

PUBLIC

Code Assessment

of the Quark

Smart Contracts

June 12, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Findings 13

6 Resolved Findings 15

7 Informational 23

8 Notes 25

Compound - Quark - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Compound Team,

Thank you for trusting us to help Compound with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Quark according to Scope to
support you in forming an opinion on their security risks.

Compound implements Quark Wallets which is a system for account abstraction based on wallet
contracts that can run arbitrary code (scripts), deployed by a special contract CodeJar. Users can then
trigger actions from their wallets by executing scripts directly or signing messages according to EIP-712
format.

The most critical subjects covered in our audit are access control, signature handling, functional
correctness, gas griefing and front-running. Security regarding all the aforementioned subjects is
satisfactory.

The general subjects covered are code complexity, trustworthiness, documentation and gas efficiency.
The codebase is generally well written and includes inline comments that improve the readability of code.
Contracts in scope are not upgradable and do no have privileged roles, hence providing a high level of
trustworthiness.

The system offers flexibility and new features can be plugged in by scripts. We would like to emphasize
that developers should carefully assess new scripts to avoid introducing vulnerabilities that can exploit
user's wallets. Users should also carefully evaluate scripts and their parameters. Interacting with a
malicious script or passing wrong parameters to a verified script could be enough to exploit a wallet.

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Compound - Quark - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 4

• Code Corrected 4

Low -Severity Findings 7

• Code Corrected 4

• Risk Accepted 1

• Acknowledged 2

Compound - Quark - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Quark repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 28 Nov
2023

0b49126788b33e0b014bd08ccf972f3b3b39d8bb Initial Version

2 17 Jan
2024

d67860fa8fc4e94cf54d3ee6931ca52c5d4ea07d Version with fixes

3 05 Feb
2024

e8e4e37327aa2b9e5119327199f53de29479755b Final Version

4 21 May
2024

e1da89dbc792bf1f36a1bddd0a8ceadb2a4b85db Version with new scripts

5 10 Jun
2024

c7a8ff588056d41ec20509f56fe03f351306a49a Fixes for the new scripts

Version 2

For the solidity smart contracts, the compiler version 0.8.19 and evm version paris were chosen. After
 the compiler version was updated to 0.8.23.

The following contracts are in the scope of the review:

CodeJar.sol
QuarkScript.sol
QuarkStateManager.sol
QuarkWallet.sol
QuarkWalletFactory.sol
core_scripts:
 Ethcall.sol
 Multicall.sol
 UniswapFlashLoan.sol
 UniswapFlashSwapExactOut.sol
 lib:
 UniswapFactoryAddress.sol
periphery:
 BatchExecutor.sol
terminal_scripts:
 TerminalScript.sol
 interfaces:
 IComet.sol
 ICometRewards.sol
vendor:
 uniswap_v3_periphery:
 PoolAddress.sol

Compound - Quark - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Version 2After , the codebase has been refactored. The new scope is:

codejar:
 src:
 CodeJar.sol
 CodeJarStub.sol
quark-core:
 src:
 QuarkScript.sol
 QuarkStateManager.sol
 QuarkWallet.sol
 periphery:
 BatchExecutor.sol
quark-core-scripts:
 src:
 Ethcall.sol
 Multicall.sol
 UniswapFlashLoan.sol
 UniswapFlashSwapExactOut.sol
 lib:
 UniswapFactoryAddress.sol
 vendor:
 uniswap_v3_periphery:
 PoolAddress.sol
quark-factory:
 src:
 QuarkFactory.sol
quark-proxy:
 src:
 QuarkMinimalProxy.sol
 QuarkWalletProxyFactory.sol
terminal-scripts:
 src:
 TerminalScript.sol
 interfaces:
 IComet.sol
 ICometRewards.sol

Version 3After , terminal-scripts/ and TerminalScript.sol have been renamed
legend-scripts/ and LegendScript.sol.

Version 4After , some contracts have been added/deleted/moved (A/D/M) to/from/within the scope. The
changes from the previous scope are highlighted below:

codejar:
 src:
 (A) CodeJarFactory.sol
 (D) CodeJarStub.sol
quark-core:
 src:
 (A) QuarkWalletStandalone.sol
 (A) interfaces:
 (A) IHasSignerExecutor.sol
 (A) IQuarkWallet.sol
quark-core-scripts:
 src:

Compound - Quark - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

 (A) Paycall.sol
 (A) Quotecall.sol
 vendor/chainlink:
 (A) AggregatorV3Interface.sol
(D) legend-scripts:
 (D) src:
 (M) LegendScript.sol (moved to test/lib/DefiScripts.sol)
 (D) interfaces:
 (D) IComet.sol
 (D) ICometRewards.sol

2.1.1 Excluded from scope
The following contracts are explicitly not in the scope of the review:

core_scripts:
 ConditionalMulticall.sol
 lib:
 ConditionalChecker.sol

Version 2The out-of-scope contracts after are:

quark-core-scripts:
 src:
 ConditionalMulticall.sol
 lib:
 ConditionalChecker.sol

Additionally, any contracts or scripts that might be deployed in the future but are not explicitly listed
above are out of the scope of this review. Third-party libraries are out of the scope of this review. Finally,
other Compound components like Comet were not in scope of this review and are assumed to always
behave non-maliciously, correctly, and according to their specification. The price feeds for the Paycall
and Quotecall scripts are out of the scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Compound offers account abstraction in the form of a wallet system that can run arbitrary code (scripts),
deployed by a special CodeJar contract. Users can then trigger actions from their wallets by signing
messages with EIP-712.

