

PUBLIC

Code Assessment

of the ClayStack Matic

Smart Contracts

November 29, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Notes 19

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear ClayStack team,

Thank you for trusting us to help ClayStack with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of ClayStack Matic according to
Scope to support you in forming an opinion on their security risks.

ClayStack implements a staking pool implementation that simplifies the staking MATIC tokens on
numerous Polygon validators. A user that joins the pool, locks MATIC tokens and gets csMATIC tokens
that accumulate the rewards over time. The csMATIC tokens can be then burned, to get the locked
MATIC tokens back.

The most critical subjects covered in our audit are the security of the pool and token contracts, the
functional correctness and the safety of the deposited funds. Security regarding all the aforementioned
subjects is high.

In the final iteration after the intermediate reports no issues remain open. Overall we find that the
codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 16

• Code Corrected 15

• Specification Changed 1

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the following source code files inside the ClayStack Matic repository
based on the documentation files.

• ClayMatic.sol

• IClayMain.sol

• CsToken.sol

• RoleManager.sol

• ClayTunnel.sol

• FxBaseChildTunnel.sol

• IClayTunnel.sol

• IFxRoot.sol

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1 31 Jan 2022 74fe4e52b696c53fd5e0fbbf858fc2f06086f232 Initial Version

2 11 Mar
2022

ebd2d78e38af34c9eb4cca4bfb9745126563a850 Version with fixes

3 12 May
2022

2056ba370e86d13ce718fb68d8cf75db0d07a8bf Update with Polygon child

4 15 Aug
2022

79a7688b508518b963511fad32df3b5ce7f896d1 Updated version with fixes

For the solidity smart contracts, the compiler version 0.8.11 was chosen.

2.1.1 Excluded from scope
All source files inside the ClayStack Matic repository, that are not mentioned in Scope, are not part of this
assessment. The imported libraries and contracts are excluded from the scope as well.

2.1.2 Deployment
Version 2The deployment was verified based on a modified version of the code utilizing OpenZeppelin

4.5.0, while the audit was based on OpenZeppelin 4.4.2.

We validated deployment at the following addresses on Ethereum Mainnet for block 14396490:

Contract Ethereum Mainnet address

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

ClayMatic: Proxy 0x91730940DCE63a7C0501cEDfc31D9C28bcF5F905

ClayMatic:
Implementation

0xD634626DE5C6237CE3eaa6805B102Bb8CE9a0e9E

csToken 0x38b7bf4eecf3eb530b1529c9401fc37d2a71a912

Deployment verification ensures that the code we audited has been deployed at the specified addresses.
In cases where upgradeable contracts are used, we also validate that the proxy uses the correct
implementation contract at the specified block.

We do not validate any state parameters set during deployment or afterwards and users should take
caution to ensure that the contract is configured correctly and that any proxies utilize verified and trusted
implementation contracts.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

2.2.1 Staking Pool
ClayStack offers a central pool for clients to stake their MATIC tokens across many different validators.
Users can deposit tokens into the pool and later withdraw them. The system itself then stakes the
deposited tokens in the validators. It can be configured to distribute the tokens in varying proportions
between the different validators. Some tokens are left in the contract so they can be instantly withdrawn.
Users can also withdraw normally, in which case an order is placed at one or more validators and are
subject to their unbonding period. Once this period is over, the user can claim their tokens to receive
them.

2.2.2 Rewards
The rewards are not calculated at every operation, instead the autobalance function should be called
at regular intervals. ClayStack states they will do so regularly, but users could also do so themselves.
There are different fees for deposits, withdrawals, instant withdrawals, and a portion of the staking
rewards are kept for the system as well.

2.2.3 Administration
The system is administrated by a timelock contract which can make changes such as adding validator
nodes, changing the distribution of staked tokens across the validators, setting the proportion of tokens
which should be kept liquid for instant withdrawals, setting the various fees, and setting the vault which
collects the fees.

The contract is also upgradeable through a timelock.

