

PUBLIC

Code Assessment

of the SRG

Smart Contracts

April 04, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 13

4 Terminology 14

5 Findings 15

6 Resolved Findings 19

7 Informational 23

8 Notes 26

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear BlockSwap,

Thank you for trusting us to help Blockswap with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of SRG according to Scope to
support you in forming an opinion on their security risks.

Blockswap implements State Replication Gateway - a cross chain state portability system, that allows the
extension of a smart contract states between EVM-compatible chains.

The most critical subjects covered in our audit are functional correctness, asset solvency and signature
handling. Security regarding Functional correctness and asset solvency is good. Signature handling is
improvable, see Problems Related to Consent and ConsentVerification.

The general subjects covered are event handling and gas efficiency. Gas efficiency is improvable, see
Gas Optimisation. Event handling can be improved as well, see Pausing and Unpausing Emit Misleading
Events.

In summary, we find that the codebase provides an improvable level of security.

Many of the issues we identified during our assessment, which you have acknowledged without taking
action, have the potential to cause human errors and other negative impacts. It is important to address
these issues promptly to ensure the overall safety and reliability of your system.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 5

• Code Corrected 4

• Acknowledged 1

Low -Severity Findings 11

• Code Corrected 3

• Specification Changed 2

• Acknowledged 6

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed based on the source code files in contracts/modular-gateway
folder from the SRG repository. The main source of the documentation is the README.md and
savETHImplementation.md files from the SRG repository. Details about the specification were
clarified by the Blockswap during direct conversations over communication platforms. The table below
indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1 16 January 2023 d0f119b9b6eeede733d18f578b554fe8db14ce13 Initial Version

2 7 March 2023 6258be552fa5afcc0e2c9a04666f79fc2e2b6fa4 Version with fixes

3 3 April 2023 097a53bb4146c95cc80a50d66efe7b4db4b9ca9f Version with fixes

For the solidity smart contracts, the compiler version 0.8.13 was chosen.

2.1.1 Excluded from scope
Any imported libraries and contracts that are not mentioned in the Scope are excluded from the
assessment. The processes of registering, managing and monitoring the Endorsers in the
EndorserRegistry contracts are outside the scope of this assessment.

2.1.2 Assumptions
Certain things regarding this assessment are assumed to be always correct:

1. Assessed system is made of multiple modules that need to be connected with proper configuration.
We assume that the setup of the system is always correct, meaning the deployed system is
capable to perform its functions. All the correct contracts are assumed to be deployed and
initialized correctly. We assume no bugs might arise due to misconfiguration.

2. We assume, that the ERC20 tokens the SRG will deal with, do not have any special behaviors:
reentrancies, rebasing(balance changes without transfers), fees on transfer. Special wrapper
ERC20 contracts that protect the assessed system from such behaviors are assumed to be used
when needed.

3. Endorsers registered in the EndorserRegistry contracts assumed to be well-behaving.

4. Anyone can get ownership of KNOT from the savETHRegistry open index. Users can isolate the
KNOT from the open index just before the fee mint and return KNOT back to the open index after
the mint. This way the mint fee will go to the user. This arbitrage opportunity is assumed to be
welcomed. Users, who put their KNOTs to open index, are assumed to know about this.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview. The information about components that are out-of-scope for this assessment
(e.g. behaviour of Endorsers) is taken directly from the documentation provided by the client and
assumed to be correct.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Blockswap implements a Blockswap State Replication Gateway (SRG) - a system that enables
cross-chain state replications. Such a process of creating a state representation from one chain(a.k.a.
original domain) on the another domain (destination domain) is called a state extension. In the assessed
version of the code the SRG supports the ERC20 token balances extension and savETH Registry dETH
balances extension. To extend a state from one domain to the other, a deposit transaction needs to be
performed on the originating domain. Then, the Endorsers, privileged actors, need to attest to the data
integrity of a Gateway. Later push transaction, containing references to the corresponding deposit
transaction need to be made on destination domain.

2.2.1 Terminology of use
In this system overview, we use origin chain / mainnet and destination chain / Optimism interchangeably.
In general, the origin is not always mainnet and destination is not always Optimism. Origin is the chain
where the state originates and the destination is where the state is created and directly tied to the original
domain. The user on the origin chain is called Alice, while the user on the destination chain is called Bob.

2.2.2 General setup of the SRG system
When a state originating on one domain needs to be extended to multiple destination domains a set of
contracts need to be deployed on both destination and origin chains:

1. Gateway: Depending on the nature of the bridged token, this can be ERC20Gateway or
savETHGateway contract.

2. Accumulator: Contains the implementation of incremental Merkle tree data structure. It collects
the state change receipts for further attestation.

3. Ingestor: Handles the "muting" or burning of the assets on the originating domain during the
deposit transaction.

4. Dispenser: Manages the "unmuting" or minting of the assets on the destination domain during the
push transaction. Each Dispenser inherits the dispenseViaRecovery function. This function
receives Merkle proof and calls the internal _performDispense function if the proof is valid for
some unclaimed leaf in the Merkle tree with recoveryMerkleRoot.

5. EndorserRegistry: Contains the Endorsers and manages their statuses. Its owner can modify
the list of valid endorsers and their status.

6. RPBSVerificationLibrary: Checks the validity of the endorsements. Each endorsement is a
Restricted Partially Blinded Signature (RPBS). Common (unblinded) information contains the
accumulator root, deposit leaf and its index, endorsement expiration, destination gateway address,
and origin gateway address. Hash of Merkle proof is however blinded. Any validator can guess the
data inside the blinded part, however, the Blockswap stated that the RPBS gives them flexibility for
future features.

