

PUBLIC

Code Assessment

of the Sulu Extensions X

Smart Contracts

May 15, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Notes 13

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Avantgarde Finance Team,

Thank you for trusting us to help Avantgarde Finance with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Sulu Extensions
X according to Scope to support you in forming an opinion on their security risks.

Avantgarde Finance extended the functionality of the ParaSwapV5 adapter to add support for MegaSwap
and SimpleSwap and changed how the errors are caught. Moreover, the functionality of the
GatedRedemptionQueueSharesWrapper was extended to allow vault owners to force the transfer of
shares from one account to another and to enable a "Request" DepositMode. Finally, two new adapters
were introduced for ZeroExV4 and 1inch swaps.

The most critical subjects covered in our audit are functional correctness, access control, and integration
with external protocols. One high-severity issue was found in
GatedRedemptionQueueSharesWrapper, where a user can purposefully front-run a
depositFromQueue call and make another user who made a deposit request lose their funds. All the
issues have been addressed. The general subjects covered are code complexity, upgradeability, and
documentation. Security regarding all the aforementioned subjects is high. In summary, we find that the
codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk Accepted 1

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Sulu Extensions X repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 2 May 2023 1dc4357f1db54a565e8f93416511123d1101dac8 Initial Version

2 9 May 2023 da8ed1e235f986b23d909cb717d0cc290e346fc6 Final Version

For the solidity smart contracts, the compiler version 0.6.12 was chosen.

The following files are included in the scope:

persistent/shares-wrappers/gated-redemption-queue/:

• GatedRedemptionQueueSharesWrapperLib.sol

• GatedRedemptionQueueSharesWrapperFactory.sol

• base/GatedRedemptionQueueSharesWrapperLibBase1.sol

Note that the above contracts have been in scope of the previous review Sulu extensions IX. The
contracts have been extended since then. The review was concerned only with the additional
functionality introduced.

release/extensions/integration-manager/integrations/adapters/:

• ZeroExV4Adapter.sol

• OneInchV5Adapter.sol

• ParaSwapV5Adapter.sol

release/extensions/integration-manager/integrations/utils/actions/

• ZeroExV4ActionsMixin.sol

• OneInchV5ActionsMixin.sol

• ParaSwapV5ActionsMixin.sol

Note that ParaSwapV5Adapter.sol and ParaswapV5ActionMixin.sol were initially reviewed in
Sulu extensions I. These contracts were audited only with regards to the additional functionality
introduced.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope
All the contracts that are not explicitly mentioned in the Scope section are excluded from scope. The
external systems, with which the Sulu interacts, are assumed to work correctly. Moreover, all the libraries
used such as the OpenZeppelin library are assumed to work correctly and not in scope of this review.
Finally, attack vectors, such as unfavourable for the fund trades, employed by the managers of the funds
have not been considered as the managers are considered trusted by the system.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance implements integrations with various external systems. Some integrations were
newly added, others were updated. Additionally, the GatedSharesWrapper was updated.

2.2.1 GatedSharesWrapper: Add forced transfers and
Request DepositMode
For a full description of the shares wrapper, consult the Sulu Extensions IX audit report.

The GatedSharesWrapper has been updated to include three new features:

1. forceTransfer() allows the vault owner to move wrapped shares from any address to any
other address without their approval. Unprocessed deposit requests are unaffected. This is
intended to be used in case of loss of private keys. Note that this means the owner is fully
trusted and can take control of any user's wrapped shares at any time.

2. The wrapper can use the native asset as a redemption asset. In this case, kick sends a
wrapped version of the asset to its recipient, and redeemFromQueue unwraps the asset
before it sends it to the recipient.

3. A new DepositMode has been introduced, which can be enabled to give the wrapper managers
control over when to process deposits instead of allowing them at any time.

The following functions are used with the new Request DepositMode:

• requestDeposit() allows users to enter the depositQueue for their depositAsset by
transferring the depositAmount to the SharesWrapper. This does not mint wrapped shares yet.

• cancelRequestDeposit() cancels the depositRequest and refunds the user.

• depositFromQueue() allows managers to process queued deposits, depositing to the vault
and minting wrapped shares to the users. Users to be processed can be specified by address.

• depositAllFromQueue() allows managers to process all deposits that use the specified
depositAsset.

• setDepositMode() allows managers to switch between the DepositModes Direct (deposit at
any time) and Request.

There is a separate depositQueue for each depositAsset. Users can specify that they want to use native
Ether, which the wrapper will automatically convert to and from WETH. There is no slippage protection on
deposit and withdrawal requests. Finally, deposits are currently supported only for vaults deployed by
Fund Deployer V4.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.2 ParaswapV5
The ParaswapV5 adapter was extended to support the MegaSwap and SimpleSwap functionalities of
the protocol. The incoming amounts from the trades are sent directly to the vaults. When using
takeMultipleOrders(), unspent tokens are returned to the vault after the end of the trade.
takeOrder() assumes that Paraswap does not leave any remainders of spent assets.

2.2.3 1inch swaps
The 1inchV5 adapter is introduced. Vaults can trade their assets by calling swap of 1inch. The
incoming amounts from the trades are sent directly to the vaults. The unspent tokens are also returned to
the vault after the end of the trade.

