lock Squatting
Security Low Version 1 Code Corrected

CS-CCP-014

Similarly to issue Lock spam DoS, a user who wants to avoid having its lock ever kicked (for example to
use an airdropped boost indefinitely) can create a very big amount of 1 wei locks before and after the lock
they wish to protect. Unlocking those locks will be very gas expensive for other users, and the cost will
surpass the kicking reward. Kicking will not be possible since the gas cost of running
_getLockIndexById() will exceed the block gas limit.

Code corrected:

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

A _MIN_LOCK_AMOUNT of 10 CNC has been introduced. Additionally, _MAX_LOCKS restricts the amount
of locks a single account can hold to 10. It is now impossible to create enough locks for an account to be
able to squat a certain lock.

6.18 Claimable Rewards Potentially Wrong
Correctness Low Version 1 Code Corrected

CS-CCP-015

RewardManager.claimableRewards() returns 0 if the balance of a Conic pool is 0 in the
LpTokenStaker. This is not correct if the pool already accrued some rewards and later all tokens are
unstaked (for example after shutdown).

Code corrected:

claimableRewards() now does not return early if the balance of a Conic pool is 0 and instead returns
the correct value.

6.19 Enabled Fee Not Reset
Correctness Low Version 1 Code Corrected

CS-CCP-016

RewardManager.setFeePercentage() does not reset feesEnabled to false when the fee is set
back to 0.

Code corrected:

feesEnabled is now set to false when the fee is set to 0.

6.20 Endless Loop
Correctness Low Version 1 Code Corrected

CS-CCP-017

RewardManager.poolCheckpoint() claims rewards from Convex and the LpTokenStaker if
certain conditions are met (either if there are not enough funds to cover fees or if the Convex cliff is
approaching). If one of the conditions is met, and additionally the current _INFLATION_RATE_PERIOD
has ended in the InflationManager, then the function executes an endless loop that calls back to
itself (because the conditions are still met at the time of the callback) until the transaction runs out of gas.
The callpath is as follows:

1. RewardManager.poolCheckpoint().

2. RewardManager._claimPoolEarningsForCliff() (optional).

3. RewardManager._claimPoolEarningsAndSellRewardTokens().

4. RewardManager._claimPoolEarnings().

5. LpTokenStaker.claimCNCRewardsForPool().

6. LpTokenStaker._claimCNCRewardsForPool().

7. InflationManager.executeInflationRateUpdate().

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

8. InflationManager._executeInflationRateUpdate().

9. InflationManager.updatePoolWeights().

10. RewardManager.poolCheckpoint().

It is also worth to note that the subsequent calls of LpTokenStaker.claimCNCRewardsForPool()
increase the amount of CNC minted every time since the poolShares are only reset after the call to
InflationManager.executeInflationRateUpdate() while the shares are minted before. A fix of
the issue should take this into consideration.

Code corrected:

LpTokenStaker._claimCNCRewardsForPool() no longer calls
InflationManager.executeInflationRateUpdate() so there is no loop anymore.

6.21 Lock Spam DoS
Design Low Version 1 Code Corrected

CS-CCP-019

CNCLockerV3.lockFor() allows anyone to create a lock for a given account. An attacker can create a
big amount of 1 wei locks on a victim account, such that if a legitimate lock is then created unlocking it
becomes impossible as the cost of running _getLockIndexById() exceeds the block gas limit.

This attack allows an actor to effectively freeze any CNC that is to be locked by a specific user. It is
extremely costly though (Around $27k in gas fees at gas price 45 Gwei and ETH value $2000).

Code corrected:

A _MIN_LOCK_AMOUNT of 10 CNC has been introduced. Additionally, _MAX_LOCKS restricts the amount
of locks a single account can hold to 10. It is now impossible to create enough locks for an account to be
able DoS it. However, as described in note Locking in CNCLockerV3 can potentially fail if too many locks
exist , some annoyance could be caused by an attacker willing to spend 100 CNC to create 10 locks for
another user.

6.22 Minimum Tainted Transfer Amount Can Be
Circumvented
Security Low Version 1 Code Corrected

CS-CCP-020

LpToken sets a flag on accounts that mint() or burn() that disables them from minting or burning
again in the same block. Since LP tokens can be transferred, the flag also has to be set on all addresses
that the tokens are sent to.

To prevent cheap DoS attacks on arbitrary accounts that deposit or withdraw on a Conic pool, there
exists a minimum threshold. Minting / burning of less than this amount will not set the flag.