7. ConsentVerification: Initiator of the deposit submits consent - ECDSA signature that the
asset receiver uses on the destination domain. The ConsentVerification contract validates this
ECDSA signature.

A new instance of Gateway needs to be deployed for any asset that needs to be bridged from the chains,
in any direction. Each asset or state is native to a single chain, called the origin. Origin gateway handles

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

extensions for all destination domains. However, the destination gateways can only extend their state
back to the origin gateway and not to other destination chains.

2.2.3 General Deposit Flow

1. Alice signs a consent - EIP712-compliant (according to the specification. See Problems Related to
Consent and ConsentVerification related issue) hash of the following struct:

Consent(
 uint256 consentId,
 address paramOne,
 uint256 paramTwo,
 bytes paramThree
)

consentId in this case acts as a nonce that increases for Alice every time she makes a state
extension on a chain.

2. On chain X Alice calls deposit or batchDeposit function on a Gateway responsible for the
desired contract with proper input parameters.

3. Gateway performs various checks of the deposit parameters. First of all, it checks that the correct
consentId(alias for nonce) is used by Alice to issue the consent and the caller is Alice herself. Then,
by using the internal function _assertConsumptionAuthorised, the validity of the transaction
summary is checked.

4. Function consume called on the Ingestor contract

5. Gateway then validates the amount extended to the destination chain against
batchStakingRule.

6. totalExtended to the destination domain is increased by the amount of the deposit made by
Alice.

7. DepositEvent is emitted.

8. Deposit transaction summary, which is a hash of transaction parameters, is injected via a call to the
Accumulator.injectVectorCommitment function. Accumulator contract is an incremental
Merkle tree implementation, that collects state change receipts for further attestation.

9. Alice's consentId gets incremented for further deposits.

2.2.4 General Push flow
To finalize the extension on the destination, Bob needs to collect Accumulator RPBS endorsements
from the Endorsers. Once the endorsements are gathered, Bob can proceed in the following sequence:

1. Bob calls the Gateway push or batchPush function on the destination chain, providing deposit
details, endorsements, Merkle tree proof and push transaction summary.

2. push function checks the validity of the origin chain gateway, destination chain Id, and gateway. If
pushing takes place without recovery mode enabled, the destination gateway verifies the validity of
RPBS endorsements by calling RPBSVerificationLibrary.

3. A subsequent call to the internal function _dispense is made. If recovery has not been enabled
happen:

3.1. Destination Gateway verifies the validity of Alice's consent signature by calling
ConsentVerification.validateConsentSignature function.

3.2. A call to _assertDispenseAuthorised verifies the validity of the transaction summary

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3.3. Finally, Dispenser.dispense() gets called, which calls the internal
_performDispense function, which is overridden, depending on the gateway type.

3.4. This UTXO is marked as spent.

3.5. Push transaction summary, which is a hash of transaction parameters, is injected via a call
to the Accumulator.injectVectorCommitment function.

If recovery has been enabled:

3.1. Recovery checkpoint, as well as Merkle root for recovery, should already be injected

3.2. When the previous checks passed, the Gateway calls into the Dispenser module
dispenseViaRecovery function.

4. The extended amount should satisfy the batchStakingRule.

5. totalExtended amount of the origin chain gets increased by the amount extended.

6. A Push event gets emitted.

2.2.5 ERC20Gateway
To handle the bridging of ERC20 token balances, specialized versions of the contracts from the General
setup of the SRG system have been implemented:

• ERC20Gateway - this version of the Gateway contract is intended to be used with a fixed token
address. In the _assertConsumptionAuthorised function this contract checks that the deposit
transaction summary matches the hash of deposit parameters. In the
_assertDispenseAuthorised function this contract checks the validity of Merkle tree proof.

• GatewayToken - this contract acts as a representation of the token on the destination domain.
ERC20Gateway of the destination domain uses this token to mint assets that were bridged from the
origin domain.

• ERC20OriginIngestor - this contract acts as ingestor on the chain, where token originates from. The
consume function of this contract safeTransferFrom funds from the user to the
ERC20OriginDispenser.

• ERC20OriginDispenser - during push operations on ERC20Gateway contracts, the
ERC20OriginDispenser._performDispense function transfers the tokens to the specified
receiver.

• ERC20DestinationDispenser - during push operations on ERC20Gateway contracts, the
ERC20DestinationDispenser._performDispense mints new GatewayToken assets.

• ERC20DestinationIngestor - the consume function of this contract burns the GatewayToken
tokens.

2.2.5.1 ERC20 Deposit and Push Flows
The ERC20 token follows the General Deposit Flow and the General Push Flow. To deposit, the owner of
the tokens needs to sign the hash of Consent struct. The fields have the following meaning:

• paramOne - recipient address on the destination domain

• paramTwo - amount of tokens

• paramThree - optional data. Used in DepositEvent and contributes to the deposit leaf hash.

Differences described in the list above Explain how specialized contracts alter the flows.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.6 savETHGateway

2.2.6.1 Brief savETH Registry overview
Users can stake a 32 ETH validator with the Ethereum Deposit Contract through the StakeHouse registry
and in exchange get 24 dETH and 8 SLOT token. SLOT tokens are not relevant to this assessment and
won't be covered in this System Overview. 24 dETH token by default belongs to a KNOT, that is
registered in savETHRegistry contract. Each KNOT is identified by 48 bytes BLS pub key of the
validator. KNOTs belong to a certain index inside the savETHRegistry. Each index is controlled by a
single user address and multiple KNOTs can be attached to the same index. When Beacon chain
validator performs its duties, the rewards are generated. An authorized minter can mint the reward dETH
to a specified KNOT.