2.2.1 CodeJar
The CodeJar contract allows the deployment of so-called scripts. A script can be arbitrary bytecode with
the limitation that the constructor and storage variable initialization upon deployment are not supported.
The scripts are deployed with the CREATE2 opcode with salt 0x00.

Compound - Quark - ChainSecurity - © Decentralized Security AG 7

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

2.2.2 QuarkWallet
A wallet has a signer and an executor. The actions the wallet can execute are called operations. The
signer is the owner of the wallet and signs the operations that must be executed with EIP-712. The
executor has a privileged role and can submit operations without a signature to the wallet. The signer can
be an EOA or a smart contract. If the signer is a smart contract, it must implement the EIP-1271. The
state of the wallet should not be assumed to be held in the wallet's storage, it is managed by the
QuarkStateManager. A wallet can trigger selfdestruct through a script which deletes its code and
state from the address and transfers out its Ether balance, however, the wallet can be redeployed with
the same salt from the factory. The flow of operations in the wallet is described below.

2.2.3 Flow of QuarkOperations
An operation consists of a target script address, some calldata, and a nonce. During an operation, the
target script can read and write the currently active storage context in the QuarkStateManager. A
nonce is associated with at most one script address and can be reused if cleared during an operation.
When an operation is submitted to a wallet, it will call
QuarkStateManager.setActiveNonceAndCallback() to check and set the nonce and the script
address. The QuarkStateManager triggers a callback in the wallet
(executeScriptWithNonceLock()), where the target script address is called with a low level
CALLCODE along with the calldata. Quark operations have an expiry and they are considered valid only if
expiry is in the future (block.timestamp < op.expiry).

Scripts can enable callbacks to the Wallet through the fallback function by setting a non-zero address
at the key CALLBACK_KEY. The fallback function will then DELEGATECALL to this address only. Scripts
can allow nonce replay by clearing the active nonce, i.e. only the nonce associated to the current
execution context, by calling QuarkStateManager.clearNonce(). Note that scripts can set arbitrary
nonces.

2.2.4 QuarkStateManager
The QuarkStateManager keeps different mappings related to the execution context of
QuarkOperations:

• nonces: tracks the nonces per wallet. Once a nonce is set, it can only be cleared while active (see
activeNonceScript). Clearing a nonce marks it for reuse.

• nonceScriptAddress: stores the script address associated to a nonce that was cleared to avoid
nonce replay with different script address.

• activeNonceScript: holds the currently active nonce/script address pair for a wallet, outside of
an execution context the pair is (0, address(0)) for every caller. There is always at most one
active pair per wallet. In the case of nested QuarkOperation for a wallet, the pairs form a stack,
the active pair being on top of the stack.

• walletStorage: key-value mapping indexed by wallet address and nonce. Can be used as
storage for the execution context of a nonce, the storage can be accessed (read/write) only for the
msg.sender and currently active nonce.

The main function of this contract is setActiveNonceAndCallback. The function is assumed to be
called from a wallet, it first checks that the nonce to be used is not set and reverts if it's the case. Then
the nonce is set in the nonces mapping for the calling wallet and the script address is checked to be the
same as the address associated with the nonce if it was marked for reuse. The currently active nonce is
pushed back on the stack and the new nonce/script address pair is pushed on the stack by being set as
the activeNonceScript for the calling wallet. Next, the calling wallet is called back with
Wallet.executeScriptWithNonceLock(), when the callback returns, the script address is
recorded in the nonceScriptAddress if the nonce was cleared during the callback. Lastly, the stack of
active nonce script is popped to fully exit the execution context of the nonce/script address pair. Note that

Compound - Quark - ChainSecurity - © Decentralized Security AG 8

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-1271
https://chainsecurity.com

in the special case where scriptA with nonce 42, clears it and reenters the wallet with scriptB and
the same nonce, and scriptB does not clear it, the nonce will not be replayable.

The contract implements a helper function nextNonce which returns the next nonce that can be used for
a wallet. This function implements a for-loop that might run out-of-gas, hence should be called mainly
off-chain.

2.2.5 QuarkWalletFactory
The factory deploys the wallets with the CREATE2 opcode and an arbitrary salt. The deployment of wallet
is permissionless and wallets can be deployed for arbitrary signers and the default salt is 0x00. If the salt
is 0x00, the deployed wallet has no executor (address(0)), but this wallet will be the executor of all the
other wallets deployed for the same signer with a non-zero salt.

2.2.6 Scripts
Scripts are arbitrary contracts that act in the context of a Wallet via callcode. They provide
functionalities that are not native in the Wallet. Scripts can always overwrite their own nonce-scope
storage in the QuarkStatemanager, including their callback key and their reentrancy lock.

2.2.7 Changes in Version 2:

• The codebase has been refactored and split into different submodules.

• The wallets are deployed behind a minimal proxy by the QuarkWalletProxyFactory.

• The system is deployed and linked together by the QuarkFactory.

• The executor of a Wallet can be any arbitrary account, so both executor and signer of a
wallet can potentially be the same account.

• The functions QuarkWallet.executeQuarkOperation and QuarkWallet.executeScript
are no more payable, meaning that ETH must either be sent upfront, or pulled during a script
execution.