Smaller, less impactful changes can be made by users with the CS_SERVICE_ROLE permissions. They
can migrate staked funds between validators, deactivate nodes without any staked funds, set a deposit
limit, set a change limit for the exchange rate, set a maximum percentage which can be withdrawn from a
single node, set a maximum number of nodes which can be withdrawn from, enable or disable slashing
protection, set the over-staking threshold, and pause or unpause the contract. Note that in its current
state, pausing the contract prevents any funds from being withdrawn.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.4 Staking and Unstaking
The staking happens in a round-robin style, based on a points system to decide which node gets what
proportion of the staked funds. Each node is assigned a points value, and it should receive funds
proportional to its points value relative to the total number of points. In the round robin system, each node
in turn receives an amount of funds which brings them to the correct proportion. This means if a node
already has too many tokens, it will not receive any, or if it has too few, it could receive all of them. If
there would only be a small amount (defined by the over-staking threshold) of tokens left over for the next
node, it will be added to the current one instead. Thus, in the long term the system should converge to a
distribution of staked tokens proportional to the points of each node. The next staking round robin will
start with the last node that received tokens.

The unstaking occurs in a similar fashion, but in reverse order. The round-robin goes through each node
in turn and unstakes tokens up to a limit, defined by maxWithdrawNodePercentage. However, one
can't withdraw from more than maxNodesToWithdraw different nodes. The unstaked tokens can't be
withdrawn until the unbonding period of the validators is up. The order IDs of the unbonding orders are
given to the user, which they can use to claim the tokens once they can be withdrawn.

Version 32.2.5 Polygon Bridge
Some state variables, namely the total supply of the csToken and the total deposited funds
funds.currentDeposit are bridged to a child contract on the Polygon mainnet. This offers a
decentralized, trustless way of querying the exchange rate on Polygon.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedNo Message Relayed on claim

Low -Severity Findings 16

• Code CorrectedDecoding Inefficiencies

• Code CorrectedRedundant Function

• Code CorrectedRedundant Storage Variables

• Code CorrectedVariables Could Be Immutable

• Specification ChangedIncorrect Permissions

• Code CorrectedInefficient Modifier

• Code CorrectedLogic Contract

• Code CorrectedMissing Check

• Code CorrectedMissing whenNotPaused in Migrate Delegation

• Code CorrectedNo Limit On Withdrawal and Deposit Fee Amounts

• Code CorrectedPossible Underflow

• Code CorrectedReuse balanceOf Result When Possible

• Code CorrectedStaking Issues

• Code CorrectedStorage Operations in Loops

• Code CorrectedValidator Contract Check Not Strict Enough

• Code CorrectedWrong Variable Logged

6.1 No Message Relayed on claim
Correctness Medium Version 3 Code Corrected

Anytime csToken.totalSupply() or funds.currentDeposit are changed, the updated values
should be transmitted to the child contract. However, the claim function does not call
sendMessageToChild. The claim function has the enforceAndUpdateBalance modifier, which in
turn calls _updateBalance. This function may modify funds.currentDeposit, and hence a
message should be relayed to the child contract.

Note that the claim function is the only function with the enforceAndUpdateBalance modifier which
does not call sendMessageToChild. Since the modifier itself can modify funds.currentDeposit, it
may make sense to include the call to sendMessageToChild in the modifier itself.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected:

A message is now relayed at the end of the claim function.

6.2 Decoding Inefficiencies
Design Low Version 3 Code Corrected

The ClayTunnel contract puts any message it receives directly in storage. When the stored amounts are
retrieved, they have to be decoded each time. This duplicates effort, as well as incurring additional
storage operations due to the use of the generic bytes type. A stored bytes array that contains 64
bytes uses up 3 storage slots, one for the length and then two more for the contained values. Instead, it
would be more efficient to decode the message when receiving it, then putting the decoded values in
storage.

Additionally, in _processMessageFromRoot, it is possible to change the type of the data parameter
from bytes memory to bytes calldata, as the function is only ever called from
processMessageFromRoot, where the argument passed is also a bytes calldata. This saves the
effort of copying the bytes from calldata to memory.