KNOTs can be added to an open index - a special kind of index that allows index owners to exit into liquid
ERC20 savETH tokens. savETH represents the share of dETH tokens owned by KNOTs in an open
index. Rewards increase the exchange rate of savETH to dETH. Any savETH ERC20 holder can
withdraw - burn the savETH and mint actual liquid dETH that are not associated with any KNOT.

When savETH state needs to be extended to the foreign domain, the owner of the index needs to provide
the 48 bytes KNOT pubkey as an argument for the deposit function.

2.2.6.2 savETH system setup
To handle the bridging of savETH KNOTs, specialized versions of the contracts from the General setup
of the SRG system have been implemented:

• savETHGateway - this gateway contract works with a fixed StakeHouseUniverse - registry of
stakehouse contracts. In the _assertConsumptionAuthorised function this contract checks that
the deposit transaction summary matches the hash of deposit parameters. It also requires that the
KNOT's index owner is msg.sender. Only KNOTs that hold at least 24 ether are valid. In the
_assertDispenseAuthorised function this contract checks the validity of Merle tree proof. It
also requires that the receiver index owner is msg.sender. This contract is abstract and two separate
contracts that extend it are meant to be deployed: savETHDestinationGateway and
savETHOriginGateway. Their specific functionality is described in savETH poke and
balanceIncrease.

• dETHOriginIngestor - the consume function of this contract transfers the deposited KNOT from the
user to the designated gateway index.

• dETHOriginDispenser - the _performDispense function of this contract transfers the KNOT from
the designated gateway index to the destination index.

• dETHDestinationDispenser - the _performDispense function of this contract creates a new KNOT
on the foreign domain and sets the balance of this KNOT to the same value as on the origin domain.

• savETHRegistryDestinationGateway - this is a specialized version of the savETHRegistry
contract. It has a new rageQuitAndCleanUp function, which completely deletes the data about the
KNOT from the registry. A KNOT can be recreated again after a call to this function.

• dETHDestinationIngestor - the consume function of this contract transfers the deposited KNOT to
the gateway index and calls savETHDestinationGateway.rageQuitAndCleanUp.

• savETHDestinationReporter - this contract is an authorized minted for the
savETHRegistryDestinationGateway. The balanceIncrease function of it is described in
savETH poke and balanceIncrease.

• StakeHouseUniverseDestinationGateway - a miniature version of the full StakeHouseUniverse
needed to operate the savETH registry on the destination domain.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.2.6.3 savETH Deposit Flow
The extension of the savETH KNOTs follows the General Deposit Flow. To deposit, the owner of the
index that holds the KNOT needs to sign the hash of the Consent struct. The fields have the following
meaning:

• paramOne - address of StakeHouse contract associated with KNOT being moved.

• paramTwo - destination savETH index.

• paramThree - KNOT's BLS pub key. The full dETH amount in this knot will be extended to the other
domain

While in ERC20 Deposit and Push Flows the ERC20OriginDispenser takes ownership of tokens on the
origin side, in savETH case KNOT is moved into an unspendable index known by the Gateway. Similar to
mint/burn procedures in the foreign domain, the KNOTs are created and rageQuitAndCleanUp.
Differences described in the list above Explain how specialized contracts alter the deposit flow.

2.2.6.4 savETH Push Flow
The extension of the savETH KNOTs follows the General Push Flow. The
savETHDestinationGateway has 2 additional push functions:
pushAndWithdrawDETHFromOpenIndex and batchPushAndWithdrawDETHFromOpenIndex. They
can be seen as a combination of the following sequence: regular savETH push of the KNOT, move of the
KNOT to open index, withdrawal of savETH ERC20 into dETH ERC20 token.

Differences described in the list above Explain how specialized contracts alter the push flow.

2.2.6.5 savETH poke and balanceIncrease
On the origin chain an authorized miner can mint new dETH inflation rewards to KNOTs when the
beacon chain reports such rewards. The savETHOriginGateway contract has special
pokeLatestBalance and batchPokeLatestBalances functions that are used to propagate the
origin registry balance changes to the destination domain. On the foreign domain, these poke actions are
finalized with the help balanceIncrease and batchBalanceIncrease functions of the
savETHDestinationGateway contract. Poke actions are not authorized, meaning anyone can poke
any KNOT that was migrated to the foreign domain. No consent is needed. RPBS endorsements need to
be passed to the balanceIncrease function.

Flow of poke in savETHOriginGateway contract:

1. Knot balance in the gateway is fetched from savETHRegistry.

2. Check this poking action is permissible by assuring that the Knot is present in the gateway, valid,
and active.

3. Poke event is emitted.

4. Poke leaf hash is inserted into the accumulator of the destination domain.

Now, finalize the poke the savETHDestinationGateway uses the following balanceIncrease
function on the foreign chain:

1. Origin gateway, destination chain Id, and gateway are validated.

2. RPBS endorsements are validated.

3. Check that the Knot is already migrated to the current(foreign) domain

4. Validate the Merkle proof for the poke leaf.

5. A call to savETHDestinationReporter.increaseBalance() is made. It mints dETH for the
KNOT.

6. Balance increase leaf is injected into the accumulator

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.7 Pausability and Recovery
The following special functions can be used by privileged users to kill the functionality of the gateways:

• Gateway.pauseGateway - pauses the Gateway. All actions such as push, deposit, poke,
balanceIncrease are disabled for all the domains. Can only be called by the privileged
GatewayOperator role holder. Can be undone by unpauseGateway function.

• Gateway.pauseDomain - Disables all actions for a given domain. Can only be called by the
privileged GatewayOperator role holder. Can be undone by unpauseDomain function.