• In QuarkWallet.executeScriptWithNonceLock, the msg.value is set to 0 for the calling
context of callcode.

• A new modifier onlyWallet has been added. It acts as a weaker form of reentrancy protection as it
would only allow the Wallet to reenter itself through a script that is assumed to be trusted.

•

Version 1

Version 2

The function QuarkStateManager.setActiveNonceAndCallback() is now caching the
scriptAddress before making the callback to the Wallet. This slightly changes the behavior of
the case where the execution of scriptA with nonce 42 is reentered with scriptB and the same
nonce and both scripts clear the nonce, the code in will set the nonceScriptAddress for
that nonce to scriptB, and the code in will set it to scriptA.

2.2.8 Changes in Version 4:

• The CodeJar has been updated to directly deploy the provided deployment bytecode, and not some
fixed constructor code appended to the runtime bytecode anymore.

• A new way to submit operations was added: execute multi Quark operation. This allows a signer to
sign a batch of operation's hashes that do not necessarily target the same chain of a wallet, instead
of signing each operation individually. The batch can then be submitted to the wallet, along one of
the operation of the batch that will be executed.

• Two new scripts have been added: Paycall and Quotecall. Both allow to pay the tx.origin in
some ERC20 tokens for submitting the transaction. In Paycall, the gas used to make the call is
recorded and tx.origin receives the equivalent gas value in the payment token after the call, up

Compound - Quark - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

to maxPaymentCost. In Quotecall, the gas used to make the call is recorded and tx.origin
receives some token amount (quotedAmount) before the call, if the gas used is not within
maxDeltaPercentage of (actualAmount - quotedAmount) / quotedAmount, the
transaction reverts.

2.2.9 Changes in Version 5:

• In the scripts Paycall and Quotecall, that allow users to pay for gas in ERC20, the
propagateReverts variable has been removed. This implies that if the inner call that a user wants
to execute reverts, the whole transaction will revert. This was done to avoid potential gas griefing at
the expense of the users (see Gas griefing attacks).

• The GAS_OVERHEAD constant, previously set to 67 500, was changed to 135 000 in Paycall and to
100 000 in Quotecall (see Inconsistent GAS_OVERHEAD Value).

2.2.10 Trust Model

• Scripts and scripts' calldata: users should carefully verify the scripts they are interacting with, as well
as the calldata. Typically, if a script implements a proxy, users may want to monitor the
implementation changes. If users sign operations that include untrusted scripts or untrusted calldata,
they might suffer severe consequences, e.g., wallets might be drained, or arbitrary calls can be
triggered from the context of wallets.

• Replayable transactions: some replayable transactions could be replayed by anyone during bad
market condition, griefing the wallet. Users must make sure their replayable transactions implement
checks in the scripts to limit the conditions under which the Quark operation can be reused.

• Users: not trusted. However, users are responsible to sign only messages that they trust.

• Paycall and Quotecall scripts: the price feeds connected to these scripts are expected to be
carefully chosen.

Compound - Quark - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Compound - Quark - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Compound - Quark - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• AcknowledgedContracts Do Not Extend Their Interfaces

• AcknowledgedA Nonce Can Be Used With Different Target Addresses

• Risk AcceptedGas Griefing Through Memory Return Bomb

5.1 Contracts Do Not Extend Their Interfaces
Design Low Version 4 Acknowledged

CS-QUARK-017

Interfaces are likely to be used by integrators and thus should represent the functions and structs of the
contract. To ensure this, the contracts should extend their interfaces. Here is a non-exhaustive list of
contracts that do not extend their interfaces:

• QuarkWallet should extend IQuarkWallet

• QuarkMinimalProxy should extend IHasSignerExecutor

Acknowledged:

Version 5In , QuarkMinimalProxy has been updated to extend IHasSignerExecutor.

On the other side QuarkMinimalProxy stays unchanged. Compound had declared that this behavior is
intended:

We purposely did not extend QuarkWallet with IQuarkWallet because we prefer the QuarkOperation
struct to be defined directly in the QuarkWallet implementation for better readability.

Compound - Quark - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5.2 A Nonce Can Be Used With Different Target
Addresses
Design Low Version 1 Acknowledged

CS-QUARK-004

If during a script operation with nonce X and target address A, the nonce is cleared and the wallet is
reentered with another script operation with nonce X and target B, the nonce X has been used for
addresses A and B. This is possible because the target address is recorded only after the callback to the
QuarkWallet. This breaks the assumption that a nonce can be associated with at most once target
script address.

Acknowledged:

Compound considers this behavior in line with specifications and provides the following reasoning:

We posit that the invariant always holds true post-execution of a script. This means
that after a Quark script has fully executed, there should be no way for a nonce to
be used with a different script address. We explored keeping this invariant true in
all cases (even before the script has finished fully executing) by writing the script
address before executing a script, but this introduces a 15k+ gas overhead and we
decided it was not worth it.

5.3 Gas Griefing Through Memory Return Bomb
Design Low Version 1 Risk Accepted

CS-QUARK-006

The functions using the pattern (bool success, bytes memory data) = callX can be the
source of gas griefing if the target contract returns a memory pointer that triggers unnecessary memory
extension (return bomb).

