PUBLIC

Code Assessment

of the Quark
Smart Contracts

June 12, 2024

Produced for

by

$ Compound

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Compound - Quark - ChainSecurity - © Decentralized Security AG

11
12
13
15
23
25

https://chainsecurity.com

1 Executive Summary

Dear Compound Team,

Thank you for trusting us to help Compound with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Quark according to Scope to
support you in forming an opinion on their security risks.

Compound implements Quark Wallets which is a system for account abstraction based on wallet
contracts that can run arbitrary code (scripts), deployed by a special contract CodeJar . Users can then
trigger actions from their wallets by executing scripts directly or signing messages according to EIP-712
format.

The most critical subjects covered in our audit are access control, signature handling, functional
correctness, gas griefing and front-running. Security regarding all the aforementioned subjects is
satisfactory.

The general subjects covered are code complexity, trustworthiness, documentation and gas efficiency.
The codebase is generally well written and includes inline comments that improve the readability of code.
Contracts in scope are not upgradable and do no have privileged roles, hence providing a high level of
trustworthiness.

The system offers flexibility and new features can be plugged in by scripts. We would like to emphasize
that developers should carefully assess new scripts to avoid introducing vulnerabilities that can exploit
user's wallets. Users should also carefully evaluate scripts and their parameters. Interacting with a
malicious script or passing wrong parameters to a verified script could be enough to exploit a wallet.

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

|

@ Compound - Quark - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Quark repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note

1 | 28 Nov 0b49126788b33e0b014bd08ccf972f3b3b39d8bb Initial Version
2023

2 | 17 Jan d67860fa8fc4e94cf54d3ee6931ca52c5d4eal7d Version with fixes
2024

3 | 05 Feb e8e4e37327aa2b9e5119327199f53de29479755b | Final Version
2024

4 | 21 May e1da89dbc792bfl1f36albdddOa8ceadb2a4b85db Version with new scripts
2024

5 | 10 Jun c7a8ff588056d41ec20509f56fe03f351306a49a Fixes for the new scripts
2024

For the solidity smart contracts, the compiler version 0. 8. 19 and evm version par i s were chosen. After
the compiler version was updated to 0. 8. 23.

The following contracts are in the scope of the review:

CodelJar . sol
QuarkScri pt. sol
Quar kSt at eManager . sol
Quar kWl | et . sol
Quar kWal | et Fact ory. sol
core_scripts:
Et hcal | . sol
Mul ticall.sol
Uni swapFl ashLoan. sol
Uni swapFl ashSwapExact Qut . sol
l'ib:
Uni swapFact or yAddr ess. sol
peri phery:
Bat chExecut or . sol
term nal _scripts:
Termi nal Scri pt. sol
i nterfaces:
| Conet . sol
| Comet Rewar ds. sol
vendor :
uni swap_v3_peri phery:
Pool Addr ess. sol

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

After (Version 2), the codebase has been refactored. The new scope is:

codej ar:
src:
CodeJar . sol
CodeJar St ub. sol
guar k- cor e:
src:
Quar kScri pt. sol
Quar kSt at eManager . sol
Quar kwal | et . sol
peri phery:
Bat chExecut or . sol
guar k- core-scripts:
src:
Et hcal | . sol
Multicall.sol
Uni swapFl ashLoan. sol
Uni swapFl ashSwapExact Qut . sol
lib:
Uni swapFact or yAddr ess. sol
vendor :
uni swap_v3_peri phery:
Pool Addr ess. sol
guar k-factory:
src:
Quar kFact ory. sol
guar k- pr oxy:
src:
Quar kM ni mal Pr oxy. sol
Quar kWl | et ProxyFact ory. sol
term nal -scripts:

Src:
Term nal Scri pt. sol
i nterfaces:
| Conet . sol

| Conet Rewar ds. sol

After (Version 3) terminal-scripts/ and Ternminal Script.sol have been renamed
| egend-scri pts/ and LegendScri pt. sol .

After (Version 4) some contracts have been added/deleted/moved (A/D/M) to/from/within the scope. The
changes from the previous scope are highlighted below:

codej ar:
src:
(A) Codelar Factory. sol
(D) CodeJar St ub. sol
quar k- core:
src:
(A Quar kwal | et St andal one. sol
(A) interfaces:
(A) | HasSi gner Execut or. sol
(A | Quarkwallet. sol
guar k- core-scripts:
src:

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

(A Paycall. sol
(A) Quotecall. sol
vendor/ chai nl i nk:
(A) AggregatorV3interface. sol
(D) | egend-scripts:
(D) src:
(M LegendScript.sol (noved to test/lib/DefiScripts.sol)
(D) interfaces:
(D) I Conet. sol
(D) | Comet Rewar ds. sol

2.1.1 Excluded from scope

The following contracts are explicitly not in the scope of the review:

core_scripts:
Condi tional Mul ticall. sol
lib:
Condi ti onal Checker. sol

The out-of-scope contracts after are:

quar k- core-scripts:
Src:
Condi tional Multicall. sol
lib:
Condi ti onal Checker. sol

Additionally, any contracts or scripts that might be deployed in the future but are not explicitly listed
above are out of the scope of this review. Third-party libraries are out of the scope of this review. Finally,
other Compound components like Comet were not in scope of this review and are assumed to always
behave non-maliciously, correctly, and according to their specification. The price feeds for the Paycal |
and Quot ecal | scripts are out of the scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Compound offers account abstraction in the form of a wallet system that can run arbitrary code (scripts),
deployed by a special CodeJar contract. Users can then trigger actions from their wallets by signing
messages with EIP-712.