The tainting mechanism is not in use when users stake their minted tokens directly in the
LpTokenStaker. Only when the tokens are withdrawn again, the flag is set. This can be abused to
circumvent the minimum tainted transfer amount in the following way:

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

1. Call BaseConicPool.deposit() with at least the minimum tainted transfer amount to a Conic
Pool and set the stake argument to true.

2. Call lpTokenStaker.unstakeFor() with an amount of 1 wei and the address you want to DoS.

3. In the next block, withdraw the rest if the deposited amount.

Code corrected:

The transferred amount is now passed to LpToken.taint() (the function called by
lpTokenStaker.unstakeFor() to taint a transfer) and the function checks for the minimum taint
amount.

6.23 Rebalancing Reward After Depeg
Correctness Low Version 1 Code Corrected

CS-CCP-023

BaseConicPool.handleDepeggedCurvePool() automatically enables rebalancing rewards. This is,
however, not necessary if the allocation of the given pool is already below the
_MAX_USD_VALUE_FOR_REMOVING_POOL threshold.

Code corrected:

handleDepeggedCurvePool() now checks if the value of a Curve pool is below the threshold and
does not start rebalancing rewards in that case.

6.24 Unreachable Imbalance Buffers
Design Low Version 1 Code Corrected

CS-CCP-025

CurvePoolUtils.ensurePoolBalanced() compares prices of token pairs on Curve with their
respective Chainlink prices using an imbalance buffer as threshold. The imbalance buffers are set for
individual tokens. A pair of two tokens will only ever be compared to the imbalance buffer of input token.
Depending on the Curve pool configuration, this can result in the inability to set a buffer for a certain
token.

For example, in an ETH/rETH Curve pool that contains WETH as the 0-token, it is not possible to use the
imbalance buffer of rETH:

for (uint256 i = 0; i < poolMeta.numberOfCoins - 1; i++) {
 ...
 for (uint256 j = i + 1; j < poolMeta.numberOfCoins; j++) {
 ...
 toActual = ICurvePoolV2(poolMeta.pool).get_dy(i, j, fromBalance);
 ...
 require(
 _isWithinThreshold(toExpected, toActual, poolFee, poolMeta.imbalanceBuffers[i]),
 "pool is not balanced"
);
 }
}

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Code corrected:

The function now uses the minumum of the imbalance buffers of each token pair.

6.25 Wrong TVL Factor
Correctness Low Version 1 Code Corrected

CS-CCP-027

Conic stated that the TVL_FACTOR in LpTokenStaker is supposed to work in a way that gives the full
boost to a user that holds 20% of the total staked amount using the following calculation:

uint256 stakeBoost = ScaledMath.ONE +
 userStakedUSD.divDown(totalStakedUSD).mulDown(TVL_FACTOR);

With the given TVL_FACTOR of 50, the full boost of 10 is already achieved with a share of 18%. The
correct TVL_FACTOR for 20% would be 45.

Code corrected:

The TVL_FACTOR has been changed to 45.

6.26 Wrong Time to Full Boost
Correctness Low Version 1 Code Corrected

CS-CCP-028

LpTokenStaker.getTimeToFullBoost() returns the time for a given user until their full boost is
active:

function getTimeToFullBoost(address user) external view returns (uint256) {
 uint256 fullBoostAt_ = boosts[user].lastUpdated + INCREASE_PERIOD;
 if (fullBoostAt_ <= block.timestamp) return 0;
 return fullBoostAt_ - block.timestamp;
}

This calculation is not correct. For example, the function returns the full INCREASE_PERIOD for a user
that just reached their full boost amount in the current block, while it should return 0. lastUpdated is the
point in time when a user's boost has been updated the last time. The function is therefore only correct
for users that have just created a new position.

Code corrected:

The function getTimeToFullBoost() has been removed.

6.27 Ambiguous Naming
Informational Version 1 Code Corrected

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

CS-CCP-029

The following code parts contain symbols that are not precise and could be misunderstood:

• ChainlinkOracle._getPrice() defines a boolean argument shouldRevert. Contrary to the
name of the argument, the function can still revert when it is set to true.

• InflationManager.hasPoolRebalancingRewardHandlers() allows to check a single
handler address while the function name contains the word "handlers" in plural.

• LpTokenStaker.unstakeFor() allows a user to unstake their own tokens to a specific address.
It does not, as opposed to the naming, allow a user to unstake for another address.

Code corrected:

All aforementioned function names have been changed except for the function unstakeFor() because
it is a public interface that has already been in use before.