Risk accepted:

Compound acknowledged the issue and decided to keep the code unchanged giving the following
reasoning:

Since the Quark wallet already gives the callee all the gas, the callee can gas
grief through other means. We don’t believe this to be an issue that Quark should
address because users are ultimately responsible for the transactions they sign.

Compound - Quark - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedGas Griefing Attacks

Medium -Severity Findings 4

• Code CorrectedInconsistent GAS_OVERHEAD Value

• Code CorrectedPossible Reentrancy in ERC20 Transfer

• Code CorrectedScript Addresses Without Code Are Undetected

• Code CorrectedScripts Deployment Can Be Blocked

Low -Severity Findings 4

• Code CorrectedConsistency of Empty Code Existence

• Code CorrectedGas Griefing Through Script Implementation Destruction

• Code CorrectedLimited Events Emitted by Contracts

• Code CorrectedSuperfluous Allowance Given in supplyFrom

Informational Findings 5

• Code CorrectedGas Griefing Through BatchExecutor Failure

• Code CorrectedUnused Code

• Code CorrectedUnchecked Loop Increment

• Code CorrectedPossible Allowance Leftover in UniswapSwapActions

• Code CorrectedQuarkScript Can Be Marked as Abstract

6.1 Gas Griefing Attacks
Design High Version 4 Code Corrected

CS-QUARK-013

The new scripts Paycall and Quotecall open the way for griefing attacks, assuming GAS_OVERHEAD
covers the gas cost of the transaction outside of initialGas - gasleft(). Ignoring any arbitrage
opportunity offered by the Quark operation, this assumption holds as no one would execute a
pay/quotecall otherwise, as they would be losing money in the transaction. The signer signs the operation
and makes it public, the submitter picks the signature and submits it to the QuarkWallet.

There are two distinct scenarios where a griefing attack can happen:

• Case propagateReverts is true: The signer can include some calldata that burns a lot of gas and
make the call revert, forcing the submitter to pay a lot of gas for a reverting transaction, without the
submitter (tx.origin) receiving payment for the gas. Even if the submitter simulates the

Compound - Quark - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

transaction before submitting it, an observer can frontrun it and update some on-chain state that will
make the transaction fail.

• Case propagateReverts is false: The submitter can submit the transaction when they are
guaranteed that it will fail, making the signer pay for a failing transaction on purpose, provided the
wallet has enough of the payment token. In the case of Paycall, the value extracted from the
signer for one failed operation over one transaction is EV = min(maxPaymentCost, (GAS_OVER
HEAD + (PaycallOperationGasCost)) * gasPriceInToken). The submitter pays gasTX
to send the operation on-chain. In the normal use case where the operation succeeds, we expect
EV - gasTX > 0 to be a fee taken by the submitter for the service. In the adversarial case where
the submitter knows for sure that the operation will fail, this amount becomes theft, as the signer
may need to sign the same operation and pay for gas again to reach their goal. It is possible for the
submitter to increase their margin by batching multiple operations in one transaction.

Code corrected:

Version 5In , the propagateReverts variable was removed and consequently reverts are always
propagated; if the inner call reverts, the whole transaction will revert. This effectively prevents the second
attack described, where griefing could be done at the expense of the user.

Therefore, the scenarios above change as follow:

• Case propagateReverts is true: Compound acknowledged the potential risks and explained their
reasoning as follows:

Submitters are responsible for simulating operations before submission to make sure they are paid appropriately.
In the case that a griefer constructs a call that reverts non-deterministically, submitters could either submit
the transaction through Flashbots to guarantee no reverts or choose to only submit calls to known/whitelisted contracts.

• Case propagateReverts is false: the issue is not present anymore.

6.2 Inconsistent GAS_OVERHEAD Value
Correctness Medium Version 4 Code Corrected

CS-QUARK-014

Both Paycall and Quotecall have a GAS_OVERHEAD = 67_500. In Paycall, this value includes
the gas for the transfer of the payment token, but in Quotecall the gas for token transfer is also
included in gasInitial - gasleft(). In summary, GAS_OVERHEAD has the same value but does not
cover gas for the same steps, one of them should be lower/higher.

Code corrected:

Version 5Compound has corrected the code in : GAS_OVERHEAD was set to 135k for Paycall and to
100k for Quotecall. The amounts were derived by summing the initial gas required by the transaction
(21k + calldata gas) with an estimation of the gas used by the Quark Operation wrapping the inner call
(70k). For Paycall, 35k of gas was added to account for the ERC20 transfer.

6.3 Possible Reentrancy in ERC20 Transfer
Security Medium Version 1 Code Corrected

CS-QUARK-001

Compound - Quark - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The function transferERC20Token in TerminalScript opens a reentrancy possibility (similar to
transferNativeToken()) for tokens that implement transfer hooks such as ERC-777 tokens. The
function does not use the nonReentrant lock, hence making the script vulnerable to reentrancy for
specific tokens.

Code corrected:

Both functions transferERC20Token() and transferNativeToken() are now protected with the
modifier onlyWallet. This modifier behaves differently from nonReentrant and is implemented as
below:

modifier onlyWallet() {
 if (msg.sender != address(this)) {
 revert ReentrantCall();
 }
 _;
}

As stated in the natspec comment of the modifier, reentrancies initiated from the wallet itself are still
possible:

@notice A cheaper, but weaker reentrancy guard that does not prevent recursive
 reentrancy (e.g. script calling itself)

6.4 Script Addresses Without Code Are
Undetected
Design Medium Version 1 Code Corrected

CS-QUARK-002

The functions QuarkWallet.executeScript and QuarkWallet.executeQuarkOperation
assume some code resides at the scriptAddress and do not check the code length at this address.
The transaction will not revert because performing callcode() on an empty account will always
succeed.

