

PUBLIC

Code Assessment

of the zkBob

Smart Contracts

January 5, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 12

7 Notes 18

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Igor,

Thank you for trusting us to help BOB Protocol with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of zkBob according to Scope
to support you in forming an opinion on their security risks.

BOB Protocol implements an application that uses zero-knowledge proofs (zk-SNARKs) for anonymous
transfers of the BOB ERC20 stablecoin token.

The most critical subjects covered in our audit are functional correctness, access control, and
front-running. Security regarding functional correctness and access control is high. The two uncovered
medium severity issues, that make the system vulnerable to front-running and sandwich attacks can
potentially endanger users and 3rd party integrations, but do not pose an immediate risk for the ZkBob
system itself.

The general subjects covered are trustworthiness, documentation, specification and code complexity.
The security regarding these subjects is good. The acknowledged and not fixed issues are of low severity
and don't render the system unsafe.

In summary, we find that the codebase provides a good level of security. The remaining acknowledged
but not fixed issues do not immediately impair the system, however, we still suggest addressing them in
the future.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 2

• Code Corrected 1

• Risk Accepted 1

Low -Severity Findings 8

• Code Corrected 4

• Specification Changed 1

• Risk Accepted 3

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the zkBob repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 29 Oct 2022 a1ce1231e90556839db8305d2190c8ca131a1093 Initial Version

2 21 Dec 2022 354fea530948b45aedca3479a73ddcf31bf5b8e8 Version with fixes

For the solidity smart contracts, the compiler version 0.8.15 was chosen.

These three main contracts were in scope:

• zkbob/ZkBobPool.sol

• BobToken.sol

• BobVault.sol

As well as the following dependencies:

• proxy/EIP1967Admin.sol

• token/BaseERC20.sol

• token/ERC20Blocklist.sol

• token/ERC20MintBurn.sol

• token/ERC20Permit.sol

• token/ERC20Recovery.sol

• token/ERC677.sol

• utils/Claimable.sol

• utils/EIP712.sol

• utils/Ownable.sol

• utils/Sacrifice.sol

• utils/UniswapV3Seller.sol

• yield/AAVEYieldImplementation.sol

• yield/YieldConnector.sol

• zkbob/manager/MutableOperatorManager.sol

• zkbob/manager/SimpleOperatorManager.sol

• zkbob/utils/CustomABIDecoder.sol

• zkbob/utils/Parameters.sol

• zkbob/utils/ZkBobAccounting.sol

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope
Although we performed basic checks on two zk-SNARK verifiers (TransferVerifier.sol and
TreeUpdateVerifier.sol), they are out of scope for this audit.

Third-party libraries, test contracts and any files not listed above are not in scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

zkBob is an application that uses zero-knowledge proofs (zk-SNARKs) for anonymous stablecoin
transfers. Daily limits are imposed to prevent large amounts of money that may be related to illegal
activity from being deposited or withdrawn. Transfers amongst users in the pool, however, are unlimited.

The zkBob app is designed to work with the BOB stablecoin. BOB is an upgradeable ERC-20 token,
which is currently available on Polygon, Optimism, BNB Chain, and Ethereum mainnet. Address blocking
and token recovery functions are also implemented.

Once BOB tokens are deposited in the zkBob app, users can initiate transfers among themselves
through private transactions. Typically, transactions will be routed through a relayer, to avoid identifying
information being leaked because of gas fees. The relayer will also help make sure that transactions are
sent to the pool in sequence.

Below is a summary of the main contracts in this system:

• BobToken.sol: ERC-20 token that also implements the EIP-1967 and ERC-677 standards.

• BobVault.sol: allows users to buy and sell BOB tokens in exchange for stablecoin collateral at a
fixed rate. The locked collateral can be invested in yield-generating protocols. At the moment, the
only available yield provider is AAVE.

• ZkBobPool.sol: the pool contract processes incoming transactions via the transact function.
The function will check that the message sender is an authorized operator (typically a relayer).

2.2.1 Trust Model
We assume that the following parties are trusted and behave correctly:

• The proxy admins of the BOB token and the Bob vault can change the respective implementations.
These contracts follow an upgradeable proxy pattern, as described in the EIP-1967 standard. The
proxy admin of the Bob vault also has the privileges of the contract owner (see below).

• The contract owner of the Bob vault (implemented through Ownable) can add collateral types,
enable/disable yield earning on a particular token, and change fee rates. The owner also has the
privileges of the yield admin and the invest admin (see below). Note that we assume all tokens
provided as collateral by the vault owner are not reentrant tokens, i.e. a transfer to or from a user
does not give control flow over to the user.