6.28 Exchange Rate Race Condition
Informational Version 1 Code Corrected

CS-CCP-032

BaseConicPool.deposit() allows to instantly stake the freshly minted LP tokens with the following
flow:

1. Mint tokens.

2. Stake tokens on the LpTokenStaker.

3. Update the _cachedTotalUnderlying.

LpTokenStaker.stakeFor() calls BaseConicPool.usdExchangeRate() in step 2. It is
implemented in the following way:

function usdExchangeRate() external view virtual override returns (uint256) {
 uint256 underlyingPrice = controller.priceOracle().getUSDPrice(address(underlying));
 return _exchangeRate(cachedTotalUnderlying()).mulDown(underlyingPrice);
}

function _exchangeRate(uint256 totalUnderlying_) internal view returns (uint256) {
 uint256 lpSupply = lpToken.totalSupply();
 if (lpSupply == 0 || totalUnderlying_ == 0) return ScaledMath.ONE;

 return totalUnderlying_.divDown(lpSupply);
}

As can be seen, the exchange rate is calculated by dividing the cached total underlying (which is not yet
updated in the call) by the total supply of the LP token (which has already been increased due to the
minting in step 1). The exchange rate is therefore erroneously deflated.

However, this exchange rate is used in a way that completely factors it out in this call which makes this
call safe after all.

Code corrected:

_cachedTotalUnderlying is now updated before the calls to LpToken.mint() and
LpTokenStaker.stakeFor().

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

6.29 Fees Without Locked CNC
Informational Version 1 Specification Changed

CS-CCP-033

RewardManager.setFeePercentage() only allows to set a fee if the
CNCLockerV3.totalBoosted() > 0. Once the fee is set, fees are however still accrued even if the
amount of locked CNC goes down back to 0.

Specifiaction changed:

setFeePercentage() now no longer requires CNCLockerV3.totalBoosted() > 0.

6.30 Interface Differences
Informational Version 1 Code Corrected

CS-CCP-035

The following parts of the code have non-uniform interfaces:

• BaseConicPool.depositFor() allows the minted LP tokens to be instantly staked by setting a
boolean parameter. withdraw() does not expose such a boolean parameter for unstaking LP
tokens. Instead, a separate function unstakeAndWithdraw() must be used. This interface is
non-uniform.

• RewardManager contains a function accountCheckpoint() while Bonding contains a function
checkpointAccount().

Code corrected:

Bonding.checkpointAccount() has been renamed to Bonding.accountCheckpoint(). The
withdraw function names are kept as-is for backwards compatibility.

6.31 Missing Events
Informational Version 1 Code Corrected

CS-CCP-036

The following state-changing functions are not emitting events (the list is non-exhaustive):

• RewardManager.poolCheckpoint().

• All functions in SimpleAccessControl.

• ChainlinkOracle.setHeartbeat().

Code corrected:

Events have been added to most functions where it makes sense.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

6.32 Rebalancing Reward Formula Mismatch
Informational Version 1 Specification Changed

CS-CCP-037

The doc comments of
CNCMintingRebalancingRewardsHandler.computeRebalancingRewards() describe the
following formula:

CNC = t * CNC/s * (1 - (∆deviation / initialDeviation))

This is different to the actual implementation:

(elapsedSinceUpdate * cncRebalancingRewardPerDollarPerSecond).mulDown(
 deviationDelta.convertScale(decimals, 18)
);

The formula in the comments is also likely wrong as it would imply lower rewards the higher the deviation
delta is.

Specification changed:

The formula has been updated.

6.33 Shadowed Variables
Informational Version 1 Code Corrected

CS-CCP-038

The LpToken constructor's arguments name and symbol shadow the storage variables of the ERC20
contract.

Code corrected:

The variable names have been changed.

6.34 Typographical Errors
Informational Version 1 Code Corrected

CS-CCP-039

Typographical errors have been identified in the following parts of the code:

1. BaseConicPool.depositFor() and shutdownPool() define an error message that contain
the word "shutdown" as a verb.

2. Doc comments of BaseConicPool.handleInvalidConvexPid() contain the word "shutdown"
as a verb.

3. Doc comments of BaseConicPool.handleInvalidConvexPid() contain the word "outcomu".

4. Doc comments of BaseConicPool.handleInvalidConvexPid() contain the word "unilkely".

5. Doc comments of ETH_FACTORY_POOL_CODE_HASH_1 in CurveHandler contain the phrase "a
optimization".

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

6. Error string "convex pool pid is shutdown" in
BaseConicPool.handleInvalidConvexPid() is inconsistent with the check performed.