• Gateway.triggerKillSwitch - triggers the activation of the recovery assets on a specific domain.
Always disables the deposit, poke and balanceIncrease actions. If specified, push actions can be
disabled as well. Can only be called by the privileged GatewayOperator role holder. Cannot be
undone.

• IGatewayOperatorControlCentre - a special contract that Gateway uses to determine if a specific
domain is killed.

The recovery process for a domain:

1. triggerKillSwitch function is activated by the GatewayOperator. Push actions should not be
killed.

2. injectForeignDomainCheckpoint function is called by the GatewayOperator. While the
assigned checkpoint value is not immediately used on-chain, it will be used off-chain for
reconcilliation.

3. injectRecoveryMerkleRoot function is called by the operator. It sets the recovery Merkle tree
root that push actions can later use.

After this process, the dispenser modules associated with the killed domain is put into special recovery
mode, where the General Push flow has the following changes:

• The RPBS endorsements are not checked by the Gateway

• The accumulator proof needs to contain a Merkle proof for the Recovery Merkle tree root, instead of
the Accumulator tree root.

• Dispenser.dispenseViaRecovery is executed instead of step 3 in General Push flow.
Dispensers in this mode check the validity of the recovery Merkle proof and execute
_performDispense.

2.2.8 Roles and Trust model
Several contracts of SRG system are deployed via proxy, including Gateway, GatewayToken,
Accumulator, StakeHouseUniverseDestinationGateway, and origin and destination
Ingestors/Dispensers. The proxy admin is considered fully trusted. In general, we assume the deployers
and accounts with the owner role as fully trusted and they configure contracts with the correct
parameters.

All contracts implementing or facilitating the implementation of the gateway functionality as well as
savETHRegistry, Universe, BalanceReporter, etc. have privileged accounts that need to be
trusted to behave correctly for the bridge to function as expected.

Accumulator Managers: As they are the only entities privileged to insert new leaves into the incremental
Accumulator Merkle tree, they should be trusted.

Endorsers: They play a critical role in verifying the data fetched from the origin/destination chain
indicating a deposit action is not tampered with. Hence, they are assumed to be fully trusted.

Gateway Operators: These users should be treated as fully trusted, because they are entitled to add new
domains, trigger kill switch, inject checkpoint and Merkle tree root to the dispenser modules,
pause/unpause their gateway and domain.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Gateway Admins: Those users holding this role are considered to be fully trusted, as they are privileged
to add new admins and operators.

Token Minter/Burner: Addresses marked as minter/burner, as the name suggests, can burn and mint
GatewayToken's. As a result, they should be fully trusted.

Token Admins: They are entitled to add new token admins and token minters/burners. Hence, they have
to be trusted.

Users: Users interacting with the system are considered untrusted.

Version 22.2.9 changes
Version 2In following changes were made:

GatewayToken has a single minter and single burner address. These addresses are assumed to be
ERC20DestinationDispenser and ERC20DestinationIngestor correspondingly. There are no
token admins anymore on GatewayToken. These new minter and burner roles are fully trusted or, in the
case of smart contracts, assumed to be correctly set to contracts that cannot mint/burn a wrong number
of tokens.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• AcknowledgedProblems Related to Consent and ConsentVerification

Low -Severity Findings 6

• AcknowledgedFinalization of Extension Can Stuck

• AcknowledgedMissing Status by EndorserLifecycleStatusUpdated

• AcknowledgedPausing and Unpausing Emit Misleading Events

• AcknowledgedRPBS _isOnCurve Infinity Point

• AcknowledgedRepeated Pokes

• AcknowledgedsaveETHManager.init Is Not Defined in ISavETHManager

5.1 Problems Related to Consent and
ConsentVerification
Design Medium Version 1 Acknowledged

The consent ECDSA signature that the depositor needs to provide has the following design issues:

1. When Alice wants to deposit 100 wei ERC20 token from Optimism to Bob on mainnet, she has to
sign EIP712 hash of Consent(Bob, 100, ""). However, the same signature she has to provide
if Alice wants to deposit 100 ERC20 token from Polygon to Bob. This signature does not contain
any information about origin domain. Only address of ConsentVerification contract on the
destination chain is taken into account.

2. Only EOA addresses are able to sign data. Multisig wallets or any other smart contract addresses
won't be able to provide a consent signature. This limits potential integrations of SRG with the other
systems

3. Consent itself is redundant. Both ERC20Gateway and savETHGateway allow only deposits when
msg.sender == ownerGivingConsent. Thus, only Alice will be able to insert the deposit leaf
into Accumulator. Check that deposit is inserted into the Accumulator tree can be seen as an "Alice
wanted to transfer funds to Bob" check. In addition, deposit leaf insertion contains more information
and thus is a stronger constraint.

4. CONSENT_TYPEHASH violates the EIP712 specification. The type of a struct must be encoded as
name || "(" || member_1 || "," || member_2 || "," || … || member_n ")" where each member is written
as type || " " || name. The CONSENT_TYPEHASH doesn't have member names.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 15

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

5. ConsentVerification.computeTypedStructHash violates the EIP712 specification. Each encoded
member value must be exactly 32-byte long. abi.encodePacked will encode address _paramOne
as 20-byte long.

Acknowledged:

Blockswap responded:

We will be addressing these as part of the transportation layer upgrade we mentioned in the call

5.2 Finalization of Extension Can Stuck
Design Low Version 1 Acknowledged

Once deposit or pokeLatestBalance functions get called, they need to be finalized on the
destination domain, using push and balanceIncrease functions. However, this second call can be
"stuck". The SRG system does not offer users any way to recover stuck funds. Some reasons can be
user mistakes, e.g. user deposited to addresses nobody has control over on their destination domain.
However, more serious are issues where origin domain functions do not perform strict enough verification
of the parameters.