Code corrected:

The relayed variables are now decoded when the bridged message is received, and the decoded
variables then persisted in storage. The data parameter was changed from bytes memory to
bytes calldata.

6.3 Redundant Function
Design Low Version 3 Code Corrected

The sendMessageToRoot function is redundant, as the root ClayMain contract cannot receive
messages.

The _sendMessageToRoot function in the FxBaseChildTunnel abstract contract is similarly redundant.

The MessageSent event in FxBaseChildTunnel is only used in the above functions, hence it could be
removed.

Code corrected:

The redundant functions and event were removed.

6.4 Redundant Storage Variables
Design Low Version 3 Code Corrected

The latestStateId and latestRootMessageSender storage variables in the ClayTunnel contract
are not necessary for operation. Additionally, the latestRootMessageSender variable will only ever
be set to the address of the ClayMain contract. Removing these redundant variables would reduce the
execution cost of _processMessageFromRoot significantly.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code corrected:

The latestRootMessageSender variable was removed. latestStateId is now used to enforce
strictly increasing state IDs of relayed messages, meaning a reordering of messages due to validators
cannot result in the child contract being set to an older state.

6.5 Variables Could Be Immutable
Design Low Version 3 Code Corrected

The storage variable fxChild in FxBaseChildTunnel could be immutable, as it is only ever set in the
constructor. This would reduce the number of storage operations made when processing bridged
messages.

Similarly, the storage variable fxRootTunnel can only be set once, in the setFxRootTunnel function.
As this variable should be known at deployment, and it must be set in order to make the contract
operational, it could also be made immutable and set in the constructor.

Code corrected:

The fxChild and fxRootTunnel variables were made immutable and are both set in the constructor.

6.6 Incorrect Permissions
Correctness Low Version 1 Specification Changed

The setDefaultLiquidity function has a doc comment which states it should only be callable with
the TIMELOCK_ROLE. However, the implementation checks if the caller has the CS_SERVICE_ROLE.

/**
 * ...
 * @notice Only `TIMELOCK_ROLE` callable.
 * ...
 */
function setDefaultLiquidity(uint256 value) external onlyRole(CS_SERVICE_ROLE) {
 require(value < PERCENTAGE_BASE, "CMO06");
 defaultLiquidity = value;
}

Specification Changed:

The doc comment was changed to specify the function to be only callable with the CS_SERVICE_ROLE.

6.7 Inefficient Modifier
Design Low Version 1 Code Corrected

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The CsToken contract makes use of the onlyClayMain modifier, which needs to know what the
address of the ClayMatic contract is. Instead of implementing a storage value that can only be set once,
an immutable variable could be used. This would also be far more gas-efficient, since immutable
variables do not incur storage reads.

Code corrected:

The storage variable was made immutable and the onlyOnce modifier removed.

6.8 Logic Contract
Security Low Version 1 Code Corrected

The ClayMatic and RoleManager contracts have problems with their UUPS logic contracts:

1. The initialize function is unprotected on the logic contracts.

2. The upgradeTo function overrides the UUPSUpgradeable function, but does not use the
onlyProxy modifier.

Since there are no unprotected delegateCalls available, the effect of these problems is limited. But one
can set the storage variables of logic contracts to any values. Consider using onlyProxy for functions
that shouldn't be called on logic contracts directly.

Code corrected:

The onlyProxy modifier was added to the initialize and upgradeTo functions.

6.9 Missing Check
Correctness Low Version 1 Code Corrected

The comment on the function setMaxWithdrawNodePercentage states:

/**
 * ...
 * Requirements:
 * - `value` can not be zero.
 * ...
 */
function setMaxWithdrawNodePercentage(uint256 value) external onlyRole(CS_SERVICE_ROLE) {
 require(value <= PERCENTAGE_BASE, "CMO06");
 maxWithdrawNodePercentage = value;
}

However, there is no check to make sure value is not equal to zero.

Code corrected:

A check was added to make sure value is not equal to zero.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.10 Missing whenNotPaused in Migrate
Delegation
Design Low Version 1 Code Corrected

All balance affecting functions have the whenNotPaused modifier applied except for
migrateDelegation, this seems like an oversight if pause is meant to be used in emergency or
upgrade situations where critical contract state should not change in between upgrades.