• The yield admin can farm (i.e., collects fees and generated yield).

• The invest admin can invest excess tokens into the yield provider.

• The blocklister of the BOB token can block and unblock accounts from using the token contract.

• The recovery admin of the BOB token can recover funds from arbitrary accounts, e.g. if they are
frozen. Note that there is a waiting period before the funds can be claimed, but once that process
has been started a user can't stop their funds being taken except by transferring them to another
account.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• The operator is the only entity that can directly send transactions to the zkBob pool for processing.
Typically, the operator is a single relayer. However, if the operator is defined as address(0)
through MutableOperatorManager, then any user can act as an operator. BOB Protocol also
plans to support a multi-relayer model in the future. Note that the operator is also responsible for
ensuring that users do not spread their funds between multiple EOAs to avoid the daily limits
imposed by the ZkBobAccounting contract. In the case of users being able to call transact
themselves, this type of attack cannot be mitigated. See Daily Limits can be avoided.

In general, we consider that entities assuming such roles are honest. In the case of decentralized
governance, we assume that there is an honest majority behind each administrative role.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

• Trust : Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedZkBobPool Withdrawal Sandwich Attack

Low -Severity Findings 3

• Risk AcceptedBaseERC20 Overflow

• Risk AcceptedDaily Limits Can Be Avoided

• Risk AcceptedERC20Permit.receiveWithPermit Signature Can Be Front-Run

5.1 ZkBobPool Withdrawal Sandwich Attack
Design Medium Version 1 Risk Accepted

When the withdrawal with native_amount is submitted to the ZkBobPool, the sale of tokens for ETH
happens using the UniswapV3Seller contract. However, the amountOutMinimum parameter of this
swap is 0. A potential attacker can place orders that would manipulate the price, forcing the sellForETH
trade to be executed with a bad price. Thus, due to the lack of spread control, any use of
UniswapV3Seller can result in a bad trade, allowing price manipulators to pocket the profit from this
trade.

Risk accepted:

BOB Protocol responded:

This feature is only intended to swap small amounts of tokens, purely for funding wallets with gas
tokens. UI will strongly dissuade users for doing swaps that are larger than e.g. 100$ in value. Added
a warning comment to the sellForETH function.

5.2 BaseERC20 Overflow
Correctness Low Version 1 Risk Accepted

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

The _increaseBalance function of the BaseERC20 contract can overflow. While it is checked that the
account is not frozen (i.e. the first bit of the balance is zero), it is not guaranteed that the addition will
result in a number smaller than 2^255. Hence, an account could become frozen by increasing its balance
above this value.

Risk accepted:

Assuming a reasonable total supply of the token (less than 2^255), it is impossible for any individual
account to have a balance large enough to cause this overflow to happen. Thus, the overflow cannot
occur under normal circumstances.

5.3 Daily Limits Can Be Avoided
Trust Low Version 1 Risk Accepted

If the MutableOperatorManager is used and the operator variable is set to 0, then effectively every user
becomes an operator / relayer. This means that any user could spread funds between multiple addresses
and easily avoid the daily limits imposed by the ZkBobAccounting contract.

Risk accepted:

BOB Protocol accepts the risk regarding users avoiding daily limits and states:

Allowing users to submit transactions themselves introduces multiple potential problems, including
the one described with the limits. For now, it can be assumed that deposit transactions might only go
through the chosen relayer, which is also responsible for detecting abnormal limit usage. Even
though we cannot assume that one address is equal to one user, we think that making per-address
limits in the contract can still be useful in certain use-cases.

5.4 ERC20Permit.receiveWithPermit Signature
Can Be Front-Run
Design Low Version 1 Risk Accepted

Similar to issue ERC20Permit.receiveWithSaltedPermit signature can be front-run, the signatures
between ERC20Permit.permit and ERC20Permit.receiveWithPermit are interchangeable as
well.

Thus, the attacker can front-run the signatures and use them in unintended functions to cause a user's
transactions to fail. However, this does not render the ZkBob system unsecure itself but might cause
problems for 3rd party integrations. Thus, the severity of this issue is low.