Code corrected:

All errors have been fixed.

6.35 removeDuplicates Not Working With 0
Elements
Informational Version 1 Code Corrected

CS-CCP-043

ArrayExtensions.removeDuplicates() does not work correctly if the array passed as arguments
contains the 0-address. It will be filtered out.

Code corrected:

The function now correctly checks for 0 elements.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Code Copies
Informational Version 1

CS-CCP-030

The project contains multiple functions that share a similar or even identical codebase. The common
functionality should be refactored into separate functions to minimize the risks of future changes resulting
in different functions behaving differently when they should behave the same way.

Examples are:

• BaseConicPool._withdrawFromCurve() and _depositToCurve().

• LpTokenStaker.poolCheckpoint() and claimableCnc().

• Multiple functions in CNCLockerV3.

7.2 Events Emitted on No Change
Informational Version 1 Code Partially Corrected

CS-CCP-031

Some functions emit events even when no change in storage has occurred. Here are some examples:

1. BaseConicPool.updateDepegThreshold().

2. Controller.setCurveHandler().

3. RewardManager.addExtraReward().

4. RewardManager.removeExtraReward().

Code corrected:

Most of the functions have been corrected to only emit events when the state changes.

7.3 Gas Optimizations
Informational Version 1

CS-CCP-034

Some code parts can be optimized for better gas efficiency.

1. Redundant calls. For example:

• BaseConicPool.depositFor() calls the price oracle for the underlying price. The same
call is then performed in _exchangeRate() and potentially _isBalanced().

• In CurveHandler._version_0_remove_liquidity_one_coin(), the call
CurveRegistryCache.coins() is executed in each loop iteration.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

• RewardManager.poolCheckpoint() could send fees directly from a Conic pool to the
CNCLockerV3.

• CurveAdapter._stakedCurveLpBalance() calls
IConvexHandler(controller.convexHandler()).getRewardPool() which in turn
calls CurveRegistryCache.getRewardPool(). This function could be called directly.

• The call to CurveRegistryCache.nCoins() in CurveLpOracle.getUSDPrice() can
be omitted as the number of coins is already available.

• GenericOracle.getUSDPrice() calls ChainlinkOracle.isTokenSupported()
which calls ChainlinkOracle.getUsdPrice(). It then proceeds to call
ChainlinkOracle.getUSDPrice().

2. Redundant storage reads. For example:

• BaseConicPool._getDepositPool() loads all pools and weights in each iteration of
_depositToCurve().

• BaseConicPool._depositToCurve() loads the pool address from storage when it could
have just been passed back by _getDepositPool().

• CNCLockerV3._feeCheckpoint() loads accruedFeesIntegralCrv and
accruedFeesIntegralCvx multiple times from storage.

• LpTokenStaker._claimCNCRewardsForPool() loads poolShares from storage instead
of using the return value of checkpoint().

3. Redundant storage writes. For example:

• GovernanceProxy._endChange() writes data to the pending change in storage before
deleting it from storage.

4. Unnecessary computation. For example:

• The loop in BaseConicPool._getDepositPool() does not continue if the weight of a
given pool is 0.

• The computation of _isEthIndexFirst() in CurveHandler.isReentrantCall() is
irrelevant.

• RewardManager.poolCheckpoint() does not set the rewardsClaimed flag when
rewards are claimed due to being within the threshold of the Convex cliff. This results in
claimPoolEarningsAndSellRewardTokens() potentially executing the claiming
functionality two times.

• RewardManager.poolCheckpoint() does not return early if no rewards have accrued.

5. Unoptimized structs in storage. For example:

• The size of the endedAt field in the Change struct of IGovernanceProxy could be reduced
to fit the Status enum into the same word.

• The Boost struct in LpTokenStaker could be optimized to only occupy 1 word.

6. _chainlinkOracle and _curveLpOracle in GenericOracle can be immutable.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Extra Rewards Might Have 100% Slippage
Note Version 1

RewardManager swaps all extra rewards of a Convex pool to CNC on either SushiSwap or Curve. If the
respective token is not supported by the GenericOracle, no slippage protection is set for these swaps.
It is likely that these swaps will be arbitraged by bots.

