
 

 

PUBLIC

Code Assessment

of the Sulu Extensions VIII

Smart Contracts

December 8, 2022

Produced for

by



Contents

1   Executive Summary 3

2   Assessment Overview 5

3   Limitations and use of report 10

4   Terminology 11

5   Findings 12

6   Resolved Findings 13

7   Notes 15

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com


1   Executive Summary
Dear Mona and Sean,

Thank you for trusting us to help Avantgarde Finance with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Sulu Extensions
VIII according to Scope to support you in forming an opinion on their security risks.

Avantgarde Finance implements new adapters for Aave V3 and Compound V3 and refactors the
codebase of the Aave V2 adapter so that code can be reused for the Aave V3 adapter. Additionally,
Avantgarde Finance introduces so-called list owner contracts, used for validation in the aforementioned
adapters, that can add validated items to a list. Further, Avantgarde Finance implements an upgrade for
the Maple external position to allow migration to V2.

The most critical subjects covered in our audit are functional correctness, access control, and integration
with external protocols. Security regarding all the aforementioned subjects is high.

The general subjects covered are code complexity, upgradeability, and documentation. Security
regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com


1.1   Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 0

Low -Severity Findings 2

• Code Corrected 1

• Specification Changed 1

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com


2   Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

 

2.1   Scope
The assessment was performed on the source code files inside the Sulu Extensions VIII repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1
21 November
2022

10e16f2b6f0e7b170ae81027dd446c1919920d
8f

Initial Version

2
30 November
2022

320200f16e952e8b4163bbdc36620373fc7aa68
9

After Intermediate Report

3
07 December
2022

97b2b6eec6f48ad896df305d080faaff3d8b710e Final Version

For the solidity smart contracts, the compiler version 0.6.12 was chosen.

The following files and directories were in scope

Maple External Position

contracts/persistent/external-positions/maple-liquidity/
contracts/release/extensions/external-position-manager/external-positions/maple-liquidity/
contracts/release/interfaces/IMapleV1MplRewards.sol
contracts/release/interfaces/IMapleV1MplRewardsFactory.sol
contracts/release/interfaces/IMapleV1Pool.sol
contracts/release/interfaces/IMapleV2Pool.sol
contracts/release/interfaces/IMapleV2PoolManager.sol
contracts/release/interfaces/IMapleV2ProxyFactory.sol
contracts/release/interfaces/IMapleV2WithdrawalManager.sol
contracts/release/interfaces/IERC4626.sol

Address List Registry Owners

contracts/persistent/address-list-registry/address-list-owners/

Aave Adapters and Debt Position

contracts/persistent/external-positions/aave-v2-debt/AaveDebtPositionLibBase1.sol
contracts/release/extensions/external-position-manager/external-positions/aave-v2-debt/
contracts/release/extensions/integration-manager/integrations/adapters/AaveV2Adapter.sol
contracts/release/extensions/integration-manager/integrations/adapters/AaveV3Adapter.sol
contracts/release/extensions/integration-manager/integrations/utils/actions/AaveActionsMixin.sol
contracts/release/extensions/integration-manager/integrations/utils/actions/AaveV2ActionsMixin.sol
contracts/release/extensions/integration-manager/integrations/utils/actions/AaveV3ActionsMixin.sol
contracts/release/extensions/integration-manager/integrations/utils/bases/AaveAdapterBase.sol
contracts/release/infrastructure/price-feeds/derivatives/feeds/AavePriceFeed.sol
contracts/release/interfaces/IAaveAToken.sol
contracts/release/interfaces/IAaveLendingPool.sol

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com


contracts/release/interfaces/IAaveV2IncentivesController.sol
contracts/release/interfaces/IAaveV2LendingPool.sol
contracts/release/interfaces/IAaveV2LendingPoolAddressProvider.sol
contracts/release/interfaces/IAaveV2ProtocolDataProvider.sol
contracts/release/interfaces/IAaveV3Pool.sol
contracts/release/interfaces/IAaveV3PoolAddressProvider.sol

Compound V3 Adapter

contracts/release/extensions/integration-manager/integrations/adapters/CompoundV3Adapter.sol
contracts/release/extensions/integration-manager/integrations/utils/actions/CompoundV3ActionsMixin.sol
contracts/release/interfaces/ICompoundV3Comet.sol
contracts/release/interfaces/ICompoundV3CometRewards.sol
contracts/release/interfaces/ICompoundV3Configurator.sol

WstETH Price Feed

contracts/release/infrastructure/price-feeds/derivatives/feeds/WstethPriceFeed.sol
contracts/release/interfaces/ILidoSteth.sol

 

2.1.1   Excluded from scope
All files not mentioned above are not in scope. Maple, Aave, Compound, and Lido are not in scope and
are expected to work correctly as documented.