2.2.1 Codeldar

The CodeJar contract allows the deployment of so-called scripts. A script can be arbitrary bytecode with
the limitation that the constructor and storage variable initialization upon deployment are not supported.
The scripts are deployed with the CREATE2 opcode with salt 0x00.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 7

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

2.2.2 QuarkWallet

A wallet has a signer and an executor. The actions the wallet can execute are called operations. The
signer is the owner of the wallet and signs the operations that must be executed with EIP-712. The
executor has a privileged role and can submit operations without a signature to the wallet. The signer can
be an EOA or a smart contract. If the signer is a smart contract, it must implement the EIP-1271. The
state of the wallet should not be assumed to be held in the wallet's storage, it is managed by the
Quar kSt at eManager . A wallet can trigger sel f dest ruct through a script which deletes its code and
state from the address and transfers out its Ether balance, however, the wallet can be redeployed with
the same salt from the factory. The flow of operations in the wallet is described below.

2.2.3 Flow of QuarkOperations

An operation consists of a target script address, some calldata, and a nonce. During an operation, the
target script can read and write the currently active storage context in the Quar kSt at eManager. A
nonce is associated with at most one script address and can be reused if cleared during an operation.

When an operation is submitted to a wallet, it will call
Quar kSt at eManager . set Acti veNonceAndCal | back() to check and set the nonce and the script
address. The Quar kSt at eManager triggers a callback in the wallet

(execut eScri pt Wt hNonceLock()), where the target script address is called with a low level
CALLCODE along with the calldata. Quark operations have an expiry and they are considered valid only if
expi ry isin the future (bl ock. ti mestanp < op. expiry).

Scripts can enable callbacks to the Wallet through the f al | back function by setting a non-zero address
at the key CALLBACK_KEY. The fallback function will then DELEGATECALL to this address only. Scripts
can allow nonce replay by clearing the active nonce, i.e. only the nonce associated to the current
execution context, by calling Quar kSt at eManager . cl ear Nonce() . Note that scripts can set arbitrary
nonces.

2.2.4 QuarkStateManager

The QuarksSt at eManager keeps different mappings related to the execution context of
Quar kOper at i ons:

e nonces: tracks the nonces per wallet. Once a nonce is set, it can only be cleared while active (see
acti veNonceScri pt). Clearing a nonce marks it for reuse.

enonceScri pt Addr ess: stores the script address associated to a nonce that was cleared to avoid
nonce replay with different script address.

eactiveNonceScri pt: holds the currently active nonce/script address pair for a wallet, outside of
an execution context the pair is (0, address(0)) for every caller. There is always at most one
active pair per wallet. In the case of nested Quar kOper at i on for a wallet, the pairs form a stack,
the active pair being on top of the stack.

«wal | et St or age: key-value mapping indexed by wallet address and nonce. Can be used as
storage for the execution context of a nonce, the storage can be accessed (read/write) only for the
neg. sender and currently active nonce.

The main function of this contract is set Act i veNonceAndCal | back. The function is assumed to be
called from a wallet, it first checks that the nonce to be used is not set and reverts if it's the case. Then
the nonce is set in the nonces mapping for the calling wallet and the script address is checked to be the
same as the address associated with the nonce if it was marked for reuse. The currently active nonce is
pushed back on the stack and the new nonce/script address pair is pushed on the stack by being set as
the activeNonceScript for the calling wallet. Next, the calling wallet is called back with
Wal | et. executeScri pt Wt hNonceLock(), when the callback returns, the script address is
recorded in the nonceScri pt Addr ess if the nonce was cleared during the callback. Lastly, the stack of
active nonce script is popped to fully exit the execution context of the nonce/script address pair. Note that

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 8

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-1271
https://chainsecurity.com

in the special case where scri pt A with nonce 42, clears it and reenters the wallet with scri pt B and
the same nonce, and scri pt B does not clear it, the nonce will not be replayable.

The contract implements a helper function next Nonce which returns the next nonce that can be used for
a wallet. This function implements a f or - | oop that might run out-of-gas, hence should be called mainly
off-chain.

2.2.5 QuarkWalletFactory

The factory deploys the wallets with the CREATE2 opcode and an arbitrary salt. The deployment of wallet
is permissionless and wallets can be deployed for arbitrary signers and the default salt is 0x00. If the salt
is 0x00, the deployed wallet has no executor (addr ess(0)), but this wallet will be the executor of all the
other wallets deployed for the same signer with a non-zero salt.

2.2.6 Scripts

Scripts are arbitrary contracts that act in the context of a Wal | et via cal | code. They provide
functionalities that are not native in the Wal | et . Scripts can always overwrite their own nonce-scope
storage in the Quar kSt at emanager , including their callback key and their reentrancy lock.

2.2.7 Changes in Version 2:

» The codebase has been refactored and split into different submodules.
» The wallets are deployed behind a minimal proxy by the Quar kWl | et Pr oxyFact ory.
» The system is deployed and linked together by the Quar kFact ory.

* The execut or of a Wl | et can be any arbitrary account, so both execut or and si gner of a
wallet can potentially be the same account.

* The functions Quar kWl | et . execut eQuar kOper ati on and Quar kWAl | et . execut eScri pt
are no more payable, meaning that ETH must either be sent upfront, or pulled during a script
execution.