For example:

1. Consent verification relies on OZ library that enforces s-value of v,r,s tuple to be in the lower range
of secp256k1n curve. In general, ecrecover percompile supports both high and low s-value
signatures. During the deposit function call, only the v-values are constrained.

2. If batch staking rule constant is misconfigured, a check on deposit might be satisfied, while during
the push the amountExtended value can be too small.

Acknowledged:

Blockswap responded:

Users should always be able to verify their transactions before signing to ensure funds are not locked
much like when interacting with a single blockchain and ensuring things like recipient are correct etc.

5.3 Missing Status by
EndorserLifecycleStatusUpdated
Design Low Version 1 Acknowledged

When the event EndorserLifecycleStatusUpdated gets emitted, it just indicates the status of a
given endorser has been updated, without containing any further information about its current status. As
a better practice, the current status of the endorser can be embodied in this event.

Acknowledged:

Blockswap responded:

Indexers can read the state of the contract at the time of event emission. We will address this later

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 16

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

5.4 Pausing and Unpausing Emit Misleading
Events
Design Low Version 1 Acknowledged

Some functions, which perform the state transitions of the Gateway contract do not check, whether the
contract is already in the needed state:

• pauseGateway

• unpauseGateway

• pauseDomain

• unpauseDomain

As a result, repeated calls to these functions will have no effects on the state but will trigger an event.
Some of these functions also do not check, whether the killswitch was triggered for this domain. Thus,
pauseGateway after triggerKillSwitch can be called.

Acknowledged:

Blockswap has acknowledged the issue without fixing it, responding:

We are ok with this. contract storage should always be checked for the source of truth

5.5 RPBS _isOnCurve Infinity Point
Correctness Low Version 1 Acknowledged

Most of the bn128 libraries consider that the infinity point belongs to the curve. The _isOnCurve
function does not.

Reference:

• Ethereum

• Clearmatic bn256

Acknowledged:

Blockswap has acknowledged that their implementation does not follow the implementation of bn128.
Blockswap responded:

We will be addressing these as part of the transportation layer upgrade.

5.6 Repeated Pokes
Design Low Version 1 Acknowledged

For a single pokeLatestBalance action, the balanceIncrease finalization can be done multiple
times. Only the first balanceIncrease will have an effect. All other calls will result in no balance
update, however, the poke leaf will still be inserted in the Accumulator. In theory, an attacker can spam
this transaction to deplete all the leaves in the Merkle tree.

Acknowledged:

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 17

https://github.com/ethereum/py_pairing/blob/e95dece17e5d948e62b1492b05ba88b726aa25e6/py_ecc/bn128/bn128_curve.py#L29
https://github.com/clearmatics/bn256/blob/c6c2a2b131e6e7817b3d12ed562acba94df7a59d/curve.go#L39
https://chainsecurity.com

Blockswap responded:

We will add a spam mitigation strategy later.

5.7 saveETHManager.init Is Not Defined in
ISavETHManager
Design Low Version 1 Acknowledged

In StakeHouseUniverseDestinationGateway.init an ERC1967 Proxy gets deployed for the logic
contract _saveETHManagerLogic. However, when encoding _data input field for the constructor of
ERC1967, it assumes

1. init function is implemented for savETHManager, although not defined in ISavETHManager

2. init function of savETHManager has the exact same layout as
savETHDestinationReporter.init, which might be invalid assumption.

These assumptions can be wrong.

Acknowledged:

Blockswap has acknowledged it, claiming that calling this function from external users is not encouraged.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 4

• Code CorrectedCost of bytesToHex

• Code CorrectedERC20 Token Decimals

• Code CorrectedInconsistent DepositEvent Amount Units

• Code CorrectedbatchDeposit Reverts if the Lengths of Input Arrays Match

Low -Severity Findings 5

• Code CorrectedEIP165 Interface Implementation Check Is Not Fully Correct

• Specification ChangedSandwich Attack Without MEV Services

• Specification ChangedDeployed Event of Gateway Is Not Informative

• Code CorrectedwhenGatewayAndPushNotKilled Specification Mistmatch

• Code CorrecteddETH Dispensers Are Not a IsavETHDispenser

6.1 Cost of bytesToHex
Design Medium Version 1 Code Corrected

The bytesToHex is used to convert bytes to hex string. The only reason for this is to be compliant with
the elliptic-js library. The bytesToHex is an extremely inefficient on-chain. Such conversions on-chain
are strongly discouraged. They are computationally expensive and may lead to gas exhaustion. This
does not pose a direct security risk, but it lowers the overall usability and scalability of the contract.

Code corrected:

The RPBS-sol package now operates with the bytes representation directly, without conversion to hex.
The new function encodePoint is used in the assessed contracts instead of encodePointHex
function.

6.2 ERC20 Token Decimals
Design Medium Version 1 Code Corrected

The GatewayToken contract inherits from ERC20Upgradeable fixed decimals of 18. In general, this
might be not the same as the original token decimals. As a result, this might break UIs that will deal with
such bridged tokens. Also, protocols that rely on decimals might have problems with compatibility.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

The GatewayToken.decimals now returns a variable that can be set in the init function.

6.3 Inconsistent DepositEvent Amount Units
Design Medium Version 1 Code Corrected

The ERC20Gateway.deposit function users provide the amount of tokens to extend as a
BaseInputParams.paramTwo in wei. This param in wei will contribute to the deposit leaf hash. Same
paramTwo in wei will be emitted in DepositEvent. On the destination domain recipient will need to
specify the same paramTwo in _depositMetadata.baseDepositInfo.paramTwo.