 

2.2   System Overview
Version 1This system overview describes the initially received version ( ) of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance implements integrations with various external systems. Some integrations were
newly added, others were refactored.

2.2.1   External Position: Maple Finance v2
Maple will migrate to V2 of their contract. We describe Avantgarde Finance's external position for V2
during migration and after migration.

2.2.1.1   Considerations for the Migration to V2
Maple Finance is upgrading its protocol, which means migration from V1 to V2 is necessary. In this
section, we outline the relevant technical details to facilitate the migration.

1. Before Maple starts their migration, the Enzyme council will upgrade the library for the external
position. Additionally, for the coordination of the Migration on Avantgarde Finance's side, the
contract MapleV1ToV2PoolMapper will be deployed.

2. While MapleV1ToV2PoolMapper allows for snapshots to be taken, the function
snapshotPoolTokenV1BalanceValues() should be called (callable by anyone and also
multiple times) on every external position. This stores the total value of the position in terms of the
liquidity asset such that the position's value can be robustly estimated during migration. Note that
this estimates the value in the pool in the same way that the getManagedAssets() for V1 did.

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com


Also note that MapleV1ToV2PoolMapper offers a batched function
snapshotExternalPositions() that calls snapshotPoolTokenV1BalanceValues() on
multiple external positions.

3. Council calls MapleV1ToV2PoolMapper.freezeSnapshots() to disallow creating new
snapshots.

4. Maple runs their migration, which airdrops Maple V2 LP tokens.

5. The council calls MapleV1ToV2PoolMapper.mapPools() to map V1 to V2 pools.

6. Once Maple has cross-checked the mapping and the council has validated that each external
position received a valid amount of V2 LPs, the council calls
MapleV1ToV2PoolMapper.allowMigration() to allow migrations to happen.

7. Anyone can migrate any V1 position by using migrateV1ToV2Pools() (only possible after 6.).
Note that there is a batched function
MapleV1ToV2PoolMapper.migrateExternalPositions(). This initializes the used V2 pools
by mapping the used V1 pools to V2 pools using
MapleV1ToV2PoolMapper.getPoolTokenV2FromPoolTokenV1() and untracks V1 pools
and deletes their snapshots.

To summarize, all external positions have some shared state
(snapshotsAllowed, migrationDisallowed) and some individual state defining whether it has
completed migration. The values will change according to the following order

1. (true, true) and position migration not completed - initialization. getManagedAssets() will
account for V1 positions by taking snapshots and returning them.

2. (false, true) and position migration not completed -
MapleV1ToV2PoolMapper.freezeSnapshots(). getManagedAssets() will account for V1
positions according to the snapshots taken.

3. (false, false) and position migration not completed -
MapleV1ToV2PoolMapper.allowMigration(). getManagedAssets() will automatically
migrate the position and will not account for V1 tokens anymore.

4. (false, false) and position migration completed -
ExternalPosition.migrateV1ToV2Pools(). getManagedAssets() will not account for V1
tokens anymore.

2.2.1.2   External Position
This section focuses on the integration with Maple Finance v2. Their special behavior during migration is
described in the section above. Note that Maple V2 can be interacted with even during the migration.
However, RequestRedeemV2 is blocked since redemption could allow untracked airdropped V2 tokens
to be redeemed.

The following actions are available for V2:

• LendV2: Deposits the Maple pool's underlying asset (IMapleV2Pool.asset()) with
IMapleV2Pool.deposit() into the Maple pool and starts tracking the pool if it was untracked.
The parser validates the pool against the pool proxy factory.

• RequestRedeemV2: Redemptions must first be requested. Shares will be escrowed (not
necessarily all shares specified). The parser validates the pool against the pool proxy factory.

• CancelRedeemV2: Cancels redemption requests. Hence, funds are moved from Maple's withdrawal
manager to the position. The parser validates the pool against the pool proxy factory.

• RedeemV2: Redeems locked shares and moves funds to the vault proxy. The parser validates the
pool against the pool proxy factory.

Note that the pool validation is done with the pool factory's isInstance() function.

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com


The action ClaimRewards was renamed to ClaimRewardsV1 but has functionally not changed. This
action allows the collection of legacy rewards on V1.

getManagedAssets() iterates over the used pools and computes the value of the held and locked
shares in terms of the underlying asset. Note that the managed value may include the V1 value as
described in the previous section. getDebtAssets() will return empty arrays since no debt is created.

2.2.2   Add-Only List Contract Base Infrastructure
Two new abstract contracts are introduced to create address list owners with validation checks and to
interact with them.