«In Quar kWal | et . execut eScri pt Wt hNonceLock, the nmsg. val ue is set to 0 for the calling
context of cal | code.

« A new modifier onl yWal | et has been added. It acts as a weaker form of reentrancy protection as it
would only allow the I | et to reenter itself through a script that is assumed to be trusted.

« The function Quar kSt at eManager . set Acti veNonceAndCal | back() is now caching the
scri pt Addr ess before making the callback to the WAl | et . This slightly changes the behavior of
the case where the execution of scri pt A with nonce 42 is reentered with scri pt B and the same
nonce and both scripts clear the nonce, the code in will set the nonceScr i pt Addr ess for
that nonce to scri pt B, and the code in will setitto scri pt A

2.2.8 Changes in Version 4.

* The CodeJar has been updated to directly deploy the provided deployment bytecode, and not some
fixed constructor code appended to the runtime bytecode anymore.

* A new way to submit operations was added: execute multi Quark operation. This allows a signer to
sign a batch of operation's hashes that do not necessarily target the same chain of a wallet, instead
of signing each operation individually. The batch can then be submitted to the wallet, along one of
the operation of the batch that will be executed.

« Two new scripts have been added: Paycal | and Quot ecal | . Both allow to pay the t x. ori gi nin
some ERC20 tokens for submitting the transaction. In Paycal | , the gas used to make the call is
recorded and t X. ori gi n receives the equivalent gas value in the payment token after the call, up

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

to maxPaynent Cost . In Quot ecal | , the gas used to make the call is recorded and t x. ori gi n
receives some token amount (quot edAnount) before the call, if the gas used is not within
maxDel t aPer cent age of (actual Anbunt - quotedArmount) / quotedAmount, the
transaction reverts.

2.2.9 Changes in Version 5:

«In the scripts Paycall and Quotecall, that allow users to pay for gas in ERC20, the
pr opagat eRevert s variable has been removed. This implies that if the inner call that a user wants
to execute reverts, the whole transaction will revert. This was done to avoid potential gas griefing at
the expense of the users (see Gas griefing attacks).

» The GAS_OVERHEAD constant, previously set to 67 500, was changed to 135 000 in Paycal | and to
100 000 in Quot ecal | (see Inconsistent GAS_OVERHEAD Value).

2.2.10 Trust Model

« Scripts and scripts' calldata: users should carefully verify the scripts they are interacting with, as well
as the calldata. Typically, if a script implements a proxy, users may want to monitor the
implementation changes. If users sign operations that include untrusted scripts or untrusted calldata,
they might suffer severe consequences, e.g., wallets might be drained, or arbitrary calls can be
triggered from the context of wallets.

* Replayable transactions: some replayable transactions could be replayed by anyone during bad
market condition, griefing the wallet. Users must make sure their replayable transactions implement
checks in the scripts to limit the conditions under which the Quar k operation can be reused.

« Users: not trusted. However, users are responsible to sign only messages that they trust.

e« Paycal | and Quot ecal | scripts: the price feeds connected to these scripts are expected to be
carefully chosen.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E
CD-Severity Findings ¢
(Medium)-Severity Findings 0
(Low)-Severity Findings =

» Contracts Do Not Extend Their Interfaces ()
A Nonce Can Be Used With Different Target Addresses ()
» Gas Griefing Through Memory Return Bomb

5.1 Contracts Do Not Extend Their Interfaces
[Low] [Version 4][]

Interfaces are likely to be used by integrators and thus should represent the functions and structs of the
contract. To ensure this, the contracts should extend their interfaces. Here is a non-exhaustive list of
contracts that do not extend their interfaces:

e Quar kWl | et should extend | Quar kWl | et
* Quar kM ni mal Pr oxy should extend | HasSi gner Execut or

CS-QUARK-017

Acknowledged:
In (Version 5), Quar kM ni mal Pr oxy has been updated to extend | HasSi gner Execut or .

On the other side Quar kM ni mal Pr oxy stays unchanged. Compound had declared that this behavior is
intended:

We purposely did not extend QuarkWallet with I QuarkWallet because we prefer the QuarkOperation
struct to be defined directly in the QuarkWallet inplenmentation for better readability.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5.2 A Nonce Can Be Used With Different Target

Addresses
[Low] [Version 1] []

If during a script operation with nonce X and target address A, the nonce is cleared and the wallet is
reentered with another script operation with nonce X and target B, the nonce X has been used for
addresses A and B. This is possible because the target address is recorded only after the callback to the
Quar kwal | et . This breaks the assumption that a nonce can be associated with at most once target
script address.

CS-QUARK-004

Acknowledged:
Compound considers this behavior in line with specifications and provides the following reasoning:

We posit that the invariant always holds true post-execution of a script. This neans
that after a Quark script has fully executed, there should be no way for a nonce to
be used with a different script address. W explored keeping this invariant true in
all cases (even before the script has finished fully executing) by witing the script
address before executing a script, but this introduces a 15k+ gas overhead and we
decided it was not worth it.

5.3 Gas Griefing Through Memory Return Bomb
D (Low) (Version 1) GEITETE)

The functions using the pattern (bool success, bytes nenory data) = call X can be the
source of gas griefing if the target contract returns a memory pointer that triggers unnecessary memory
extension (return bomb).