Code corrected:

The whenNotPaused modifier was added to the migrateDelegation function.

6.11 No Limit On Withdrawal and Deposit Fee
Amounts
Design Low Version 1 Code Corrected

There is currently no limit on any fee amounts besides being below 100%, but this should not be the case
from both a trust and correctness perspective. The holder of TIMELOCK_ROLE could set instant or
regular withdrawal fees to 100% to prevent anyone from withdrawing, or increase deposit fee to 100% to
basically prevent anyone from staking any more funds without losing them all, effectively disabling those
functions in a round-about way.

Consider setting hard limits in the contract beyond which fees cannot be raised without a total contract
upgrade.

Code corrected:

Maximum values were added to all fee types.

6.12 Possible Underflow
Correctness Low Version 1 Code Corrected

In the function _balanced the following check is done:

uint256 stakingFlow = (underlyingToken.balanceOf(address(this)) + funds.stakedDeposit) / 1e10;
require(stakingFlow - 1e6 <= userFlow && userFlow <= stakingFlow + 1e6, "CMB01");

However, if underlyingToken.balanceOf(address(this)) + funds.stakedDeposit is less
than 1e16, this will result in an underflow and revert, despite not necessarily being an invalid state.

Code corrected:

The code was refactored so the underflow is no longer possible.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.13 Reuse balanceOf Result When Possible
Design Low Version 1 Code Corrected

There are various functions which call underlyingToken.balanceOf(address(this)) multiple
times. While in some cases, the balance does change and the additional cross-contract call is necessary,
in others it is not. Therefore, the redundant calls could be omitted to save gas.

1. In autoBalance and _balanced, the balance of the contract is queried twice without any balance
change in between.

2. In _sequentiallyStake, the balance of the contract is queried once per loop iteration. While the
balance can change between iterations, it may instead be possible to check that the balance is
greater than the total amount to stake, rather than checking individually for each staking operation.

Code corrected:

1. The mentioned functions were updated to query the balance only once.

2. The total amount to stake is now compared to the balance at the start of the function, instead of
once per loop iteration.

6.14 Staking Issues
Design Low Version 1 Code Corrected

When autobalance is run, if the additional amount to stake is consistently smaller than the
overStakingThreshold, the same validator will be chosen every time. This is because the
activeStakingNode does not change if only the first node is used. Thus, the amounts staked per
validator will not converge if the amounts to stake per balancing operation are consistently below
overStakingThreshold.

Code corrected:

The activeStakingNode is now advanced by one position at the end of the function to avoid the
mentioned issue.

6.15 Storage Operations in Loops
Design Low Version 1 Code Corrected

Many different functions contain loops which access storage variables. Rather than reading a storage
variable once per loop iteration, it is more gas-efficient to read it once before the loop and cache the
value in a local variable.

There are also loops which write to storage variables. Again, rather than writing to storage directly in the
loop, it's more gas-efficient to write to a local variable and move the final value to storage after the loop.

These optimizations can be applied in the following functions:

1. In the function claim, the value withdrawOrders[msg.sender] can be stored in a variable
outside the loop and reused.

2. In getMaxWithdrawAmountCs, the storage values maxNodesToWithdraw and
maxWithdrawNodePercentage can be cached.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

3. In _sequentiallyStake, the number of storage writes to activeStakingNode and
funds.stakedDeposit can be reduced significantly. Additionally, the values totalPoints,
overStakingThreshold, stakeManager and underlyingToken could be cached. Note that it
may not be possible to apply all these optimizations without causing a "Stack too deep" compilation
error.

4. In _sequentiallyUnstake, the number of writes to activeUnstakingNode can be reduced.
The values of maxNodesToWithdraw and maxWithdrawNodePercentage can be cached to
reduce storage reading operations.

5. In _getMaxWithdrawAmount, the values of maxWithdrawNodePercentage and
maxNodesToWithdraw can be cached.

6. In addNodes, the number of writes to totalPoints can be reduced by calculating the value in a
local variable and writing to storage after the loop. Similarly, a local variable could be introduced to
hold the value of countStakingNodes and the final value written back only at the end. Lastly,
stakeManager could be cached so it only has to be read once before the loop.