• AddOnlyAddressListOwnerBase: On construction, the add-only list owner contracts create an
add-only list in the address list registry and attest ownership for the list. Note that items can be
added by anyone by default with the function addValidatedItemsToList() which validates the
items with the abstract function __validateItems() that derived contracts must implement. Note
that addValidatedItemsToList() by default does not have any access control. This can be
added in derived contracts if necessary.

• AddOnlyAddressListOwnerConsumerMixin: Contracts inheriting from this mix-in will be
provided with the internal function __validateAndAddListItemIfUnregistered() which
ensures that after its successful execution the item is in the list owned by the owner contract
specified on construction.

2.2.3   Aave V2 and V3
Avantgarde Finance introduces an integration adapter for Aave V3. Note that some refactoring was
performed for Aave V2-related files performed due to renamings of files. Both adapters share the same
actions:

• lend(): Validates (or adds the lent token address to the add-only list) and lends out tokens.

• redeem(): Validates (or adds the lent token address to the add-only list) and redeems tokens.

For the Aave V2 adapter, the most notable change (compared to the previous version) is that the
validation of aTokens is performed with a list and not, as before, with a price feed. For the Aave V3
adapter, the tokens are lent with Pool.supply() and are redeemed with Pool.withdraw().

Both the V2 and the V3 add-only list owner contract, check aToken addresses against the respective
pool's reserve data when adding new items to the list.

Note that Aave V2 and V3 LPs will be registered to use their underlying's price feeds since the exchange
rate of aToken to underlying is 1:1.

2.2.4   Compound v3
Compound v3 is a lending protocol that enables borrowing a base asset against different collateral
assets. Avantgarde Finance implements an adapter that allows depositing the base asset into Compound
v3.

The adapter supports three actions:

• lend(): Validates the cToken (Comet) and spends the Comet's base asset to mint LPs to the vault
proxy.

• redeem(): Validates the cToken (Comet) and burns LPs to receive the Comet's base asset.

• claimRewards(): Calls claim() on the rewards contact to claim rewards for the vault proxy.

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com


2.2.5   Lido wstETH Price Feed
Avantgarde Finance introduces a new price feed that computes wstETH's value in stETH. wstETH
reflects the underlying shares system of stETH and, hence, can be priced through the stETH contract's
getPooledEthByShares() function.

2.2.6   Roles and Trust Model
Please refer to the main audit report and the extension audit reports for a general trust model of Sulu.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting with which includes choosing appropriate parameters.

Fund owners and asset managers are generally fully trusted for a fund. However, their powers can be
limited through the fund's settings.

All external systems are expected to be non-malicious and work correctly as documented. For Maple, we
assume that the migration is handled as specified, convertToExitAssets() is not manipulatable, and
that not redeeming requests has no impact on the value of the position. For Aave and Compound, we
assume that rounding errors will be minor. For Lido, we expect the getPooledEthByShares() to be
not manipulatable.

In general, we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple entry
points or callbacks.

2.2.7   Changes in Version 2 of the code base

• The actions for Maple V2 can only be executed after migration.

• If a Maple position has not been migrated, the actions for Maple V2 try to migrate it (if possible).
Earlier, these reverted and required a call to migratePoolsV1ToV2() beforehand.

2.2.8   Changes in Version 3 of the code base
Avantgarde Finance notified us that pools will not be deployed through the MapleProxyFactory. Pools will
be deployed through a PoolDeployer contract with function deployPool() which deploys pools during
the initialization of the PoolManager contracts. Hence, the validity checks were updated to ensure that
pools and their pool managers match and to validate that a pool's pool manager has been deployed by a
valid factory.

Note that we assume that deployPool deploys a PoolManager contract so that it can be validated with
isInstance(). Further, we assume that the pool manager factory is stored with key "POOL_MANAGER"
in Maple's Globals contract and that a factory, once activated, will not be deactivated. In case a factory is
deactivated, we expect that Maple clearly communicates such changes to Avantgarde Finance so that
Avantgarde Finance has enough time to find a solution if that is a breaking change (validity checks fail for
some position).

 

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com


3   Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com


4   Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

 

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

 

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

 

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

 

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com


 

5   Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

 

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com


6   Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedDouble Counting During Maple Migration 

Medium -Severity Findings 0

Low -Severity Findings 2

• Specification ChangedIncorrect Comment 

• Code CorrectedUnused Import 

 

6.1   Double Counting During Maple Migration
Correctness High Version 1 Code Corrected   

During the migration of Maple positions, double counting of Maple LP tokens is possible as there are no
restrictions enforced on lend().