CS-QUARK-006

Risk accepted:
Compound acknowledged the issue and decided to keep the code unchanged giving the following
reasoning:

Since the Quark wall et already gives the callee all the gas, the callee can gas
grief through other neans. W don't believe this to be an issue that Quark should
address because users are ultimately responsible for the transactions they sign.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(&)-Severity Findings 0

(CL:0)-Severity Findings 1
» Gas Griefing Attacks

(Medium)-Severity Findings 4

» Inconsistent GAS_OVERHEAD Value

» Possible Reentrancy in ERC20 Transfer

» Script Addresses Without Code Are Undetected
» Scripts Deployment Can Be Blocked

(Low)-Severity Findings 4
« Consistency of Empty Code Existence
» Gas Griefing Through Script Implementation Destruction
» Limited Events Emitted by Contracts
» Superfluous Allowance Given in supplyFrom

Informational Findings 5

» Gas Griefing Through BatchExecutor Failure

» Unused Code

» Unchecked Loop Increment

» Possible Allowance Leftover in UniswapSwapActions
» QuarkScript Can Be Marked as Abstract

6.1 Gas Griefing Attacks
D) G (Version 4) (CXI LI

The new scripts Paycal | and Quot ecal | open the way for griefing attacks, assuming GAS _OVERHEAD
covers the gas cost of the transaction outside of i nitial Gas - gasl eft (). Ignoring any arbitrage
opportunity offered by the Quark operation, this assumption holds as no one would execute a
pay/quotecall otherwise, as they would be losing money in the transaction. The signer signs the operation
and makes it public, the submitter picks the signature and submits it to the Quar kWl | et .

CS-QUARK-013

There are two distinct scenarios where a griefing attack can happen:

« Case propagat eRevert s is true: The signer can include some calldata that burns a lot of gas and
make the call revert, forcing the submitter to pay a lot of gas for a reverting transaction, without the
submitter (t x. ori gi n) receiving payment for the gas. Even if the submitter simulates the

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

transaction before submitting it, an observer can frontrun it and update some on-chain state that will
make the transaction fail.

e Case propagat eReverts is false: The submitter can submit the transaction when they are
guaranteed that it will fail, making the signer pay for a failing transaction on purpose, provided the
wallet has enough of the payment token. In the case of Paycal |, the value extracted from the
signer for one failed operation over one transaction is EV = m n(maxPaynent Cost, (GAS_OVER
HEAD + (Paycal |l OperationGasCost)) * gasPricel nToken). The submitter pays gasTX
to send the operation on-chain. In the normal use case where the operation succeeds, we expect
EV - gasTX > 0 to be a fee taken by the submitter for the service. In the adversarial case where
the submitter knows for sure that the operation will fail, this amount becomes theft, as the signer
may need to sign the same operation and pay for gas again to reach their goal. It is possible for the
submitter to increase their margin by batching multiple operations in one transaction.

Code corrected:

In (Version 5), the propagat eReverts variable was removed and consequently reverts are always
propagated; if the inner call reverts, the whole transaction will revert. This effectively prevents the second
attack described, where griefing could be done at the expense of the user.

Therefore, the scenarios above change as follow:

» Case pr opagat eRevert s is true: Compound acknowledged the potential risks and explained their
reasoning as follows:

Subnmitters are responsible for sinmulating operations before submission to nake sure they are paid appropriately.
In the case that a griefer constructs a call that reverts non-determnistically, submtters could either submt
the transaction through Fl ashbots to guarantee no reverts or choose to only submit calls to known/whitelisted contracts.

» Case propagat eRevert s is false: the issue is not present anymore.

6.2 Inconsistent GAS OVERHEAD Value
(Correctness | ITHT)WCETTED] Code Corrected)
CS-QUARK-014

Both Paycal | and Quot ecal | have a GAS_OVERHEAD = 67_500. In Paycal | , this value includes
the gas for the transfer of the payment token, but in Quot ecal | the gas for token transfer is also
included ingasl nitial - gasleft().Insummary, GAS_OVERHEAD has the same value but does not
cover gas for the same steps, one of them should be lower/higher.

Code corrected:

Compound has corrected the code in (Version 5): GAS OVERHEAD was set to 135k for Paycal | and to
100k for Quot ecal | . The amounts were derived by summing the initial gas required by the transaction
(21k + calldata gas) with an estimation of the gas used by the Quark Operation wrapping the inner call
(70K). For Paycal | , 35k of gas was added to account for the ERC20 transfer.

6.3 Possible Reentrancy in ERC20 Transfer
(Security JCITTTDICRETIRY Code Corrected)

CS-QUARK-001

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The function t r ansf er ERC20Token in Term nal Scri pt opens a reentrancy possibility (similar to
transfer Nati veToken()) for tokens that implement transfer hooks such as ERC-777 tokens. The
function does not use the nonReent r ant lock, hence making the script vulnerable to reentrancy for
specific tokens.

Code corrected:

Both functions t r ansf er ERC20Token() and t ransfer Nati veToken() are now protected with the
modifier onl yWal | et . This modifier behaves differently from nonReent r ant and is implemented as
below:

modi fier onlyWallet() {
i f (msg. sender address(this)) {
revert ReentrantCall();
}

}

As stated in the natspec comment of the modifier, reentrancies initiated from the wallet itself are still
possible:

@otice A cheaper, but weaker reentrancy guard that does not prevent recursive
reentrancy (e.g. script calling itself)

6.4 Script Addresses Without Code Are
Undetected
(Design [CIZMD|VZZTIBY] Code Corrected)

CS-QUARK-002

The functions QuarkWal |l et. executeScript and QuarkWall et. executeQuarkOperation
assume some code resides at the scri pt Addr ess and do not check the code length at this address.
The transaction will not revert because performing cal | code() on an empty account will always
succeed.

