

PUBLIC

Code Assessment

of the Unslashed-Enzyme Bridge

Smart Contract

May 12, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 6

4 Terminology 7

5 Findings 8

6 Resolved Findings 10

7 Notes 12

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Mona and Marh,

First and foremost we would like to thank Avantgarde Finance for giving us the opportunity to assess the
current state of their Unslashed-Enzyme Bridge system. This document outlines the findings, limitations,
and methodology of our assessment.

The smart contract reviewed implements a bridge between Unslashed and Enzyme. It provides basic
bridging functionality without enforcing any additional restrictions or checks. The functionality works as
expected if the bridge connects to a properly configured fund and all trusted roles execute their actions
correctly. Although these assumptions are documented within the codebase we highly recommend
documenting all assumptions/prerequisites on the fund's configuration more thoroughly in the
documentation to avoid any potential issue during operation.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 5

• Code Corrected 2

• Specification Changed 1

• Risk Accepted 1

• Acknowledged 1

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code file EnzymeBridge.sol based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1
22 April 2021 1c0dfad2b90d6f3329a1aac6388874a12e9d1b93 Initial Version

2
2 May 2021 98112535d05a4ef0acf4019c938079803d705698 After intermediate report

For the solidity smart contracts, the compiler version 0.6.6 was chosen.

The contract under review connects to an external system called Enzyme. The behavior of the external
system may change in the future. For the purpose of the audit the Enzyme implementation as of April
2021 was considered.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

The smart contract reviewed implements a bridge between Unslashed and Enzyme. Enzyme is an
on-chain asset management system supporting interactions with all major DeFi applications. Unslashed
is a decentralized insurance protocol supporting many different markets. Furthermore, it allows for
multiple markets to be bundled in a basket. This enables users to provide collateral for the whole basket
instead of individual markets. The basket contract is the main entry point for users. In order to avoid
having the full collateral being unused in the basket contract, the admin of the basket may invest a part of
the available Ether via the Enzyme Protocol. In order to do so, a basket contract can feature functionality
to connect to the Enzyme bridge. If this feature is supported only the admin of the basket can
deposit/withdraw Ether to and from the Enzyme fund. When depositing into an Enzyme fund, shares are
minted to the depositor which represents his share of the fund. These non-transferable shares will be
held by the Enzyme Bridge Proxy contract, thus each basket must deploy its own Enzyme Bridge Proxy
contract. The Enzyme Fund must be uniquely used by this Basket (via the Enzyme Bridge) only, no other
address may invest or hold a share of the fund. The code of the Basket contract assumes the full gross
asset value of the fund belongs to the basket.

The Enzyme bridge exposes three functionalities:

• depositEthFromInvestor: The admin transfers Ether to an Enzyme fund and receives
shares.

• withdrawEthToInvestor: The admin gives back their shares and receives Ether.

• getBalanceInEth: Retrieves the gross asset value of the fund.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2.3 Trust Model & Roles
The Enzyme Bridge simply provides the connection between an Unslashed Basket contract and an
Enzyme fund. It does not provide any guarantees or restrictions on what the fund's configuration can be
or what is allowed to do with the funds under management. The Enzyme System itself features a set of
policies which can be enabled in order to control the risk and exposure. It's a requirement that the
InvestorWhitelist policy is active with the Enzyme Bridge set as the only whitelisted address
allowed to buy shares. The denomination asset of the fund must always be WETH. No further information
has been given about the planned policy configuration.

The trust model assumes that this fund is fully controlled by an honest administrator of Unslashed who is
assumed to do favorable actions (e.g. lendings) only and comply with all requirements of the basket.
Notably, this includes that he always exchanges everything back into WETH if required so that the Admin
of the Unslashed basket can successfully retrieve the funds using withdrawEthToInvestor().

Hence there are three separate admin roles, all controlled by Unslashed and all are fully trusted:

• The admin of the Basket contract

• The admin of the Enzyme Fund belonging to this basket

• The admin of the Proxy

All state changing functions of the bridge can only be triggered by the Investor role which is the
Basket contract using this bridge. A basket contract in the Unslashed system consists of one or multiple
insurance markets. Users interact with Unslashed through these basket contracts.

Our understanding is that the Enzyme Fund is only used to lend Ether in order to build interest.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Risk AcceptedOutdated Compiler Version

• Acknowledged_weth Could Be a Constant

5.1 Outdated Compiler Version
Design Low Version 1 Risk Accepted

The project uses an outdated version of the Solidity compiler.

pragma solidity 0.6.6;

Known bugs in version 0.6.6 are:
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1416

More information about these bugs can be found here: https://docs.soliditylang.org/en/latest/bugs.html

At the time of writing the most recent Solidity release is version 0.6.12. For version 0.6.x the most
recent release is 0.6.12 which contains some bugfixes but no breaking changes.

The compiler was not changed as the client responded:

We will address this later for an overall code review.

5.2 _weth Could Be a Constant
Design Low Version 1 Acknowledged

The constant _weth which represents the same address across all Enzyme Bridges could be set as
constant. This would reduce unnessesary storage operations.

Acknowledged:

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 8

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1416
https://docs.soliditylang.org/en/latest/bugs.html
https://chainsecurity.com

Avantgarde Finance is aware of this and commented that it does have a significant impact as the variable
will be accessed a few times only.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code CorrectedDenomination Asset Check on Initialization

• Code CorrectedRedeem Shares Return Value Not Used

• Specification ChangedwithdrawEthToInvestor Specification Discrepancy

6.1 Denomination Asset Check on Initialization
Design Low Version 1 Code Corrected

For the correct operation of the bridge, it is critical that the denomination asset of the vault is correctly set
to WETH during initialization. Such a check is not present in the code.