Consider the following scenario:

1. The position holds 10 v1 LP tokens.

2. The snapshot is taken and snapshots are frozen.

3. The airdrop of v2 LP tokens happens and the position receives 10 v2 LP tokens. Note that
getManagedAssets() does not consider v2 LP tokens since the v2 pool is not tracked. Hence,
the valuation is 10 v1 LP tokens.

4. The manager lends tokens to Maple v2 and creates 10 v2 LP tokens. Now,
getManagedAssets() considers both v1 and v2 LP tokens since lending will start tracking the v2
pool. Hence, the valuation is 10 v1 LP tokens and 20 v2 LP tokens.

Thus, funds could be overvalued between airdop and migration execution.

Code corrected:

Lending is now only allowed if the position has been migrated.

 

6.2   Incorrect Comment
Correctness Low Version 1 Specification Changed   

On the __validateAndAddListItemIfUnregistered function of
AddOnlyAddressListOwnerConsumerMixin there is the following comment:

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com


/// @dev Helper to lookup an item's existence and then attempt to add it.
/// AddOnlyAddressListOwnerBase.addToList() performs validation on the item.

The addToList function does not actually perform the validation. The __validateItems function
does.

Specification changed:

The comment now specifies that the function addValidatedItemsToList() is used.

 

6.3   Unused Import
Design Low Version 1 Code Corrected   

MapleV1ToV2PoolMapper imports "@openzeppelin/contracts/token/ERC20/ERC20.sol"
which is unused.

Code corrected:

The import has been removed.

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com


7   Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1   Lido Rebasing
Note Version 1 

Lido has epochs for rebasing. It could be possible to sandwich oracle updates with buying and selling
shares.

 

7.2   Maple V2 Migrations Can Start Before
Snapshots
Note Version 1 

allowMigration() is a governance function that should be called after all snapshots. Note that there
is no sanity check that all snapshots have been made. Governance should not call this function too early.

Further, note that the function should only be called after snapshots have been disallowed with
freezeSnapshots().

 

7.3   Pool Address
Note Version 1 

Note that for the Aave v2 and Aave v3 adapters, the lending pool's address is stored and not queried
from Aave's registry. Managers should be aware that the (lending) pool address used could be outdated.

Avantgarde Finance plans to upgrade the library contract in the case that the lending pool address
changes.

 

7.4   Potential Maple V2 Rollback
Note Version 1 

Note that Maple V2 could rollback their migration process. Avantgarde Finance should be aware and
quick to react.

 

7.5   Redeemable Amount
Note Version 1 

The action RedeemV2 tries to redeem the input amount poolTokenAmount. However, note that Maple's
WithdrawalManager contains the following code

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com


require(requestedShares_ == lockedShares_, "WM:PE:INVALID_SHARES");

Hence, managers should be aware that RedeemV2 will only succeed if poolTokenAmount is equal to its
locked shares.

Avantgarde Finance prefers this in case future implementations of Maple change this logic.

 

7.6   Reverts on Batching Maple Migration
Note Version 1 

The Maple mapper contract implements a batched function for migrating to v2. If a position has already
been migrated, the batched function may revert.

Avantgarde Finance replied:

Pretty unlikely to occur and nicer to be able to easily preview a tx failure
by not skipping reverting items.

 

7.7   Theoretical Out-Of-Gas During Maple V2
Migrations
Note Version 1 

snapshotPoolTokenV1BalanceValues() and migratePoolsV1ToV2() load all used pools from
storage. Theoretically, these functions could result in an out-of-gas problem that cannot be resolved
without a contract upgrade.

In contrast, if too many pools are added for getManagedAssets(), this can be resolved by a manager.

Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.1.1   Excluded from scope

	2.2   System Overview
	2.2.1   External Position: Maple Finance v2
	2.2.1.1   Considerations for the Migration to V2
	2.2.1.2   External Position

	2.2.2   Add-Only List Contract Base Infrastructure
	2.2.3   Aave V2 and V3
	2.2.4   Compound v3
	2.2.5   Lido wstETH Price Feed
	2.2.6   Roles and Trust Model
	2.2.7   Changes in Version 2 of the code base
	2.2.8   Changes in Version 3 of the code base


	3   Limitations and use of report
	4   Terminology
	5   Findings
	6   Resolved Findings
	6.1   Double Counting During Maple Migration
	6.2   Incorrect Comment
	6.3   Unused Import

	7   Notes
	7.1   Lido Rebasing
	7.2   Maple V2 Migrations Can Start Before Snapshots
	7.3   Pool Address
	7.4   Potential Maple V2 Rollback
	7.5   Redeemable Amount
	7.6   Reverts on Batching Maple Migration
	7.7   Theoretical Out-Of-Gas During Maple V2 Migrations