For example, a transaction using an already deployed script can be front-run by calling selfdestruct
on the target script implementation if it allows it. The transaction executing the quark operation will
succeed but will have no effect other than consuming the nonce.

Code corrected:

The function QuarkWallet.executeScriptWithNonceLock has been revised to revert if the target
scriptAddress has empty code:

if (scriptAddress.code.length == 0) {
 revert EmptyCode();
}

This function is triggered from both executeScript() and executeQuarkOperation(), hence
transactions now revert instead of silently succeeding when the target scriptAddress is empty.

Compound - Quark - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.5 Scripts Deployment Can Be Blocked
Design Medium Version 1 Code Corrected

CS-QUARK-003

The function CodeJar.saveCode assumes that if the target address does not contain code, its
codehash will be equal to 0:

if (codeAddressHash == 0) {
 // The code has not been deployed here (or it was deployed and destructed).
 ...
} else if (codeAddressHash == keccak256(code)) {
 // Code is already deployed and matches expected code
 ...
} else {
 // Code is already deployed but does not match expected code.
 // Note: this should never happen except if the initCode script
 // has an unknown bug.
 revert CodeHashMismatch(codeAddress, keccak256(code), codeAddressHash);
}

However, the assumption that if there is no code in the address where a script will be deployed has a
codehash of 0 is wrong. If Ether is sent to the target address, its codehash will change to
keccak256("") which is the same as codehash of EOAs. This behavior can be abused by
front-running the deployment of script by sending at least 1 wei to the target address, forcing
saveCode() into the reverting branch and making the script impossible to deploy from the CodeJar.

Furthermore, the attacker can also destroy existing scripts by triggering a call to selfdestruct. This is
possible for scripts that perform delegatecalls into user-provided addresses, like Multicall. Once
the script is destroyed, the attacker can send 1 wei of Ether to the address such that its codehash
becomes non-zero, hence saveCode will always revert in the future if someone wants to deploy the
same script.

Code corrected:

The function CodeJar.saveCode has been revised to always deploy the new code if the existing
codehash of the target address does not match the hash of the code:

if (codeAddressHash == keccak256(code)) {
 // Code is already deployed and matches expected code
 return codeAddress;
 } else {
 // The code has not been deployed here (or it was deployed and destructed).
 }

6.6 Consistency of Empty Code Existence
Correctness Low Version 1 Code Corrected

CS-QUARK-005

The function CodeJar.codeExists returns false when the target address' code does not match the
deployed bytecode. However, it is inconsistent in the particular case of empty bytecode. By default,
codeExists() will return false when code="", as the codehash of the derived address will be 0. If

Compound - Quark - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

some ETH was to be sent to the derived address, its codehash will be equal to keccak256("") and
codeExists() will return true even though the empty bytecode has not been "deployed".

Code corrected:

The function codeExists() now returns true only if the code length at the target address has a
non-zero length:

return codeAddress.code.length != 0 && codeAddress.codehash == keccak256(code);

Note that calling the function with empty code codeExists(code="") returns always false.

6.7 Gas Griefing Through Script Implementation
Destruction
Design Low Version 1 Code Corrected

CS-QUARK-007

Anyone can selfdestruct scripts implementing delegatecall and codecall. This allows a gas
griefing vector by front-running a Quark operation using such scripts and destroying the implementation,
forcing users to pay more gas because the scripts bytecode should be passed as calldata and then
redeployed.

Code corrected:

The script Multicall has been revised to prevent executing operations, including selfdestruct, on the
context of the script itself:

assembly ("memory-safe") {
 thisAddress := sload(slot)
}

if (address(this) == thisAddress) {
 revert InvalidCallContext();
}

The variable thisAddress stores the address of the script in storage slot CONTRACT_ADDRESS_SLOT
which should be set after deployment by calling function initialize().

6.8 Limited Events Emitted by Contracts
Design Low Version 1 Code Corrected

CS-QUARK-008

The codebase emits only the event WalletDeploy when a new wallet is created. All other state updates
do not emit any event. For instance, no event is emitted by QuarkWallet when a quark operation is
executed.

It is recommended to emit events for important state updates and index the relevant parameters to allow
integrators and dApps to quickly search for these and simplify UIs.

Compound - Quark - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

The QuarkWallet contract now emits the events ExecuteQuarkScript when a quark operation
executes successfully, and ClearNonce to indicate when a nonce has been cleared. We assume
Compound has carefully assessed the codebase for missing events and then has decided to add only
those two events.

6.9 Superfluous Allowance Given in supplyFrom
Design Low Version 1 Code Corrected

CS-QUARK-009

The function supplyFrom in contract CometSupplyActions provides an allowance to comet from a
wallet:

function supplyFrom(address comet, address from, address to, address asset,
 uint256 amount) external {
 IERC20(asset).forceApprove(comet, amount);
 IComet(comet).supplyFrom(from, to, asset, amount);
}

The allowance provided by forceApprove() is superfluous and not needed for the functionality.

Code corrected:

Version 3The unnecessary approval has been removed in .