Code Changed:

A check has been introduced in the initialize function

require(IComptrollerProxy(controllerProxy).getDenominationAsset() == weth, "EnzymeBridge: wrong fund asset");

6.2 Redeem Shares Return Value Not Used
Design Low Version 1 Code Corrected

The return values of

IComptrollerProxy(_controllerProxy).redeemShares()

and

IComptrollerProxy(_controllerProxy).redeemSharesDetailed(...)

are not used. Both functions return the payout assets and amounts. Instead, the resulting amount of
tokens is checked using balanceOf(...), incurring additional gas costs. The benefit of the current
implementation is the fact that one can withdraw tokens that were already in the vault before the
redemption. However, this choice is inconsistent with the later choice to only send the ether which was
recently unwrapped.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

uint256 result = IWETH9(_weth).balanceOf(address(this));
IWETH9(_weth).withdraw(result); // returns eth to us
IInvestable(_investor).receiveEthFromFund{value: result}();

Code Corrected:

The code has been changed so it uses the return value of redeemShares and
redeemSharesDetailed. Moreover, the returned result is used to ensure that only one returned asset
is used. Finally, the code now withdraws a consistent amount of WETH and ETH. of

(, payoutAmounts) = IComptrollerProxy(_comptrollerProxy).redeemShares();

....

(, payoutAmounts) = IComptrollerProxy(_comptrollerProxy).redeemSharesDetailed(sharesQuantity, empty, empty);
...

require(payoutAmounts.length == 1, "EnzymeBridge: fund not converted");
...

uint256 result = payoutAmounts[0];
IWETH9(_weth).withdraw(result); // returns eth to us
IInvestable(_investor).receiveEthFromFund{value: result}();

6.3 withdrawEthToInvestor Specification
Discrepancy
Correctness Low Version 1 Specification Changed

The comment for withdrawEthToInvestor reads as follows: Note that due to possible sha
re value rounding the resulting amount may be slightly greater than requested
.

Another rounding error may happen when the shares' quantity required is calculated:

uint256 sharesQuantity = amount.mul(PRECISION_18E).div(shareValue18ePrecision);

Consider the case when the share value is not affected by rounding errors. Due to possible rounding
errors when the shares' quantity is calculated, the shares' quantity required to receive the amount in
WETH may be underestimated. Hence the Ether amount withdrawn might be slightly smaller and thus the
comment does not hold.

Specification Changed:

The documentation correctly now states:

/// Note that due to possible share value or division rounding
/// the resulting amount may be slightly greater or smaller than requested.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The bridge contract
in scope for this review connects Unslashed to Enzyme which consists of many interacting contracts.
Hence, the mentioned topics serve to clarify or support the report, but do not require a modification inside
the project. Instead, they should raise awareness in order to improve the overall understanding for users
and developers

7.1 Illiquid Lending Providers
Note Version 1

The basket can only withdraw when all assets of the fund have been exchanged into WETH. Illiquid
liquidity protocols may be unable to redeem a large amount of tokens at times. Hence a fund manager
may be unable to redeem all assets into their underlying.

E.g. a large amount of WETH has been lent into the Aave liquidity pool. When the fund manager wants to
redeem this large amount of derivative tokens back into the underlying WETH, it could be the case that the
liquidity may be insufficient as currently a large amount of WETH is lent out.

During this period Ether withdrawal is blocked.

7.2 Migration to New Enzyme Release Is Not
Supported
Note Version 1

This Enzyme Bridge in connection with the current implementation of the Basket contract does not
support the migration of a fund to a new release of Enzyme.

When a fund is upgraded in Enzyme, the ComptrollerProxy is replaced by a new one while the old
one is selfdestructed. The VaultProxy holding the funds remains.

After such a migration all calls from the bridge to the comptroller will fail as the contract no longer exists.
This affects all three functions (deposit / withdraw / getBalance).

Note that function setFund() of the basket contract cannot be used to recover from this situation: This
function requires the fund's balance to be 0. The call to the non-existing comptroller will revert the
transaction.

All shares should be redeemed before a migration is initiated. Shares remaining after a migration might
be stuck with the current code.

After looking at the migration scripts present, we understand that the EnzymeBridge is to be used via a
Proxy. This would allow to upgrade the implementation and recover the shares.

7.3 No Fees
Note Version 1

Funds of Enzyme can configure fees investors have to pay in order to participate in a fund. These fees
are paid to the fund manager in the form of shares. Note that the implementation of the Enzyme Bridge
relies on the fact that the basket is the only shareholder of the fund and no other address holds such
shares. Hence enabled fees for the fund are not compatible with the bridge, funds of the bridge must not
have fees configured.

Avantgarde Finance - Unslashed-Enzyme Bridge - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.2 System Overview
	2.3 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Outdated Compiler Version
	5.2 _weth Could Be a Constant

	6 Resolved Findings
	6.1 Denomination Asset Check on Initialization
	6.2 Redeem Shares Return Value Not Used
	6.3 withdrawEthToInvestor Specification Discrepancy

	7 Notes
	7.1 Illiquid Lending Providers
	7.2 Migration to New Enzyme Release Is Not Supported
	7.3 No Fees