Risk accepted:

BOB Protocol accepted the risk and stated:

Third party integrations relying on permit/receiveWithPermit are advised to implement necessary
fallbacks for failing permit/receiveWithPermit calls, avoiding entire transaction failures.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedZkBobPool Fees Can Drain the Deposits of the User

Medium -Severity Findings 1

• Code CorrectedERC20Permit.receiveWithSaltedPermit Signature Can Be Front-Run

Low -Severity Findings 5

• Code CorrectedAdmin Reentrancy in ERC20Recovery

• Specification ChangedAvoiding Recovery by Admin

• Code CorrectedBobVault Uint Conversions

• Code CorrectedMissing Sanity Checks

• Code CorrectedNo Events on State Changes

6.1 ZkBobPool Fees Can Drain the Deposits of the
User
Security High Version 1 Code Corrected

When depositing using the transact function, the caller can specify a negative token amount. Normally,
this would revert as it is checked that the deposit amount is positive. However, if the user also specifies
the fee to be greater than the absolute value of the deposit amount, the total token_amount will be
positive, hence passing the check. Thus, the deposit will go through. This can be exploited by a malicious
operator in the following scenario:

1. Operator (msg.sender) specifies txType = 0 (deposit), _transfer_token_amount = -400,
fee = 500.

2. Computed token_amount will be 100.

3. 100 * TOKEN_DENOMINATOR will be transferred to the ZkBobPool from the user address.

4. accumulatedFee[msg.sender] will be increased by 500.

5. Operator withdraws 500 * TOKEN_DENOMINATOR of fees.

Thus, by depositing only 100 tokens malicious operator was able to withdraw 500 tokens as fees. The
malicious operator can drain the contract via the fees.

Note that the transact function is only callable by the privileged Operator role. However, the
OperatorManager contracts can be configured such that every user would be an operator.

Code corrected:

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

BOB Protocol confirmed that the case of asset drain was prevented by the verifier and the snark circuits
which are out of scope for this engagement. However, the deposit of a negative value still could have
been used as an undesired withdrawal. Stronger checks were introduced, namely a requirement that
_transfer_token_amount must be positive for deposits. The check during the withdrawal correctly
constrains the token_amount, since otherwise the same issue would occur in the other direction - a
small negative _transfer_token_amount + big positive fee can be positive, causing a withdrawal to
count as a deposit.

The full response of BOB Protocol team:

This confusing case is handled correctly by the verifier and snark circuits.

During usual deposit, the following happens:

1. User deposit amount is 400 (_transfer_token_amount is 400)

2. Relayer adds a 100 fee on top

3. Pool contract executes transferFrom for 500 (400 + 100) tokens

4. User shielded balance is increased by _transfer_token_amount (400), which is verified by the
circuit verifier

5. Relayer receives a 100 fee

6. So 500 transferred tokens were divided between user (+400) and relayer (+100)

During the suggested negative deposit, the following happens:

1. User deposit amount is -400 (_transfer_token_amount is -400, better to think of it as a balance
delta, rather than deposit amount)

2. Relayer adds a 500 fee on top

3. Pool contract executes transferFrom for 100 (-400 + 500) tokens

4. User shielded balance is increased by _transfer_token_amount (-400), which is verified by the
circuit verifier. As the balance delta is negative, the balance is actually being decreased by 400.

5. Relayer receives a 500 fee.

6. In the end, relayer receives 500 tokens, comprised of user shielded balance decrease (400)
and external token transfer (100)

7. Essentially, this turned a deposit into a very strange version of withdrawal

Although balance accounting works correctly here, this situation is indeed very confusing. It cannot
be triggered via the UI or SDK, as it just does not make sense for users to do something like that. To
get rid of this unnecessary source of confusion, we will introduce a bit stricter validation on the
deposit amounts, so that negative _transfer_token_amount are not allowed.

6.2 ERC20Permit.receiveWithSaltedPermit
Signature Can Be Front-Run
Design Medium Version 1 Code Corrected

The ZkBobPool permittable deposit relies on the ERC20Permit.receiveWithSaltedPermit
function. However, the signature used in this function can be used in the
ERC20Permit.saltedPermit function as well. An attacker can intercept the deposit transaction,
extract the signature and use it in the call to saltedPermit. As a result of this action, the permittable
deposit will fail due to the nonce already having been used. Thus, the attacker can front-run the
signatures and use them in unintended functions to cause a user's transactions to fail.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Code corrected:

The saltedPermit function was removed. Hence, a permittable transaction can't be front-run with a
call that uses the same signature for another function.

6.3 Admin Reentrancy in ERC20Recovery
Security Low Version 1 Code Corrected

The executeRecovery function in ERC20Recovery can only be called by the owner or the recovery
admin. When recovering the tokens, they are transferred to the recoveredFundsReceiver address. If
this address is a contract, the onTokenTransfer function is called. This call could be used to reenter
the executeRecovery function in order to double-claim the funds to recover. This would allow the
recovery admin or the owner to exceed the intended recoveryLimit.

As the recoveredFundsReceiver can only be set by the owner, and both the owner and recovery
admin are trusted addresses, the impact of this issue is limited.