7. In autoBalance, _updatedStaked, _isNodeActive and _updateNodePoints, the value of
activeNodes.length can be stored locally to reduce storage reads.

Code corrected:

The suggested changes were made. In the case of _sequentiallyUnstake, maxNodesToWithdraw
was not cached due to the "Stack too deep" compilation error.

6.16 Validator Contract Check Not Strict Enough
Correctness Low Version 1 Code Corrected

Inside of ClayMatic.addNodes, the validity of a validator is checked in the following way:

require(stakeManager.isValidator(val.validatorId()) && !val.locked(), "CMO10");

Both values validated against are sourced from the supplied contract which could just be a malicious
contract lying about being a validator. A check with stronger correctness would be to require that the
following is true:

stakeManager.getValidatorContract(validatorId) == val

This would prevent adding an invalid validator contract by mistake.

Code corrected:

The suggested check was implemented.

6.17 Wrong Variable Logged
Correctness Low Version 1 Code Corrected

In the autoBalance function, any accrued fees are transferred to the vault. Additionally, an event is
emitted to log the transferred fees. However, the wrong variable is used for the event so the emitted
value will always be zero.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

if (funds.accruedFees != 0) {
 uint256 accruedFees = funds.accruedFees;
 funds.accruedFees = 0;
 underlyingToken.safeTransfer(vaultManager, accruedFees);
 emit LogTransferVault(vaultManager, funds.accruedFees);
}

Code corrected:

The correct variable is now used to log the event.

6.18 Consider Using Modifiers for _Balanced and
_updateBalance Functionality
Note Version 1 Code Corrected

The calls to _balanced and _updateBalance could be more cleanly implemented via a modifier like the
following:

modifier enforceAndUpdateBalance {
 _updateBalance();
 _;
 _balanced();
}

It would prevent needing to manually ensure both are called, in the right order and priority, in any future
update to the code and simply enforce the presence of this modifier on the relevant functions.

Code corrected:

The suggested modifier was introduced and applied to all relevant functions.

6.19 Unnecessary Require
Note Version 1 Code Corrected

In the claim function, the following require statement is unnecessary:

require(amountAvailable >= userAmount + payableFee, "CMC02");

The value of userAmount is essentially calculated as receivedAmount - payableFee. The current
balance (amountAvailable) cannot be smaller than the amount received, therefore this check will
never fail.

Code corrected:

The unnecessary require statement was removed.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Child Contract Is Not Upgradable
Note Version 3

The child ClayTunnel contract is not upgradable. Therefore, if additional functionality were to be
implemented in the ClayMain contract, which needed to be reflected on the Polygon network, a new child
contract would have to be deployed. Hence, any users or protocols relying on the child contract should
be aware that the address could change in the future.

ClayStack - ClayStack Matic - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Deployment

	2.2 System Overview
	2.2.1 Staking Pool
	2.2.2 Rewards
	2.2.3 Administration
	2.2.4 Staking and Unstaking
	2.2.5 Polygon Bridge

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 No Message Relayed on claim
	6.2 Decoding Inefficiencies
	6.3 Redundant Function
	6.4 Redundant Storage Variables
	6.5 Variables Could Be Immutable
	6.6 Incorrect Permissions
	6.7 Inefficient Modifier
	6.8 Logic Contract
	6.9 Missing Check
	6.10 Missing whenNotPaused in Migrate Delegation
	6.11 No Limit On Withdrawal and Deposit Fee Amounts
	6.12 Possible Underflow
	6.13 Reuse balanceOf Result When Possible
	6.14 Staking Issues
	6.15 Storage Operations in Loops
	6.16 Validator Contract Check Not Strict Enough
	6.17 Wrong Variable Logged
	6.18 Consider Using Modifiers for _Balanced and _updateBalance Functionality
	6.19 Unnecessary Require

	7 Notes
	7.1 Child Contract Is Not Upgradable