2.2.4 ZeroExV4
The adapter for ZeroExV4 is introduced. Enzyme vaults can submit orders as takers. Order makers can
be restricted to only whitelisted ones by a list in the address list registry. The trades include only ERC20
tokens in the asset universe of Enzyme. The adapter supports the fillOrKillLimitOrder and
fillOrKillRfqOrder calls. The interaction with ZeroExV4 is assumed to fully fill the taker's order and
not leave a remainder of spent assets.

2.2.5 Roles and Trust Model
Please refer to the main audit report and the extension audit reports for a general trust model of Sulu.

In general, we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple entry
points, callbacks, fees-on-transfer, or other special behaviours.

Fund owners and asset managers are generally fully trusted for a fund. However, their powers can be
limited through the fund's settings. The funds settings/policies are assumed to be set up correctly for the
intended configuration/usage.

The vault owner can take control of any GatedSharesWrapper shares at any time. The wrapper
managers can force wrapper redemptions or disallow redemptions at any time.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting with which includes choosing appropriate parameters.

All external systems are expected to be non-malicious and work correctly as documented.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedNo Asset Check in requestDeposit()

5.1 No Asset Check in requestDeposit()
Design Low Version 1 Risk Accepted

CS-SUL10-001

The requestDeposit function in GatedRedemptionQueueSharesWrapperLib takes a
_depositAsset argument. This asset should match up with one of the deposit assets of the
corresponding vault. If they do not match, it will be impossible for the manager to call
__depositFromQueue for that asset.

As there is no check on _depositAsset, a user may accidentally deposit an incorrect asset. A user
accidentally making such a request can get their funds back by calling cancelRequestDeposit.

Note that in Enzyme V4 each vault only has a single deposit asset, but this may change in the future.

Risk Accepted:

Avantgarde Finance acknowledges that this can happen and accepts the risk that a user could waste
gas.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedIncorrect depositFromQueue Can Lead to Loss of User Funds

Medium -Severity Findings 0

Low -Severity Findings 0

6.1 Incorrect depositFromQueue Can Lead to
Loss of User Funds
Security High Version 1 Code Corrected

CS-SUL10-002

depositFromQueue() in GatedRedemptionShareWrapper takes an array of addresses and processes
their deposit, removing them from the DepositQueue. It reads the user's position index in the queue
from storage. Afterwards, the Request at index is deleted.

However, there is no check if the address actually had a Request in the queue to begin with. If a user
has no request, their storage mapping will point to a Request with the default index of zero. This will
result in the first Request in the queue being deleted. The user who had the deleted request will not
receive any wrapped shares and their funds will be lost.

As __depositFromQueue() is protected with __onlyManagerOrOwner(), only the managers can
call the function with a non-existing address, which would cause the issue.

This could happen on 2 occasions:

1. The manager accidentally passes an incorrect address.

2. The manager's depositFromQueue call gets frontrun by one of the users in the DepositQueue
calling cancelRequestDeposit(). Now the canceled Request no longer exists, leading to a
loss of funds for another user. If the manager passed all users in the queue as argument, the
attacker will also need to deposit again from another address after they cancel, otherwise the
queue will not have a sufficient length and will revert. Note that the attack is more likely to happen
when there's no whitelisting in place i.e., when useDepositApprovals is set to false.

depositAllFromQueue() is not affected, as here incorrect addresses cannot be passed.

Code corrected:

The internal __removeDepositRequest function now validates that a Request has an assetAmount
that is greater than zero. This ensures that the Request must exist before removing it. If a non-existant
Request is passed, the function now reverts.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6.2 No minIncomingAsset Check for ZeroEx
Informational Version 1 Code Corrected

CS-SUL10-003

In ZeroExV4Adapter, the parseAssetsForAction function returns a minIncomingAssetAmounts_
array with only a zero value. This means there is no internal check on the trade price, as is done in other
adapters.

As only single orders with a fixed price can be taken on ZeroEx, there can be no slippage.

However, a vault admin may accidentally take an order with a lower price than they intended.

Code corrected:

The parseAssetsForAction function now sets the minIncomingAssetAmounts_ to the amount
that is expected to be received given the price of the order and the taker amount.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Cannot Pay ZeroEx Protocol Fee
Note Version 1

The ZeroEx protocol has a fee mechanism, where a fee in native ETH must be attached to fill limit orders.
The ZeroExV4Adapter does not support sending ETH with the limit order call to pay this fee.

However, the fee is currently set to zero as of the time of this report and has been since September 29,
2021.

If the fee is set to a non-zero value again in the future, the adapter will no longer be able to make Limit
Order trades.

7.2 Some ZeroEx Order Restrictions Not
Supported
Note Version 1

ZeroEx orders have taker and txorgin fields, which restrict who can take a particular order. These
restrictions cannot be used to specify Enzyme vaults as multiple vaults can use the same
ZeroExV4Adapter adapter.

If, for example, the taker field was used to restrict an order, it would be set to the address of the
adapter. Any caller of the adapter would be able to take the order.

Avantgarde Finance - Sulu Extensions X - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 GatedSharesWrapper: Add forced transfers and Request DepositMode
	2.2.2 ParaswapV5
	2.2.3 1inch swaps
	2.2.4 ZeroExV4
	2.2.5 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 No Asset Check in requestDeposit()

	6 Resolved Findings
	6.1 Incorrect depositFromQueue Can Lead to Loss of User Funds
	6.2 No minIncomingAsset Check for ZeroEx

	7 Notes
	7.1 Cannot Pay ZeroEx Protocol Fee
	7.2 Some ZeroEx Order Restrictions Not Supported