Code corrected:

The recoveryRequestExecutionTimestamp and recoveryRequestHash are now deleted before
any external calls are made. Hence, if a reentrant call later calls executeRecovery again, there will be
no stored timestamp or hash, so the funds can't be double-claimed anymore.

6.4 Avoiding Recovery by Admin
Design Low Version 1 Specification Changed

If a user sees that their account is marked for recovery (using
ERC20Recovery.requestRecovery()), they can simply transfer funds to another account to stop
them from being recovered. It may also make sense from the perspective of trustworthiness to only allow
recovery of funds e.g. if the account is already frozen, or at least enforcing that an account must be
frozen in order to recover its funds.

Specification corrected:

BOB Protocol responded:

Recovery functionality is intended to be used only on dormant or non-existing users, if the user is
able to move his funds to a different address, his token should not be allowed for recovery.
Recovering frozen is a different use-case, although it can be also executed through the same
functionality.

With the assumption, that the proper checks will be performed before account recovery, this issue is
resolved.

6.5 BobVault Uint Conversions
Design Low Version 1 Code Corrected

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

To track the token.balance the BobVault contract uses uint128 values. Theoretically, it is possible to
provide a value that is great than type(uint128).max. This case will not be handled correctly by the
code due to the unsafe conversion to uint128, which truncates the value. As a result, internal accounting
will be broken. This happens in multiple functions such as: buy, sell, swap, give.

token.balance += uint128(sellAmount);

The amount before conversion in most cases is used as an argument for token transfer. However, the
practical safety of this conversion depends on the external contract, which is not optimal.

Code corrected:

BOB Protocol responded:

Although such extremely high amounts won’t be seen in practice, we added additional overflow
checks where necessary.

The checks were introduced in buy, swap, give. Check performed in sell is sufficient to prevent the
overflow.

6.6 Missing Sanity Checks
Design Low Version 1 Code Corrected

Many state-changing operations do not include sanity checks to ensure incorrect values are not set.
Consider adding checks to ensure these values aren't accidentally set incorrectly. This can happen e.g.
due to a bug in a front-end application resulting in empty values in calldata.

These operations include:

ERC20Blocklist:

• updateBlocklister() does not check that _newBlocklister is not address(0).

ERC20Recovery:

• setRecoveryAdmin() does not check that _recoveryAdmin is not address(0).

• setRecoveredFundsReceiver() does not check that _recoveredFundsReceiver is not
address(0).

Claimable:

• setClaimingAdmin does not check that _claimingAdmin is not address(0).

ZkBobPool:

• constructor() does not check any of the provided addresses.

• initialize() does not check that _root is not 0.

• setTokenSeller() does not check that _seller is not address(0).

• setOperatorManager() does not check that _operatorManager is not address(0).

BobVault:

• constructor() does not check that _bobToken is not address(0).

• setYieldAdmin() does not check that _yieldAdmin is not address(0).

• setInvestAdmin() does not check that _investAdmin is not address(0).

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Code corrected:

Checks were added where necessary. Explanation was added why certain cases do not need sanity
checks.

BOB Protocol responded:

We added a few sanity checks in places there we think they might be important:

• ZkBobPool: constructor(), initialize(), setOperatorManager()

• BobVault: constructor()

In other places, zero addresses are used for unsetting the specific privileges and rights:

• ERC20Blocklist: updateBlocklister() – zero address is used to limit the ability to block/unblock
accounts only by the governance.

• ERC20Recovery: setRecoveryAdmin() – zero address is used to limit the ability to recover funds
only by the governance. setRecoveredFundsReceiver() – there is a check that
recoveredFundsReceiver is not zero in _remainingRecoveryLimit (link) so it is safe to not
introduce additional checks

• Claimable: setClaimingAdmin() – zero address is used to limit the ability to claim tokens only by
the governance.

• ZkBobPool: setTokenSeller() – zero address is used to disable the ability for users to swap small
amount of BOB tokens to MATIC during the withdrawal process.

• BobVault: setYieldAdmin() - zero address is used to limit the ability to collect generated yield by
the governance; setInvestAdmin() – zero address is used to limit the ability invests tokens into
the yield provider only by the governance.

Moreover, these functions should only be called by the admin via governance process (e.g. from
Safe UI), making real UI typos very unlikely to happen.

6.7 No Events on State Changes
Design Low Version 1 Code Corrected

Many state-changing operations do not emit events. Consider emitting events for important state
changes.