However, this is not consistent with savETHGateway. In savETHGateway.deposit the user provides
the KNOT that he wants to migrate. The savETHRegistry.knotDETHBalanceInIndex in gwei of this
KNOT will contribute to the deposit leaf hash. But the knotDETHBalanceInIndex in wei will be emitted
in Deposit tx. On push, _depositMetadata.amount in gwei will be converted to wei and the savETH
on the destination domain will be minted. In summary, inconsistency is that units of event do not match
the value from _depositMetadata.amount and the deposit leaf hash. Assuming that the endorsers
will be querying the depositMetadata for the attestation, an extra conversion of deposit event values will
be needed for one of these cases to compute the hash of the RPBS info.

Code corrected:

Blockswap has successfully resolved this inconsistency in various parts of the codebase (both
dispensers and ingestors).

6.4 batchDeposit Reverts if the Lengths of Input
Arrays Match
Correctness Medium Version 1 Code Corrected

To batch deposit a set of transactions to their corresponding domains given suitable input params for
each deposit, the input arrays should have the same length. However, in the implementation:

uint256 numOfElements = _transactionSummaries.length;
if (numOfElements == 0) revert EmptyArray();
if (numOfElements == _domainIds.length) revert InconsistentArrayLengths();
if (numOfElements == _baseParams.length) revert InconsistentArrayLengths();

Which means a correctly formed input will not be handled. The functionality of all functions must be
tested before deployment.

Code corrected:

Conditions were fixed. Now all 3 input arrays of the batchDeposit function required to be of the same
length.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.5 EIP165 Interface Implementation Check Is Not
Fully Correct
Correctness Low Version 2 Code Corrected

According to eip-165, to detect that contract implements ERC-165, the source contract needs to make 2
calls. First call - to check that IERC165 is supported. Second call - to check that the invalid interface
0xffffffff is not supported.

However, the Gateway._assertModuleAdheresToERC165Interface function only performs the
first call.

Source: https://eips.ethereum.org/EIPS/eip-165#how-to-detect-if-a-contract-implements-erc-165

Code corrected:

A check has been added to ensure that a module supporting IERC165 does not support an invalid
interface.

6.6 Sandwich Attack Without MEV Services
Design Low Version 1 Specification Changed

The savETHRegistry has the following arbitrage opportunity, that bots can profit from: if a bot sees fees
being to a KNOT, that belongs to an open index, a bot can sandwich this mintDETHReserves function
call by 2 transactions: isolateKnotFromOpenIndex and addKnotToOpenIndex. This way, bot will
get ownership of the KNOT that will have fees minted. As a result, the savETH rate won't increase. To
execute this sandwich attack on the mainnet, the bot needs access to MEV service. However, on the
destination domains, with the help of the poke function bots can steal fees from the open index without
such services. The bot just needs to have a smart contract that sandwiches balanceIncrease the
same way as mintDETHReserves. Since balanceIncrease in a mintDETHReserves on a
destination domain without access control, this is possible.

Specification corrected:

Users, who put the KNOT into an open index voluntarily, accept the lower fees (potentially 0). In
exchange, they get liquid assets that can be traded. Any actor is encouraged to perform balance updates
(such as mintDETHReserves). The MEV sandwich described in this issue is seen as an arbitrage from
that perspective. Hence, no fixes are needed.

6.7 Deployed Event of Gateway Is Not Informative
Design Low Version 1 Specification Changed

After initialization of a gateway through __Gateway_init, a mere event Deployed is emitted without
any arguments. This event does not contain any parameters. Since it is used in the proxy initialization,
this event increases the bytecode size of the deployed contract.

Specification corrected:

Blockswap responded:

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 21

https://eips.ethereum.org/EIPS/eip-165#how-to-detect-if-a-contract-implements-erc-165
https://chainsecurity.com

After an event is emitted, all contract states can be read directly from a node saving deployment
costs from not emitting data in events.

6.8 whenGatewayAndPushNotKilled
Specification Mistmatch
Correctness Low Version 1 Code Corrected

As the name of the modifier suggests, not only should the gateway be operational, but also push for the
foreign domain should not be killed. However, this modifier performs the following checks:

if (!domainMetadata.operational && isPushKilled[_domainId]) revert DomainOperationsArePausedOrKilled();

It means the scenarios, in which either domain is not operational or is killed, the modifier reverts. To
make it comply with the specification, an OR operator instead of AND should be used.

Code corrected:

The && operator was replaced by the || in the if condition above. Now the
whenGatewayAndPushNotKilled will not revert only when the domain is operational and push is not
killed on the domain.

6.9 dETH Dispensers Are Not a IsavETHDispenser
Design Low Version 1 Code Corrected

The savETHGateway uses IsavETHDispenser to communicate with dETHDestinationDispenser
and dETHOriginDispenser. However those contracts do not implement the aforementioned interface.
Change of the code can break compliance with the interface, that will not be reported by the compiler.

Code corrected:

dETHDestinationDispenser and dETHOriginDispenser contracts now implement the
IsavETHDispenser interface.

6.10 RPBS Endorsement Expiry
Informational Version 1 Code Corrected

Function verify in RPBSVerificationLibrary fetches the first endorsement and verifies that it is
not expired require(signatureExpiry > block.timestamp, "Signature expired"). Then,
it iterates over the array of endorsements and checks that all of them have the same expiry time as the
first endorsement. Though correct, it obliges the endorsers to agree on a common signature expiration.
What is the expiration definition procedure and how do endorsers guarantee that this expiration will be
the same for all signatures?