8.2 Locking in CNCLockerV3 Can Potentially Fail
if Too Many Locks Exist
Note Version 1

No more than _MAX_LOCKS can exist in CNCLockerV3 for every user. If a user has created more, or if
an attacker targets a user, they could be prevented from creating new locks according to their intentions.
New locks can always be created by using the relock option of lockFor(), however that requires the
duration to be longer than any of the existing locks.

If it is not possible to create new locks for an address, an alternative address will have to be used. If an
airdrop cannot be used because of having reached _MAX_LOCKS, the airdrop can still be used on
another address through lockFor().

8.3 RewardManager Can Become Temporarily
Insolvent
Note Version 1

RewardManager handles CVX rewards by calculating the current amount of earnings for the current
Convex cliff period. If the end of the cliff period approaches, earnings are finally claimed. It is, however,
possible that there are no interactions with the contract for a longer period which would result in this claim
being missed before the period ends. In that case, the amount of CVX rewards in the contract are inflated
as the actual claimable reward is lower than the reward that has been calculated before. It is therefore
possible that not all claims can be served until the new incoming CVX reward reach the previously
calculated amount of CVX rewards that should be in the contract.

Users that stake after this incident also do not accrue CVX rewards in favor of older stakers.

8.4 Rewards of Rebalance Function
Note Version 1

CNCMintingRebalancingRewardsHandler.rebalance() allows users to easily rebalance a Conic
pool and earn rewards. This includes rewards for withdraw() which are not granted if the function is
called directly.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

The setup allows for additional reward handlers to be added to a Conic Pool. These reward handlers,
however, will only grant rewards for deposits even when the rebalance() function is used.

Conic - Conic Protocol - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Conic pools
	2.3.1 Depositing and Withdrawing
	2.3.2 Safety checks for reentrancy in ETH pools
	2.3.3 Flashloan protection
	2.3.4 Curve pools
	2.3.5 Price oracles
	2.3.6 Depeg protection
	2.3.7 Weight updates and rebalancing rewards
	2.3.8 Access control and privileged functions

	2.4 LP Token staking and rewards distribution
	2.4.1 CNC emissions
	2.4.2 Checkpointing logic
	2.4.3 Time boost

	2.5 Vote locking and bonding
	2.5.1 Bonding

	2.6 Changes in Version 2
	2.7 Governance and Trust model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Exchange Rate Rounding Errors
	5.2 No Governance Default Delay
	5.3 Instant Rewards
	5.4 Missing Checks
	5.5 No Reward Checkpoint When Unstaking
	5.6 Stale Oracle Price Means Token Is Not Supported

	6 Resolved Findings
	6.1 Endless Rebalancing
	6.2 Execution of Wrong Governance Change
	6.3 Depeg Due to Oracle Manipulation
	6.4 Wrong Accounting in Bonding
	6.5 Bonding lastCncPrice Manipulation With Leftover Dust
	6.6 Extra Reward Tokens Not Sent to RewardManager
	6.7 Higher Imbalance Tolerance in Metapools
	6.8 Incomplete Pool Balance Check
	6.9 Oracle Price Manipulation
	6.10 Reward Double Counting
	6.11 Slippage Losses Are Socialized
	6.12 Weight Update Rounding Errors
	6.13 Wrong Denomination of Deviation Delta
	6.14 Possible Zeroed Pool Weight Increase
	6.15 Reward Factor Override
	6.16 Boost After Shutdown
	6.17 CNCLockerV3 Lock Squatting
	6.18 Claimable Rewards Potentially Wrong
	6.19 Enabled Fee Not Reset
	6.20 Endless Loop
	6.21 Lock Spam DoS
	6.22 Minimum Tainted Transfer Amount Can Be Circumvented
	6.23 Rebalancing Reward After Depeg
	6.24 Unreachable Imbalance Buffers
	6.25 Wrong TVL Factor
	6.26 Wrong Time to Full Boost
	6.27 Ambiguous Naming
	6.28 Exchange Rate Race Condition
	6.29 Fees Without Locked CNC
	6.30 Interface Differences
	6.31 Missing Events
	6.32 Rebalancing Reward Formula Mismatch
	6.33 Shadowed Variables
	6.34 Typographical Errors
	6.35 removeDuplicates Not Working With 0 Elements

	7 Informational
	7.1 Code Copies
	7.2 Events Emitted on No Change
	7.3 Gas Optimizations

	8 Notes
	8.1 Extra Rewards Might Have 100% Slippage
	8.2 Locking in CNCLockerV3 Can Potentially Fail if Too Many Locks Exist
	8.3 RewardManager Can Become Temporarily Insolvent
	8.4 Rewards of Rebalance Function