6.10 Unchecked Loop Increment
Informational Version 2 Code Corrected

CS-QUARK-019

Since version 0.8.22, Solidity implements the unchecked loop increment (see Solidity changelog
<https://github.com/ethereum/solidity/blob/develop/Changelog.md#0822-2023-10-25>_) for the for
loops of general form:

for (uint i = X; i < Y; ++i) {
 // variable i is not modified in the loop body
}

Therefore, some of the index increments that were done in an unchecked block can be brought back in
the for(;;) construct to be optimized by Solidity.

Code corrected:

The index increment has been brought back in the for(;;) construct for loops of the general form.

Compound - Quark - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.11 Gas Griefing Through BatchExecutor
Failure
Informational Version 1 Code Corrected

CS-QUARK-010

If the BatchExecutor is used as a centralized service to execute operations on arbitrary wallets the
caller do not control, the transaction can be front-run to make the batch fail by making one of the
operations fail, forcing the caller to pay the gas for a failed transaction.

Code corrected:

The contract BatchExecutor has been refactored and now ignores the success status of the calls from
the batch, mitigating this issue.

6.12 Possible Allowance Leftover in
UniswapSwapActions
Informational Version 1 Code Corrected

CS-QUARK-012

The function swapAssetExactOut gives an allowance of amountInMaximum to uniswapRouter
from a wallet, however as amountInMaximum might be larger than the actual spent amount, there could
be remaining approvals that are not fully spent.

Code corrected:

The function swapAssetExactOut has been updated to revoke the leftover allowed amount, if any.

6.13 Unused Code
Informational Version 1 Code Corrected

CS-QUARK-015

1. The imported file QuarkWallet.sol in Ethcall.sol is not used.

2. The error CodeJar.CodeInvalid is never used.

Code corrected:

1. The unused import has been removed.

2. The unused error has been removed.

6.14 QuarkScript Can Be Marked as Abstract
Informational Version 1 Code Corrected

CS-QUARK-016

Compound - Quark - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

The contract QuarkScript is not supposed to be deployed on its own, but rather inherited by other
contracts. Therefore, this contract can be marked as abstract to avoid any accidental deployment.

Code corrected:

The contract QuarkScript has been made abstract.

Compound - Quark - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-QUARK-011

The codebase could be more efficient in terms of gas usage. Reducing the gas costs may improve user
experience. Below is an incomplete list of potential gas inefficiencies:

1. Contract QuarkScript implements the function allowCallback() which writes the script
address in storage, however no functionality to clear the storage is implemented.

2. The function getActiveScript performs redundant SLOAD operations when reading
scriptAddress.

3. The function setActiveNonceAndCallback performs redundant SLOAD operations when
reading the scriptAddress from mapping nonceScriptAddress.

4. Functions executeQuarkOperation() and DOMAIN_SEPARATOR() could be more gas efficient
by caching domainSeparator instead of computing during each call. In that case,
domainSeparator needs to be recomputed if chainid changes (e.g., due to a future fork).

5. Function UniswapFlashLoan.run computes redundantly the pool key via
PoolAddress.getPoolKey().

6. The function setActiveNonceAndCallback receives ETH and sends it back from/to the calling
wallet, this transfer could be avoided by using an additional parameter in the function
setActiveNonceAndCallback holding the msg.value.

7. In QuarkWalletFactory.create(), the assignment executor = address(0) is
unnecessary as executor is zero-initialized.

8. In order to revert early, the functions CometSupplyActions.supplyMultipleAssets,
CometWithdrawActions.withdrawMultipleAssets,
CometSupplyMultipleAssetsAndBorrow.run, and
CometRepayAndWithdrawMultipleAssets.run could check that the length of the arrays
received as parameters match.

9. The wallets could be deployed behind a minimal proxy to reduce the cost of deployment.

10. During the Uniswap V3 swap callback uniswapV3SwapCallback, amount0Delta and
amount0Delta cannot be positive at the same time.

11. The condition in QuarkWallet.executeQuarkOperation accepts inputs where the target
address is zero and the code is empty, this will lead to the unnecessary deployment of an empty
script and a no-op during the execution of the script.

Code partially corrected:

The optimizations listed above, except 1 and 4, have been implemented in the updated codebase.

1. The function clearCallback has been implemented but remains unused in
UniswapFlashLoan.run.

2. The scriptAddress is now cached.

Compound - Quark - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

3. The scriptAddress is now cached before the callback to the wallet.

4. The optimization has not been implemented.

5. The pool key is now computed once and then reused.

6. The ETH transfers between the QuarkWallets and the QuarkStateManager have been
removed.

7. The executor is now passed as function argument.

8. The code has been updated to check the length of the input arrays in the mentioned functions.

9. The minimal proxy pattern has been implemented.

10. The conditional branching has been updated from if - if to if - else if in order to consider
only one of the amounts.

11. The function QuarkWallet.executeQuarkOperation has been updated to revert if the target
address is 0 and the source is empty.

7.2 Minimal Proxy Cannot Be EIP-1967
Compatible
Informational Version 2 Acknowledged

CS-QUARK-018

By design, the QuarkMinimalProxy cannot adhere to the EIP-1967 standard, that requires the
implementation address to be stored in a precise storage slot. This is due to the fact that it must be
stateless to avoid any change of implementation address by the scripts.

Note that block explorer relying on EIP-1967 will not be able to find the implementation address.