Code corrected:

Version 3In of the code each Endorser need to specify its own expiry period.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Endorser Setting Change
Informational Version 1 Acknowledged

First, the change of the Endorser status from ACTIVE to any other status will result in a revert of the
pending push and balanceIncrease transactions if they were endorsed by the deactivated Endorser,
while it was still active.

Second, the increase of the numberOfEndorsementsRequired threshold can cause similar in-flight
message failure.

Acknowledged:

Blockswap responded:

As long as the user can re-submit the transaction, then there is no issue.

7.2 Gas Optimisation
Informational Version 1 Acknowledged

The codebase has several inefficiencies in terms of gas costs when deploying and executing smart
contracts. Here, we report a list of non-exhaustive possible gas optimizations:

1. The modifier Gateway.whenGatewayAndDomainNotPausedOrKilled loads information about
a specific domain Id to the storage and later reads the underlying information from storage, which is
quite inefficient.

2. ERC20Gateway._assertConsumptionAuthorised reverts if
msg.sender != _baseParams.ownerGivingConsent. However, the same check is
performed in _consume function, before calling to _assertConsumptionAuthorised.

3. Gateway.injectForeignDomainCheckpoint checks that recovery is enabled for the
dispenser and then calls into Dispenser.injectForeignDomainCheckpoint which performs
the exact same check.

4. Gateway.batchDeposit iterates through every deposit in a list and calls to Gateway.deposit
which solely calls into Gateway._consume. By calling _consume directly from batchDeposit
gas can be saved.

5. Once Gateway.batchDeposit directly calls to _consume, the visibility of Gateway.deposit
can also be changed to external.

6. Gateway._dispense, in case of recovery not being enabled, performs a multitude of checks (e.g.
validating consent signature, asserting dispense being authorized, and finally dispensing in the
dispenser module). After all of these gas expensive operations, it checks whether UTXO is already
spent or not. In case of an attempt to use spent UTXO the revert will happen late in execution.
Moving this check earlier would consume less gas in this scenario.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

7. Gateway._dispense, in case of recovery being enabled, checks that a non-zero recovery Merkle
root has been injected. Later, it calls to dispenseViaRecovery of the dispenser, which again
assures that the recovery Merkle root is injected.

8. Domain.dispense, checks isRecoveryEnabled, however, Gateway will only call this function if it
is not set.

9. ConsentVerification.validateConsentSignature is defined as public but never used
internally. Its visibility can be changed to external to save gas.

10. Both functions _onlyStakeHouseKnotThatHasNotRageQuit and
_onlyValidStakeHouseKnot in savETHRegistryDestinationGateway have the exact
same functionality, only with different naming. It makes bytecode of the contract larger; hence, the
deployment costs would be more expensive.

11. Gateway.deposit can increase userConsentNonce without the use of the safemath.

12. The fields in the Domain struct from the IGateway can be benefit from tight variable packing
patterns.

13. The balanceIncrease function checks that accumulator of the the domain is not 0. The same
check is performed in the whenGatewayAndDomainNotPausedOrKilled modifier of the same
function.

14. Many functions of the savETHGateway query saveETHRegistry from the universe multiple times
in the same function.

Acknowledged:

Blockswap will consider these optimizations later and apply changes when needed.

7.3 Hash Function Consideration
Informational Version 1 Acknowledged

The SRG uses sha256 function in multiple places. For example, in the Accumulator Merkle tree contract
and for computation of certain constants like DEPOSIT_TYPE_HASH. While the original ETH2.0 Beacon
staking contract uses the aforementioned hash function, the main reason for that was an assumption,
that node software will be implemented in languages that do not have well-established analog for
keccak256 function.

In EVM sha256 is a precompiled contract, and calling into it is more expensive than the opcode
keccak256. sha256 is twice more expensive than keccak256 based on gas params. This cost
difference also does not include overhead for creating memory layout for the STATICCALL to the
precompiled contract.

Acknowledged:

Blockswap responded to the issue as:

We will look into the optimisations and consider them as and when needed.

7.4 Recovery Merkle Tree Considerations
Informational Version 1 Acknowledged

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

To enable recovery, a domain must be killed first. Once it will be killed, some state extension messages
can stuck in-flight, meaning that the deposit tx happened on one domain, but the push for that deposit did
not happen on the other domain. Consider the scenario, in which Alice has issued a deposit on mainnet
chain to Bob on the Optimism chain. This extension is in-flight and still not pushed on Optimism. If then
Optimism will be killed on Mainnet, this transaction must be considered during the Recovery Merkle Tree
computation, even if Bob never pushed this on Optimism.

A similar case happens when Bob has issued a deposit from Optimism to Alice on mainnet chain. If then
Optimism will be killed on Mainnet, this transaction must be considered during the Recovery Merkle Tree
computation, if Alice did not push this on Mainnet before the recovery activation.

Acknowledged:

Blockswap mentioned in the response Doc, that this is by design.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Asset Flow per Time Limit
Note Version 1

The SRG system consists of multiple gateways on different chains. If a certain chain gateway is hacked,
e.g. invalid state is inserted into Accumulator, the attacker can use connections between gateways to
extend the bad state to the other chains. As a result, a system as a whole depends on the security of any
of its components. Limits like "extension of X tokens per day is allowed" can limit the effect of bad state
spread and give time for reactive measures.

8.2 Checked Properties
Note Version 1

Certain invariants of Blockswap SRG system were checked during this assessment or explicitly
considered:

• GatewayToken needs to be deployed with the same decimal value as the original token.

