

PUBLIC

Code Assessment

of the Sulu Extensions VI

Smart Contracts

October 13, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Mona and Sean,

Thank you for trusting us to help Avantgarde Finance with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Sulu Extensions
VI according to Scope to support you in forming an opinion on their security risks.

Avantgarde Finance implements changes for the external position for Compound to improve validation of
the borrow and repay actions such that fund managers cannot mistakenly pay back zero amounts on
unused cTokens which earlier removed the debt for a cToken with the same underlying. Additionally,
changes were made to the fee reserve so that governance can do arbitrary calls from the fee reserve.
Further, a new integration is implemented that allows minting and burning Balancer v2 LPs for arbitrary
pools. For weighted Balancer v2 pools a pricefeed has been implemented. Last, a new external position
type is introduced to integrate with Notional v2 so that depositing collateral, lending, borrowing, and
paying back debt is possible.

The most critical subjects covered in our audit are functional correctness, interaction with external
systems according to their documentation, and compatibility with the Enzyme system. Security regarding
all the aforementioned subjects is high.

The general subjects covered are trustworthiness, documentation, and error handling. Security regarding
all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 3

• Code Corrected 1

• Specification Changed 1

• Acknowledged 1

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Sulu Extensions VI repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 19 September 2022 07443093c77453d13c79482fc4bd77f9ab7f4d3e Initial Version

2 10 October 2022 a3765347b7a1e770dd27fb5990efc5581181e239 Second Version

For the solidity smart contracts, the compiler version 0.6.12 was chosen.

Compound Debt Position Changes:

* contracts/release/extensions/external-position-manager/external-positions/compound-debt/CompoundDebtPositionLib.sol
* contracts/release/extensions/external-position-manager/external-positions/compound-debt/CompoundDebtPositionParser.sol
* contracts/release/extensions/external-position-manager/external-positions/compound-debt/ICompoundDebtPosition.sol

ProtocolFeeReserve Changes:

* contracts/persistent/protocol-fee-reserve/ProtocolFeeReserveLib.sol

Balancer v2 LP Integration and LP Price Feed:

* contracts/release/extensions/integration-manager/integrations/adapters/BalancerV2LiquidityAdapter.sol
* contracts/release/extensions/integration-manager/integrations/utils/actions/BalancerV2ActionsMixin.sol
* contracts/release/infrastructure/price-feeds/derivatives/feeds/BalancerV2WeightedPoolPriceFeed.sol
* contracts/release/interfaces/IBalancerV2Vault.sol
* contracts/release/interfaces/IBalancerV2WeightedPool.sol
* contracts/release/interfaces/IBalancerV2WeightedPoolFactory.sol

Note that for the following contracts copied from Balancer we only compared whether the functions have
the same semantics:

• contracts/release/utils/BalancerV2FixedPoint.sol

• contracts/release/utils/BalancerV2LogExpMath.sol

Notional Finance External Position:

* contracts/release/extensions/external-position-manager/external-positions/notional-v2/INotionalV2Position.sol
* contracts/release/extensions/external-position-manager/external-positions/notional-v2/NotionalV2PositionDataDecoder.sol
* contracts/release/extensions/external-position-manager/external-positions/notional-v2/NotionalV2PositionLib.sol
* contracts/release/extensions/external-position-manager/external-positions/notional-v2/NotionalV2PositionParser.sol
* contracts/release/interfaces/INotionalV2Router.sol

2.1.1 Excluded from scope
Only the files mentioned above are in scope. Compound is not in scope and is expected to work correctly
as documented. Balancer v2 is not in scope and is expected to work correctly as documented. Notional
v2 is not in scope and is expected to work correctly as documented.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance offers extensions, which expand the capability of Enzyme Sulu. Some extensions
were changed, while others were newly added.

Please consider our previous audit report of the system for detailed descriptions of external positions and
policies.

2.2.1 Compound Debt Position Changes
There was an issue with Compound debt positions, where for assets that have two cTokens (e.g. cwBTC
and cwBTC2), it was possible to repay using a different one than was borrowed against. Since the debt
against that cToken was zero, nothing was paid back. The enzyme system still considered the original
debt repaid, which could lead to underreporting debt. This made the vault value higher than it should
have been. The following changes have been made:

• For the RepayBorrow action, the CompoundDebtPositionLib now loads the cToken that was used to
borrow the asset from storage. Hence, it is no longer possible to repay the debt for a different
cToken than the one that was used to borrow, which would lead to debt becoming untracked.

• For the Borrow action, the parser now validates that a new borrow uses the same cToken for the
underlying asset as previous borrows. If it is the only borrow of that asset, it stores the cToken. An
asset can only be borrowed against one cToken at a time. If all debt is paid back, a new borrow can
be made against a different cToken for the same asset.