These operations include:

ZkBobPool:

• initialize()

• setTokenSeller()

• setOperatorManager()

ZkBobAccounting:

• _setLimits()

• _resetDailyLimits()

• _setUsersTier()

BobVault:

• setYieldAdmin()

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 16

https://github.com/zkBob/zkbob-contracts/blob/80a4cbe30d7404f7d1ac137db8a2deafae54ccc7/src/token/ERC20Recovery.sol#L99
https://chainsecurity.com

• setInvestAdmin()

MutableOperatorManager:

• _setOperator()

ERC20Recovery:

• setRecoveryAdmin()

• setRecoveredFundsReceiver()

• setRecoveryLimitPercent()

• setRecoveryRequestTimelockPeriod()

Claimable:

• setClaimingAdmin()

Code corrected:

Events were added to the following functions:

ZkBobPool:

• setTokenSeller()

• setOperatorManager()

• withdrawFee()

ZkBobAccounting:

• _setLimits()

MutableOperatorManager:

• _setOperator()

The remaining functions are either not expected to be called regularly, or it was deemed unimportant for
the functions to emit events.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 BobVault.disableCollateralYield Potential
Reentrancy
Note Version 1

The token buffer, dust and yield fields are updated after the external call. If the yield contract has a
reentrancy point, where BobVault can be called again - this update can happen in an invalid state. The
external calls should happen after all the state variable updates.

Code corrected:

Statements were reordered to make the reentrancy impossible.

7.2 ERC20Permit Deletes Existing Approvals
Note Version 1

Using any of the public functions in ERC20Permit will zero out any pre-existing approval a user may have
had from the signer. Hence, a user should use any existing approval from the signer before calling
permit or its variations.

7.3 Incorrect Comment
Note Version 1

In the CustomABIDecoder contract, the _memo_fixed_size function features the following comment:

else if (t == 2) {
 // fee + recipient + native amount
 // 8 + 20 + 8
 r = 36;
}

However, in the case of a Withdraw operation the order in calldata is actually
... | fee | native_amount | receiver | The given sizes for the fields are correct (but
also in the wrong order).

Code corrected:

The comment was fixed.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7.4 Reentrant Tokens
Note Version 1

The BobVault contract should not use any tokens with reentrant transfers, such as an ERC777 token, as
collateral. This could lead to inconsistent event orderings or potentially more severe issues. This audit
was performed with the assumption that any tokens used as collateral do not have reentrant functionality.

Similarly, the ZkBobPool contract should not use an underlying token with reentrant calls, as it would
open up critical vulnerabilities such as draining the contract's balance through the withdrawFee
function.

7.5 Unused Constant
Note Version 1

In CustomABIDecoder.sol, the sign_r_vs_size constant is defined but never used.

BOB Protocol responded:

We won’t delete the constant, as keeping it does not impact the size/gas cost of the produced
bytecode (most likely it is being pruned by the optimizer), but it might become useful in the future, for
adding more extra fields.

7.6 Unused Return Data in YieldConnector
Note Version 1

The YieldConnector's _delegateFarmExtra function does not return anything, even though the
farmExtra function of the IYieldImplementation interface returns a bytes type.

Similarly, the claimTokens function of the Claimable contract does not check the return value of
IERC20(_token).transfer(_to, balance). Hence, false could be returned (meaning the
transfer did not actually take place).

Code corrected:

BOB Protocol responded:

Acknowledged and added missing return statement from farmExtra() function. The
_delegateFarmExtra() function is unused in the context of existing AAVE deployments, however, it
might be used for other lending markets integrations (e.g. Compound). Calls to
IERC20(_token).transfer(_to, balance) in the Claimable contract are only intended to be executed
within the manual governance process, thus actual transfer result does not imply any considerable
impact on the system.

BOB Protocol - zkBob - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 ZkBobPool Withdrawal Sandwich Attack
	5.2 BaseERC20 Overflow
	5.3 Daily Limits Can Be Avoided
	5.4 ERC20Permit.receiveWithPermit Signature Can Be Front-Run

	6 Resolved Findings
	6.1 ZkBobPool Fees Can Drain the Deposits of the User
	6.2 ERC20Permit.receiveWithSaltedPermit Signature Can Be Front-Run
	6.3 Admin Reentrancy in ERC20Recovery
	6.4 Avoiding Recovery by Admin
	6.5 BobVault Uint Conversions
	6.6 Missing Sanity Checks
	6.7 No Events on State Changes

	7 Notes
	7.1 BobVault.disableCollateralYield Potential Reentrancy
	7.2 ERC20Permit Deletes Existing Approvals
	7.3 Incorrect Comment
	7.4 Reentrant Tokens
	7.5 Unused Constant
	7.6 Unused Return Data in YieldConnector