For example, a transaction using an already deployed script can be front-run by calling sel f dest r uct
on the target script implementation if it allows it. The transaction executing the quark operation will
succeed but will have no effect other than consuming the nonce.

Code corrected:

The function Quar kWal | et . execut eScri pt Wt hNonceLock has been revised to revert if the target
scri pt Addr ess has empty code:

i f (scriptAddress. code. |l ength 0) {
revert EnptyCode();

}

This function is triggered from both execut eScript() and execut eQuar kQperati on(), hence
transactions now revert instead of silently succeeding when the target scri pt Addr ess is empty.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.5 Scripts Deployment Can Be Blocked
(Design LT ICETTRY] Code Corrected)

The function CodeJar . saveCode assumes that if the target address does not contain code, its
codehash will be equal to O:

CS-QUARK-003

I f (codeAddressHash 0) {
} else i f (codeAddressHash keccak256(code)) {

} el se {

revert CodeHashM smat ch(codeAddress, keccak256(code), codeAddressHash);
}

However, the assumption that if there is no code in the address where a script will be deployed has a
codehash of O is wrong. If Ether is sent to the target address, its codehash will change to
keccak256("") which is the same as codehash of EOAs. This behavior can be abused by
front-running the deployment of script by sending at least 1 wei to the target address, forcing
saveCode() into the reverting branch and making the script impossible to deploy from the CodeJar .

Furthermore, the attacker can also destroy existing scripts by triggering a call to sel f dest ruct . This is
possible for scripts that perform del egat ecal | s into user-provided addresses, like Mul ti cal | . Once
the script is destroyed, the attacker can send 1 wei of Ether to the address such that its codehash
becomes non-zero, hence saveCode will always revert in the future if someone wants to deploy the
same script.

Code corrected:

The function CodeJar . saveCode has been revised to always deploy the new code if the existing
codehash of the target address does not match the hash of the code:

i f (codeAddressHash keccak256(code)) {

return codeAddress;
} else {

}

6.6 Consistency of Empty Code Existence

(Correctness JICTEETBY Code Corrected)

The function CodeJar . codeExi st s returns f al se when the target address' code does not match the
deployed bytecode. However, it is inconsistent in the particular case of empty bytecode. By default,
codeExi st s() will return f al se when code="", as the codehash of the derived address will be 0. If

CS-QUARK-005

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

some ETH was to be sent to the derived address, its codehash will be equal to keccak256("") and
codeExi st s() will return t r ue even though the empty bytecode has not been "deployed”.

Code corrected:
The function codeExi st s() now returns true only if the code length at the target address has a
non-zero length:

return codeAddress. code. |l ength 0 codeAddr ess. codehash keccak256(code) ;

Note that calling the function with empty code codeExi st s(code="") returns always f al se.

6.7 Gas Griefing Through Script Implementation
Destruction

(D (Cow) (Version 1) ISR

Anyone can sel f dest ruct scripts implementing del egat ecal | and codecal | . This allows a gas
griefing vector by front-running a Quar k operation using such scripts and destroying the implementation,
forcing users to pay more gas because the scripts bytecode should be passed as cal | dat a and then
redeployed.

CS-QUARK-007

Code corrected:

The script Multicall has been revised to prevent executing operations, including sel f dest ruct, on the
context of the script itself:

assenbly ("nenory-safe") {
t hi sAddr ess sl oad(sl ot)

}

i f (address(this) t hi sAddress) {
revert lnvalidCall Context();

}

The variable t hi sAddr ess stores the address of the script in storage slot CONTRACT _ADDRESS SLOT
which should be set after deployment by calling functioninitiali ze().

6.8 Limited Events Emitted by Contracts
7DD (Low) (Version 1) (CXIESIEED)

The codebase emits only the event VWl | et Depl oy when a new wallet is created. All other state updates
do not emit any event. For instance, no event is emitted by QuarkWallet when a quark operation is
executed.

CS-QUARK-008

It is recommended to emit events for important state updates and index the relevant parameters to allow
integrators and dApps to quickly search for these and simplify Uls.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

The QuarkWallet contract now emits the events Execut eQuarkScri pt when a quark operation
executes successfully, and C ear Nonce to indicate when a nonce has been cleared. We assume
Compound has carefully assessed the codebase for missing events and then has decided to add only
those two events.

6.9 Superfluous Allowance Given in supplyFrom

(D (Cow) (Version 1) ST

The function suppl yFr omin contract Conet Suppl yAct i ons provides an allowance to conet from a
wallet:

CS-QUARK-009

function suppl yFrom(address conmet, address from address to, address asset,
ui nt 256 armount) external {
| ERC20(asset) . f orceApprove(conet, anount);
| Comet (conet) . suppl yFrom from to, asset, anount);

}

The allowance provided by f or ceAppr ove() is superfluous and not needed for the functionality.

Code corrected:
The unnecessary approval has been removed in (Version 3),

6.10 Unchecked Loop Increment

(Informational) (Version 2]

Since version 0. 8. 22, Solidity implements the unchecked loop increment (see Solidity changelog
<https://github.com/ethereum/solidity/blob/develop/Changelog.md#0822-2023-10-25>) for the for
loops of general form:

CS-QUARK-019

for (uint i X i Y, i) {
}

Therefore, some of the index increments that were done in an unchecked block can be brought back in
the for (;;) construct to be optimized by Solidity.