2.2.2 Arbitrary Council Call on ProtocolFeeReserve
Changes
The governance function withdrawMlnTokenBalanceTo is replaced with governance function
callOnContract, which allows calling arbitrary contracts with arbitrary call data from
ProtocolFeeReserve. The call is restricted to the Dispatcher Owner, which is the Enzyme council in the
main deployment. The Enzyme Council is a fully trusted user in the trust model.

2.2.3 Balancer v2 LP Integration and LP Price Feed
Balancer v2 is an AMM that supports multiasset pools, on which users can swap tokens or provide
liquidity. The core contract of the Balancer system is the vault, which is the central entrypoint for users.
Pools are connected to the vault and are interacted with through hooks.

Avantgarde Finance provides a new integration for depositing into (mint pool LP tokens such that fees
are earned) and for withdrawing (burn pool LP tokens) from Balancer v2. To support such assets, a new
price feed for such LP tokens is offered.

The integration offers the following functionality to fund managers:

• lend(): Deposit underlying tokens to the vault, such that LP tokens for the desired pool are
received, by calling joinPool() on the vault.

• redeem(): Exit from the vault, such that LP tokens are burnt and the underlying tokens of the pool
are received, by calling exitPool() on the vault.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 6

https://raw.githubusercontent.com/enzymefinance/protocol/v4/audits/2021-09-CS-protocol-v4.pdf
https://chainsecurity.com

Note that holding LP tokens without a price feed or without a price feed for its underlying can lead to
reverting price feeds.

The BalancerV2WeightedPoolPriceFeed provides the price of LP tokens based on the value of their
underlying tokens. To be able to receive a price feed for a pool's LP tokens, the factory contract that
deployed the pool must be added. Factories can be added and removed by governance through
addPoolFactories() and removePoolFactories(). All pools deployed by a tracked factory will be
supported assets (isSupportedAsset() returns true). However, the price feed is only intended to be
used with weighted pools.

The price of LP tokens is computed as

PriceLP =
∏
i
Balanceweighti

i

totalSupplyLP
∏
i

Pricei
weighti

where the weights, total supply and balances are queried from Balancer v2, and the prices are the token
prices in an intermediary asset. Please see Balancer's documentation.

2.2.4 Notional Finance integration
Notional Finance is a protocol for fixed rate lending and borrowing.

Avantgarde Finance has created a new external position type, which can hold assets in Notional Finance.
Note that it integrates with the fCash and regular cash mechanics of Notional.

The external position offers the following actions to fund managers:

• AddCollateral deposits assets into Notional finance, where they are stored as cTokens. These
can be used as collateral but will not be lent on Notional. It calls the Notional router's
depositUnderlyingToken() function.

• Lend lends assets at a fixed term on Notional, which is represented as a positive fCash balance. It
calls Notional router's batchBalanceAndTradeAction function. fCash can is also considered to
be collateral on Notional. fCash cannot be redeemed until the maturity date has passed.

• Redeem redeems yieldTokens from Notional after lent fCash reaches maturity. It calls Notional
router's withdraw() function.

• Borrow borrows assets with a fixed term from Notional, against cToken or fCash collateral.
Borrowed assets are represented as a negative fCash balance. It calls Notional router's
batchBalanceAndTradeAction() function.

The NotionalV2PositionLib also offers external functions for calculating the value of the external position.
getManagedAssets() returns all positively valued assets and their amounts, getDebtAssets()
returns all negatively valued assets (debts) and their amounts. The amount of underlying tokens
represented by fCash is approximated using the Notional router's getPresentfCashValue(), which
values the fCash based on their value at redemption, the current interest rate and the time to maturity.

2.2.5 Trust Model
Please refer to the main audit report for a general trust model of Sulu.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting with which includes choosing appropriate parameters. Fund managers and
asset managers are generally fully trusted for a fund. However, their powers can be limited through the
fund's settings.

All external systems are expected to be non-malicious and work correctly as documented.

In general we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple
entrypoints nor callbacks.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 7

https://dev.balancer.fi/references/lp-tokens/valuing-balancer-lp-tokens#estimating-price-robustly-on-chain
https://chainsecurity.com

2.2.6 Changes in V2
The Compound position parser now solely validates against the price feed while the library now validates
against the stored cToken.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• AcknowledgedTemporary DOS Through Donations

5.1 Temporary DOS Through Donations
Design Low Version 1 Acknowledged

In Notional, depositing collateral for others is possible. For example, depositUnderlyingToken can
deposit collateral to another address than msg.sender. Hence, it is possible to donate collateral to a
position in such a way that it becomes tracked within the Notional system. Since the external position
computes the managed assets based on what Notional's getAccount returns, such donations will
become visible to the external position. Hence, it could be possible to temporarily DOS the position by
donating to it an unsupported token.