Acknowledged:

Compound responded:

The implementation address is set as an immutable because it 1) is not intended to
ever change and 2) lowers the gas overhead of calls that go through the proxy.

Compound - Quark - ChainSecurity - © Decentralized Security AG 24

https://eips.ethereum.org/EIPS/eip-1967
https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Dangerous Combinations of Scripts
Note Version 1

While taken separately, scripts can pose no security threat, but it may be the case that certain
combinations of scripts, e.g. use of multicall, can open attack vectors. Users must be careful when
using multiple scripts during one operation not to expose their wallets to new attack vectors. Developers
and users should be very careful when dealing with scripts which transfer execution to untrusted
addresses, e.g., native token transfer or ERC20 tokens that implement transfer hooks, validating
EIP-1271 signatures, etc. Such scripts pose significant security threats and should be carefully assessed
before use.

The security risks are present whenever a script passes execution to untrusted addresses. An attacker
can potentially reenter the wallet and pass arbitrary parameters to the current active script that could
exploit the wallet. Reentrancy guards do not always protect against such attacks.

Users should also check carefully scriptCalldata that are passed into a script even if the latter is
known to be non-malicious. For example, passing wrong scriptCalldata to the script Multicall
can have severe consequences given that it performs delegatecalls into arbitrary addresses.

8.2 Deprecated Opcode Callcode
Note Version 1

The design of QuarkWallet relies on the opcode callcode which has been deprecated since Solidity
v0.5.0 in favour of delegatecall. See EIP-2488 and EIP-7. Hence, callcode opcode is available
only through assembly code.

8.3 Executors Should Not Call Other Wallets
Directly
Note Version 1

Default wallets (created with salt 0x0) have the executor role for other wallets created for the same
signer, hence default wallets can call executeScript() in other wallets. We would like to note that
such calls should be done through a script like Ethcall which implement a normal call. Calling
executeScript() directly from the default wallet (via callcode) or a script like Multicall (via
delegatecall) is wrong as it would execute in the context of the default wallet.

8.4 Gas Griefing by Script selfdestruct
Note Version 1

Anyone can selfdestruct scripts implementing delegatecall and codecall. This allows a gas
griefing vector by front-running a Quark operation using such scripts and destroying the implementation,

Compound - Quark - ChainSecurity - © Decentralized Security AG 25

https://web.archive.org/web/20230331031740/https://docs.soliditylang.org/en/latest/050-breaking-changes.html
https://web.archive.org/web/20230331031740/https://docs.soliditylang.org/en/latest/050-breaking-changes.html
https://eips.ethereum.org/EIPS/eip-2488
https://eips.ethereum.org/EIPS/eip-7
https://chainsecurity.com

forcing users to pay more gas because the scripts bytecode should be passed as calldata and then
redeployed.

The issue has been mitigated for the Multicall script that was in scope, but developers must still be
aware of this pitfall when writing new scripts for Quark.

8.5 Payable Contracts Gas Overhead
Note Version 5

The two payable contracts Paycall and Quotecall define a GAS_OVERHEAD value that will be
charged for every call to the contracts. It is supposed to cover for the transaction cost outside of the
initialGas - gasleft() scope. The breakdown for both contracts is as follows:

• Paycall: 135_000 gas total

• 21_000 gas for the default transaction cost

• 9_000 gas for the calldata cost. This covers between 9_000 / 16 = 562bytes to
9_000 / 4 = 2250bytes long calldata.

• 70_000 gas for the execution cost outside of the run() function

• 35_000 gas to cover for the transfer of the payToken

• Quotecall: 100_000 gas total

• 21_000 gas for the default transaction cost

• 9_000 gas for the calldata cost. This covers between 9_000 / 16 = 562bytes to
9_000 / 4 = 2250bytes long calldata.

• 70_000 gas for the execution cost outside of the run() function

Users must be aware of the following:

1. The Quark Operations can be batched to decrease the default cost per transaction (21_000 / N)
and increase the margin of the submitter.

2. The 70_000 gas should slightly overpay (5_000-8_000 gas from Compound simulations) for a
direct call to a Wallet compiled with --via-ir, without scriptSources (where no script is
deployed).

3. In Paycall, the 35_000 gas overpays (~15_000) in the most likely scenario of an ERC20
transfer where the sender's and the recipient's balances are non-zero initially, and slightly
underpays otherwise.

8.6 Restricted Use of CometXActions
Note Version 1

The contracts CometSupplyActions and CometWithdrawActions of TerminalScript.sol must
be used only as the targets of a codecall() or delegatecall(), and never as standalone contracts.
Especially the functions CometSupplyActions.supplyFrom,
CometWithdrawActions.withdrawFrom, since it would imply setting the contract as an operator
for from. This would allow anyone to steal the funds of from addresses having the contract as
operator.

Compound - Quark - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

8.7 Script Containing Callbacks Cannot Be
Nested
Note Version 1

Scripts that rely on callbacks to the QuarkWallet do not work properly if not called directly from the
QuarkWallet, but from another script.

This happens for the scripts UniswapFlashLoan and UniswapFlashSwapExactOut. In particular,
Uniswap will callback into the QuarkWallet and trigger its fallback, which will then delegate call into the
currently active script. In cases where the Uniswap script was called from another script (e.g.
Multicall), the active script will not be the Uniswap script, but the caller script. Therefore, the
QuarkWallet fallback will attempt to call the Uniswap callback inside of a script that does not posses
such function, causing the entire operation to revert.