Code corrected:

The index increment has been brought back in the f or (; ;) construct for loops of the general form.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.11 Gas Griefing Through Bat chExecut or
Failure

[Informational] [Version 1]

If the Bat chExecut or is used as a centralized service to execute operations on arbitrary wallets the
caller do not control, the transaction can be front-run to make the batch fail by making one of the
operations fail, forcing the caller to pay the gas for a failed transaction.

CS-QUARK-010

Code corrected:

The contract Bat chExecut or has been refactored and now ignores the success status of the calls from
the batch, mitigating this issue.

6.12 Possible Allowance Leftover in
UniswapSwapActions

[Informational] [Version 1]

The function swapAsset Exact Qut gives an allowance of anount | nMaxi mrum to uni swapRout er
from a wallet, however as anount | nMaxi nrummight be larger than the actual spent amount, there could
be remaining approvals that are not fully spent.

CS-QUARK-012

Code corrected:

The function swapAsset Exact Qut has been updated to revoke the leftover allowed amount, if any.

6.13 Unused Code
[Informational] [Version 1]

1. The imported file Quar kWl | et . sol in Et hcal | . sol is not used.

CS-QUARK-015

2. The error CodeJar . Codel nval i d is never used.

Code corrected:
1. The unused import has been removed.

2. The unused error has been removed.

6.14 QuarkScri pt Can Be Marked as Abstract
[Informational] [Version 1]

CS-QUARK-016

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

The contract Quar kScri pt is not supposed to be deployed on its own, but rather inherited by other
contracts. Therefore, this contract can be marked as abst r act to avoid any accidental deployment.

Code corrected:

The contract Quar kScri pt has been made abstract.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7

Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimizations

(Informational] [Version 1] (]

CS-QUARK-011

The codebase could be more efficient in terms of gas usage. Reducing the gas costs may improve user
experience. Below is an incomplete list of potential gas inefficiencies:

1.

11.

Contract Quar kScri pt implements the function al | owCal | back() which writes the script
address in storage, however no functionality to clear the storage is implemented.

. The function get ActiveScript performs redundant SLOAD operations when reading

scri pt Addr ess.

. The function set Acti veNonceAndCal | back performs redundant SLOAD operations when

reading the scri pt Addr ess from mapping nonceScri pt Addr ess.

. Functions execut eQuar kQper ati on() and DOVAI N_SEPARATOR() could be more gas efficient

by caching dommi nSeparat or instead of computing during each call. In that case,
domai nSepar at or needs to be recomputed if chai ni d changes (e.g., due to a future fork).

. Function Uni swapFl ashLoan.run computes redundantly the pool key via

Pool Addr ess. get Pool Key() .

. The function set Acti veNonceAndCal | back receives ETH and sends it back from/to the calling

wallet, this transfer could be avoided by using an additional parameter in the function
set Act i veNonceAndCal | back holding the nsg. val ue.

.In QuarkWal | et Factory.create(), the assignment executor = address(0) is

unnecessary as execut or is zero-initialized.

.In order to revert early, the functions Conet Suppl yActi ons. suppl yMulti pl eAsset s,

Comet Wt hdrawAct i ons. wi t hdrawul ti pl eAsset s,

Cormet Suppl yMul ti pl eAsset sAndBorrow. r un, and
Comet RepayAndW t hdr awMul ti pl eAsset s. run could check that the length of the arrays
received as parameters match.

. The wallets could be deployed behind a minimal proxy to reduce the cost of deployment.
10.

During the Uniswap V3 swap callback uni swapV3SwapCal | back, amountODelta and
anount ODel t a cannot be positive at the same time.

The condition in Quar kWl | et . execut eQuar kQper ati on accepts inputs where the target
address is zero and the code is empty, this will lead to the unnecessary deployment of an empty
script and a no-op during the execution of the script.

Code partially corrected:

The optimizations listed above, except 1 and 4, have been implemented in the updated codebase.

1.

2.

S

The function clearCallback has been implemented but remains unused in
Uni swapFl ashLoan. r un.

The scri pt Addr ess is now cached.

Compound - Quark - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

. The scri pt Addr ess is now cached before the callback to the wallet.
. The optimization has not been implemented.
. The pool key is now computed once and then reused.

. The ETH transfers between the Quar kWl |l ets and the Quar kSt at eManager have been
removed.

o O~ W

7. The executor is now passed as function argument.
8. The code has been updated to check the length of the input arrays in the mentioned functions.
9. The minimal proxy pattern has been implemented.

10. The conditional branching has been updated fromif - if toif - el se if inorderto consider
only one of the amounts.

11. The function Quar kVl | et . execut eQuar kQper at i on has been updated to revert if the target
address is 0 and the source is empty.

7.2 Minimal Proxy Cannot Be EIP-1967

Compatible
[Informational] [Version 2] []

CS-QUARK-018

By design, the Quar kM ni mal Pr oxy cannot adhere to the EIP-1967 standard, that requires the
i mpl enent at i on address to be stored in a precise storage slot. This is due to the fact that it must be
stateless to avoid any change of implementation address by the scripts.

Note that block explorer relying on EIP-1967 will not be able to find the implementation address.