• ERC20 Gateway is capable of handling simple ERC20 tokens. Any special tokens need to be
wrapped. Consider this list: https://github.com/d-xo/weird-erc20

• Tree leaf of the Recovery Merkle tree should never be made of 64 bytes. Intermediate nodes might
become claimable due to the collisions with the total length of leaf components matching the length
of two concatenated hashes. See:
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3091

• To prevent cross-domain replays any leaf inserted into the accumulator needs to contain origin and
destination chain ids, and origin and destination gateway addresses.

• Any kind of leaf that is inserted into Accumulator needs to have a unique prefix like TYPE_HASH to
prevent collisions with other leaf types.

• The total supply of ERC20 tokens minted on some destination domain should equal the
totalExtended value of the origin domain on this destination domain.

• The total supply of ERC20 tokens minted on some destination domain should equal the
totalExtended value of this destination domain on the origin domain.

• Balances or KNOTs deposited from the origin domain can always be pushed on the destination
domain, assuming both domains are not paused/killed.

• In case of ERC20: ERC20OriginDispenser must be the minter of GatewayToken.
ERC20DestinationIngestor must be the burner of GatewayToken.

• In the case of ERC20: the sum of leaf amounts in the Recovery Merkle tree should always equal the
origin's totalExtended value of the recovered domain.

• In the case of dETH: the set of leaf KNOTs in the Recovery Merkle tree should always be the same
as KNOTs that belong to the destination index on the origin domain. No leaf should contain the
same KNOT twice.

Such invariants need to be considered during future updates.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 26

https://github.com/d-xo/weird-erc20
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3091
https://chainsecurity.com

8.3 Handling ERC20 With Access Control
Functionality
Note Version 1

Some ERC20 tokens can ban certain addresses from sending and receiving the tokens, e.g. USDC.
Assume a scenario, where Alice deposits USDC tokens from Optimism back to the mainnet. Upon push,
the receiver of USDC on the mainnet chain might be blacklisted. In this scenario, Alice's tokens will be
locked and the push transaction will revert.

8.4 Restrictive Partially Blind Signatures (RPBS)
Do Not Contain Unknown Blind Data
Note Version 1

The blinded message of RPBS contains only the Merkle tree proof. However, the common RPBS info
contains depositLeafIndex, gatewayRoot and accumulatorCount. Endorsers even without knowing the
actual data in a blinded message, in the current version of the code Endorsers can recompute the proof
themself. This can potentially be used by Endorsers to censor the depositor. In addition, RPBS schema
does not bring any benefit compared to more simple ECDSA signatures. Effectively no blinding is
happening.

Assuming RPBS schema will be used in future versions of the systems, where the blinded data will be
used, developers must be careful with what is being blinded.

If the entropy of the blinded data is not great, e.g. the deposit leaf index is blinded, the Endorsers still can
randomly guess what data is being blinded. For example with the deposit leaf index - not many indexes
can potentially be pending. A source of entropy can be included in the blinded message, which will make
guessing impossible.

8.5 knotDETHBalanceInIndex Change Will Revert
Pending Transaction
Note Version 1

The txSummary of the savETHGateway deposit should include the knotDETHBalanceInIndex.
However, the change in this value can cause pending deposits to revert. Such increases can be caused
by mintDETHReserves and balanceIncrease function calls. Please note that balanceIncrease is
an unrestricted function. Since the events of balance increase are assumed not to be frequent, the
likelihood of this problem is small.

Blockswap - SRG - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Assumptions

	2.2 System Overview
	2.2.1 Terminology of use
	2.2.2 General setup of the SRG system
	2.2.3 General Deposit Flow
	2.2.4 General Push flow
	2.2.5 ERC20Gateway
	2.2.5.1 ERC20 Deposit and Push Flows

	2.2.6 savETHGateway
	2.2.6.1 Brief savETH Registry overview
	2.2.6.2 savETH system setup
	2.2.6.3 savETH Deposit Flow
	2.2.6.4 savETH Push Flow
	2.2.6.5 savETH poke and balanceIncrease

	2.2.7 Pausability and Recovery
	2.2.8 Roles and Trust model
	2.2.9 changes

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Problems Related to Consent and ConsentVerification
	5.2 Finalization of Extension Can Stuck
	5.3 Missing Status by EndorserLifecycleStatusUpdated
	5.4 Pausing and Unpausing Emit Misleading Events
	5.5 RPBS _isOnCurve Infinity Point
	5.6 Repeated Pokes
	5.7 saveETHManager.init Is Not Defined in ISavETHManager

	6 Resolved Findings
	6.1 Cost of bytesToHex
	6.2 ERC20 Token Decimals
	6.3 Inconsistent DepositEvent Amount Units
	6.4 batchDeposit Reverts if the Lengths of Input Arrays Match
	6.5 EIP165 Interface Implementation Check Is Not Fully Correct
	6.6 Sandwich Attack Without MEV Services
	6.7 Deployed Event of Gateway Is Not Informative
	6.8 whenGatewayAndPushNotKilled Specification Mistmatch
	6.9 dETH Dispensers Are Not a IsavETHDispenser
	6.10 RPBS Endorsement Expiry

	7 Informational
	7.1 Endorser Setting Change
	7.2 Gas Optimisation
	7.3 Hash Function Consideration
	7.4 Recovery Merkle Tree Considerations

	8 Notes
	8.1 Asset Flow per Time Limit
	8.2 Checked Properties
	8.3 Handling ERC20 With Access Control Functionality
	8.4 Restrictive Partially Blind Signatures (RPBS) Do Not Contain Unknown Blind Data
	8.5 knotDETHBalanceInIndex Change Will Revert Pending Transaction