Example: Submitter -> Wallet -> Multicall script -> UniSwapFlashLoan script.
Uniswap will callback into Wallet, which will delegatecall into Multicall script.

It is responsibility of the users to craft operations in such a way that the script callbacks are executed
correctly.

8.8 Users Must Be Careful When Signing
MultiQuarkOperation
Note Version 4

Even with EIP-712, when signing a MultiQuarkOperation, users do not know exactly what they are
signing as they have to sign an array of hashes. But they would need to either compute the operations'
hashes themselves or use some special plugin (does not exist yet) on their wallet to be able to
reconstruct the hash from the operations and check that they are legit.

Signing over a malicious hash could be fatal as the operation could drain the wallet. Users must always
know what they sign.

8.9 Wallets Can Call Arbitrary Scripts
Note Version 1

The contract CodeJar manages the deployment of new scripts via create2. However, the system does
not restrict users from interacting with arbitrary contracts (scripts) that are deployed outside of CodeJar.

8.10 Wallets Should Not Execute Initialize
Function in Scripts
Note Version 2

Scripts implementing a delegate to arbitrary addresses implement a mechanism to mitigate griefing
attacks that destruct scripts, see Gas griefing through script implementation destruction. For instance, the
defending mechanism in the contract Multicall relies on a function initialize which is assumed to
be executed in the context of Multicall, i.e., initialize() should not be triggered via
delegatecall or callcode. Therefore, users should be careful to not call

Compound - Quark - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Multicall.initialize() in the context of wallets, otherwise the script becomes unusable by the
wallet until the storage slot is cleared by another dedicated script.

8.11 Weak Reentrancy Lock
Note Version 1

Developers and users of quark scripts should carefully evaluate all calls that transfer execution to 3rd
party accounts that are untrusted. The reentrancy guard in quark scripts has the following limitations:

1. The modifier nonReentrant only protects the functions protected by the nonReentrant modifier
during the execution context of the associated nonce. For instance, in the context of nested quark
operations, if only the first operation with nonce X sets the lock, only the scripts with active nonce X
can be protected against reentrancy.

2. The storage location of the reentrancy lock can be overwritten by any script, bypassing the
protection. E.g., in the context of a multicall, if the first script sets the lock, another script can
remove the lock, allowing reentrancy in the first script.

8.12 CodeJar Deployment Limitations
Note Version 1

Users should be aware that the initialization code added to the code in CodeJar does not support scripts
with constructor bytecode, i.e., a non-empty constructor, immutable variables, or other storage variables
set during deployment. If a script happens to have constructor bytecode, this bytecode would be
executed on a call instead of the intended runtime bytecode, which would break the functionality of the
script. We highlight that CodeJar does not enforce any restriction on the bytecode that gets deployed,
hence attackers can deploy through CodeJar scripts that behave maliciously. Users should always
carefully verify the scripts they interact with and the parameters in scriptCalldata.

Version 4In , the CodeJar takes the full deployment bytecode as parameter instead of the runtime
bytecode. This allows the deployment of contracts with a non empty constructor, lifting all the previously
mentioned limitations.

Compound - Quark - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 CodeJar
	2.2.2 QuarkWallet
	2.2.3 Flow of QuarkOperations
	2.2.4 QuarkStateManager
	2.2.5 QuarkWalletFactory
	2.2.6 Scripts
	2.2.7 Changes in Version 2:
	2.2.8 Changes in Version 4:
	2.2.9 Changes in Version 5:
	2.2.10 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Contracts Do Not Extend Their Interfaces
	5.2 A Nonce Can Be Used With Different Target Addresses
	5.3 Gas Griefing Through Memory Return Bomb

	6 Resolved Findings
	6.1 Gas Griefing Attacks
	6.2 Inconsistent GAS_OVERHEAD Value
	6.3 Possible Reentrancy in ERC20 Transfer
	6.4 Script Addresses Without Code Are Undetected
	6.5 Scripts Deployment Can Be Blocked
	6.6 Consistency of Empty Code Existence
	6.7 Gas Griefing Through Script Implementation Destruction
	6.8 Limited Events Emitted by Contracts
	6.9 Superfluous Allowance Given in supplyFrom
	6.10 Unchecked Loop Increment
	6.11 Gas Griefing Through BatchExecutor Failure
	6.12 Possible Allowance Leftover in UniswapSwapActions
	6.13 Unused Code
	6.14 QuarkScript Can Be Marked as Abstract

	7 Informational
	7.1 Gas Optimizations
	7.2 Minimal Proxy Cannot Be EIP-1967 Compatible

	8 Notes
	8.1 Dangerous Combinations of Scripts
	8.2 Deprecated Opcode Callcode
	8.3 Executors Should Not Call Other Wallets Directly
	8.4 Gas Griefing by Script selfdestruct
	8.5 Payable Contracts Gas Overhead
	8.6 Restricted Use of CometXActions
	8.7 Script Containing Callbacks Cannot Be Nested
	8.8 Users Must Be Careful When Signing MultiQuarkOperation
	8.9 Wallets Can Call Arbitrary Scripts
	8.10 Wallets Should Not Execute Initialize Function in Scripts
	8.11 Weak Reentrancy Lock
	8.12 CodeJar Deployment Limitations