Acknowledged:
Compound responded:

The inplementation address is set as an i nmutabl e because it 1) is not intended to
ever change and 2) | owers the gas overhead of calls that go through the proxy.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 24

https://eips.ethereum.org/EIPS/eip-1967
https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Dangerous Combinations of Scripts

While taken separately, scripts can pose no security threat, but it may be the case that certain
combinations of scripts, e.g. use of nul ti cal | , can open attack vectors. Users must be careful when
using multiple scripts during one operation not to expose their wallets to new attack vectors. Developers
and users should be very careful when dealing with scripts which transfer execution to untrusted
addresses, e.g., native token transfer or ERC20 tokens that implement transfer hooks, validating
EIP-1271 signatures, etc. Such scripts pose significant security threats and should be carefully assessed
before use.

The security risks are present whenever a script passes execution to untrusted addresses. An attacker
can potentially reenter the wallet and pass arbitrary parameters to the current active script that could
exploit the wallet. Reentrancy guards do not always protect against such attacks.

Users should also check carefully scri pt Cal | dat a that are passed into a script even if the latter is
known to be non-malicious. For example, passing wrong scri pt Cal | dat a to the script Mul ti cal |
can have severe consequences given that it performs del egat ecal | s into arbitrary addresses.

8.2 Deprecated Opcode Callcode

The design of Quar kWl | et relies on the opcode cal | code which has been deprecated since Solidity
v0.5.0 in favour of del egat ecal | . See EIP-2488 and EIP-7. Hence, cal | code opcode is available
only through assembly code.

8.3 Executors Should Not Call Other Wallets
Directly

Default wallets (created with salt 0x0) have the executor role for other wallets created for the same
si gner, hence default wallets can call execut eScri pt () in other wallets. We would like to note that
such calls should be done through a script like Et hcal | which implement a normal cal | . Calling
executeScri pt () directly from the default wallet (via cal | code) or a script like Multicall (via
del egat ecal |) is wrong as it would execute in the context of the default wallet.

8.4 Gas Griefing by Script sel f dest r uct

Anyone can sel f dest ruct scripts implementing del egat ecal | and codecal | . This allows a gas
griefing vector by front-running a Quar k operation using such scripts and destroying the implementation,

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 25

https://web.archive.org/web/20230331031740/https://docs.soliditylang.org/en/latest/050-breaking-changes.html
https://web.archive.org/web/20230331031740/https://docs.soliditylang.org/en/latest/050-breaking-changes.html
https://eips.ethereum.org/EIPS/eip-2488
https://eips.ethereum.org/EIPS/eip-7
https://chainsecurity.com

forcing users to pay more gas because the scripts bytecode should be passed as cal | dat a and then
redeployed.

The issue has been mitigated for the Mul ti cal | script that was in scope, but developers must still be
aware of this pitfall when writing new scripts for Quark.

8.5 Payable Contracts Gas Overhead
(D) (Version 5

The two payable contracts Paycal | and Quot ecal | define a GAS_OVERHEAD value that will be
charged for every call to the contracts. It is supposed to cover for the transaction cost outside of the
initial Gas - gasl eft() scope. The breakdown for both contracts is as follows:

e Paycal | : 135_000 gas total

21 000 gas for the default transaction cost

*9 000 gas for the cal | dat a cost. This covers between 9_000 / 16
9 000 / 4 = 2250byt es long calldata.

* 70_000 gas for the execution cost outside of the r un() function

562byt es to

*35_000 gas to cover for the transfer of the payToken

e Quot ecal | : 100_000 gas total

21 000 gas for the default transaction cost
562byt es to

9 000 gas for the cal | dat a cost. This covers between 9 000 / 16
9 000 / 4 = 2250byt es long calldata.

«70_000 gas for the execution cost outside of the r un() function

Users must be aware of the following:

1. The Quark Operations can be batched to decrease the default cost per transaction (21_000 / N)
and increase the margin of the submitter.

2. The 70_000 gas should slightly overpay (5_000- 8 000 gas from Compound simulations) for a
direct call to a Wal | et compiled with - -vi a-ir, without scri pt Sour ces (where no script is
deployed).

3.In Paycal |, the 35 000 gas overpays (~15_000) in the most likely scenario of an ERC20
transfer where the sender's and the recipient's balances are non-zero initially, and slightly
underpays otherwise.

8.6 Restricted Use of Conet XActi ons
(D) (Version 1

The contracts Conet Suppl yActi ons and Conet Wt hdr awAct i ons of Ter m nal Scri pt. sol must
be used only as the targets of a codecal | () or del egat ecal | (), and never as standalone contracts.
Especially the functions Comet Suppl yActi ons. suppl yFrom
Comet Wt hdr awAct i ons. wi t hdr awFr om since it would imply setting the contract as an oper at or
for from This would allow anyone to steal the funds of fr om addresses having the contract as
oper at or .

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

8.7 Script Containing Callbacks Cannot Be
Nested
(D) (Version 1

Scripts that rely on callbacks to the Quar kWl | et do not work properly if not called directly from the
Quar kwal | et , but from another script.

This happens for the scripts Uni swapFl ashLoan and Uni swapFl ashSwapExact Qut . In particular,
Uniswap will callback into the Quar kWl | et and trigger its fallback, which will then delegate call into the
currently active script. In cases where the Uniswap script was called from another script (e.g.
Mul tical l'), the active script will not be the Uniswap script, but the caller script. Therefore, the
Quar kWal | et fallback will attempt to call the Uniswap callback inside of a script that does not posses
such function, causing the entire operation to revert.