Acknowledged:

Avantgarde Finance replied:

Preventative measures for this are challenging and add complexity, so since the worst case is that the position will have a reverting price,
and since the owner can resolve this state by removing that collateral, we will provide a fix if this ever becomes an issue in practice.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedBalancer Price Feed Vulnerable to Read-Only Reentrancy

Medium -Severity Findings 1

• Code CorrectedBorrowing From cTokens With Same Underlying Can Lead to Unreported Debt

Low -Severity Findings 2

• Code CorrectedRemaining BPT in Adapter

• Specification ChangedmulUp Incorrect Comment

6.1 Balancer Price Feed Vulnerable to Read-Only
Reentrancy
Security High Version 1 Code Corrected

Balancer's system is vulnerable to read-only reentrancy. During the removal of liquidity, an inconsistency
between the total supply and a pool's balances can be created (using native ETH transfers). That can be
leveraged to manipulate the price feed upwards - leading to an over-evaluation of the fund.

Code corrected:

Now, a reentrancy protected call to setRelayerApproval() is made when the price is computed to
ensure that Balancer is not reentered.

6.2 Borrowing From cTokens With Same
Underlying Can Lead to Unreported Debt
Correctness Medium Version 1 Code Corrected

Some cTokens may have the same underlying (e.g. cWBTC and cWBTC2). The parser validates the
cTokens to borrow from as follows:

// validate ctokens
for (uint256 i; i < cTokens.length; i++) {
 address cTokenStored = ICompoundDebtPosition(_externalPosition)
 .getCTokenFromBorrowedAsset(assets[i]);

 if (cTokenStored == address(0)) {

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

 require(
 CompoundPriceFeed(getCompoundPriceFeed()).getTokenFromCToken(cTokens[i]) ==
 assets[i],
 "parseAssetsForAction: Bad token cToken pair"
);
 } else {
 require(
 cTokenStored == cTokens[i],
 "parseAssetsForAction: Assets can only be borrowed from one cToken"
);
 }
}

Note that the validation aims to prohibit borrowing from two cTokens that have the same underlying. In
most cases, this works correctly. However, borrowing from both cTokens (with the same underlying) for
the first time in the same action will bypass the validation. Consider the following scenario:

1. Borrow for the first time from both cWBTC and cWBTC2.

2. In the first iteration of the loop, cTokenStored will be 0x0 due to WBTC never being borrowed.

3. In the second iteration of the loop, cTokenStored will still be 0x0 since the mapping in the
external position has not been updated yet. The update will happen in __borrowAssets, after the
parser returns.

This will allow the external position to borrow from both cTokens. Note that __borrowAssets will only
keep track of the first cToken. Hence, debt of the second cToken will not be tracked. The total debt will be
underreported in such a scenario.

Code corrected:

The parser now solely validates against the price feed while the library now validates against the stored
cToken.

6.3 Remaining BPT in Adapter
Correctness Low Version 1 Code Corrected

Avantgarde Finance reported an issue when redeeming Balancer LP tokens. It was possible to redeem
BPTs so that a maximum amount of burned LP tokens is specified along with exact received underlying
amounts. If the maximum was not reached, the BPT remained in the adapter.

Code corrected:

After redemption, any surplus BPT remaining in the contract is sent back to the vault proxy.

6.4 mulUp Incorrect Comment
Correctness Low Version 1 Specification Changed

 function mulUp(uint256 _a, uint256 _b) internal pure returns (uint256 res_) {
 uint256 product = _a * _b;
 require(_a == 0 || product / _a == _b, "mul overflow");

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

 if (product == 0) {
 return 0;
 } else {
 // The traditional divUp formula is:
 // divUp(x, y) := (x + y - 1) / y
 // To avoid intermediate overflow in the addition, we distribute the division and get:
 // divUp(x, y) := (x - 1) / y + 1
 // Note that this requires x != 0, which we already tested for.

 return ((product - 1) / ONE) + 1;
 }
}

The comment in the mulUp() function of BalancerV2FixedPoint mentions divUp. It was likely copied
from there and not changed. This issue is also present in the Balancer contract that mulUp() was
adopted from.

Specification changed:

The comments in the files were adapted to reflect that the comments are not reviewed.

Avantgarde Finance - Sulu Extensions VI - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Compound Debt Position Changes
	2.2.2 Arbitrary Council Call on ProtocolFeeReserve Changes
	2.2.3 Balancer v2 LP Integration and LP Price Feed
	2.2.4 Notional Finance integration
	2.2.5 Trust Model
	2.2.6 Changes in V2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Temporary DOS Through Donations

	6 Resolved Findings
	6.1 Balancer Price Feed Vulnerable to Read-Only Reentrancy
	6.2 Borrowing From cTokens With Same Underlying Can Lead to Unreported Debt
	6.3 Remaining BPT in Adapter
	6.4 mulUp Incorrect Comment