Example: Submtter -> Wallet -> Milticall script -> Uni SwmapFl ashLoan script.
Uniswap will callback into Wal | et , which will delegatecall into Mul ti cal | script.

It is responsibility of the users to craft operations in such a way that the script callbacks are executed
correctly.

8.8 Users Must Be Careful When Signing
Mul t 1 Quar kQper ati on
(D) (Version 4

Even with EIP-712, when signing a Mul ti Quar kOper at i on, users do not know exactly what they are
signing as they have to sign an array of hashes. But they would need to either compute the operations'
hashes themselves or use some special plugin (does not exist yet) on their wallet to be able to
reconstruct the hash from the operations and check that they are legit.

Signing over a malicious hash could be fatal as the operation could drain the wallet. Users must always
know what they sign.

8.9 Wallets Can Call Arbitrary Scripts
(D) (Version 1

The contract CodeJar manages the deployment of new scripts via cr eat e2. However, the system does
not restrict users from interacting with arbitrary contracts (scripts) that are deployed outside of CodeJar .

8.10 Wallets Should Not Execute Initialize
Function in Scripts

(D) (Version 2

Scripts implementing a del egat e to arbitrary addresses implement a mechanism to mitigate griefing
attacks that destruct scripts, see Gas griefing through script implementation destruction. For instance, the
defending mechanism in the contract Mul ti cal | relies on a functioni ni ti al i ze which is assumed to
be executed in the context of Multicall, ie., initialize() should not be triggered via
del egat ecal | or callcode. Therefore, wusers should be careful to not call

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Multicall.initialize() inthe context of wallets, otherwise the script becomes unusable by the
wallet until the storage slot is cleared by another dedicated script.

8.11 Weak Reentrancy Lock
(D) (Version 1

Developers and users of quark scripts should carefully evaluate all calls that transfer execution to 3rd
party accounts that are untrusted. The reentrancy guard in quark scripts has the following limitations:

1. The modifier nonReent r ant only protects the functions protected by the nonReent r ant modifier
during the execution context of the associated nonce. For instance, in the context of nested quark
operations, if only the first operation with nonce X sets the lock, only the scripts with active nonce X
can be protected against reentrancy.

2. The storage location of the reentrancy lock can be overwritten by any script, bypassing the
protection. E.g., in the context of a multicall, if the first script sets the lock, another script can
remove the lock, allowing reentrancy in the first script.

8.12 Codedar Deployment Limitations

Users should be aware that the initialization code added to the code in CodeJar does not support scripts
with constructor bytecode, i.e., a non-empty constructor, immutable variables, or other storage variables
set during deployment. If a script happens to have constructor bytecode, this bytecode would be
executed on a call instead of the intended runtime bytecode, which would break the functionality of the
script. We highlight that CodeJar does not enforce any restriction on the bytecode that gets deployed,
hence attackers can deploy through CodeJar scripts that behave maliciously. Users should always
carefully verify the scripts they interact with and the parameters in scri pt Cal | dat a.

In (Version 4) the CodeJar takes the full deployment bytecode as parameter instead of the runtime
bytecode. This allows the deployment of contracts with a non empty constructor, lifting all the previously
mentioned limitations.

@ Compound - Quark - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 CodeJar
	2.2.2 QuarkWallet
	2.2.3 Flow of QuarkOperations
	2.2.4 QuarkStateManager
	2.2.5 QuarkWalletFactory
	2.2.6 Scripts
	2.2.7 Changes in Version 2:
	2.2.8 Changes in Version 4:
	2.2.9 Changes in Version 5:
	2.2.10 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Contracts Do Not Extend Their Interfaces
	5.2 A Nonce Can Be Used With Different Target Addresses
	5.3 Gas Griefing Through Memory Return Bomb

	6 Resolved Findings
	6.1 Gas Griefing Attacks
	6.2 Inconsistent GAS_OVERHEAD Value
	6.3 Possible Reentrancy in ERC20 Transfer
	6.4 Script Addresses Without Code Are Undetected
	6.5 Scripts Deployment Can Be Blocked
	6.6 Consistency of Empty Code Existence
	6.7 Gas Griefing Through Script Implementation Destruction
	6.8 Limited Events Emitted by Contracts
	6.9 Superfluous Allowance Given in supplyFrom
	6.10 Unchecked Loop Increment
	6.11 Gas Griefing Through BatchExecutor Failure
	6.12 Possible Allowance Leftover in UniswapSwapActions
	6.13 Unused Code
	6.14 QuarkScript Can Be Marked as Abstract

	7 Informational
	7.1 Gas Optimizations
	7.2 Minimal Proxy Cannot Be EIP-1967 Compatible

	8 Notes
	8.1 Dangerous Combinations of Scripts
	8.2 Deprecated Opcode Callcode
	8.3 Executors Should Not Call Other Wallets Directly
	8.4 Gas Griefing by Script selfdestruct
	8.5 Payable Contracts Gas Overhead
	8.6 Restricted Use of CometXActions
	8.7 Script Containing Callbacks Cannot Be Nested
	8.8 Users Must Be Careful When Signing MultiQuarkOperation
	8.9 Wallets Can Call Arbitrary Scripts
	8.10 Wallets Should Not Execute Initialize Function in Scripts
	8.11 Weak Reentrancy Lock
	8.12 CodeJar Deployment Limitations

