PUBLIC

Code Assessment

of the Sulu Extensions VIlI

Smart Contracts

December 8, 2022

Produced for
S enzyme

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG

10
11
12
13
15

https://chainsecurity.com

1 Executive Summary

Dear Mona and Sean,

Thank you for trusting us to help Avantgarde Finance with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Sulu Extensions
VIII according to Scope to support you in forming an opinion on their security risks.

Avantgarde Finance implements new adapters for Aave V3 and Compound V3 and refactors the
codebase of the Aave V2 adapter so that code can be reused for the Aave V3 adapter. Additionally,
Avantgarde Finance introduces so-called list owner contracts, used for validation in the aforementioned
adapters, that can add validated items to a list. Further, Avantgarde Finance implements an upgrade for
the Maple external position to allow migration to V2.

The most critical subjects covered in our audit are functional correctness, access control, and integration
with external protocols. Security regarding all the aforementioned subjects is high.

The general subjects covered are code complexity, upgradeability, and documentation. Security
regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

¥ Specification Changed

@ Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Sulu Extensions VIII repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

Date Commit Hash Note
V
21 November 10e16f2b6f0e7b170ae81027dd446¢1919920d Initial Version
1| 2022 8f
30 November 320200f16e952e8b4163bbdc36620373fc7aa68 | After Intermediate Report
2| 2022 9
07 December 97b2b6eec6f48ad896df305d080faaff3d8b710e | Final Version
3| 2022

For the solidity smart contracts, the compiler version 0. 6. 12 was chosen.
The following files and directories were in scope

Maple External Position

contracts/ persistent/external -positions/ maple-liquidity/

contract s/ rel ease/ ext ensi ons/ ext er nal - posi ti on- manager/ ext er nal - posi ti ons/ mapl e-1i qui di ty/
contracts/rel easel/interfaces/| Mipl eV1iMpl Rewar ds. sol

contracts/rel easel/interfaces/| Mapl eV1iMI Rewar dsFact ory. sol

contracts/rel easel/interfaces/| Mpl eV1Pool . sol

contracts/rel ease/interfaces/| Mapl eV2Pool . sol

contracts/rel ease/interfaces/| Mapl eV2Pool Manager . sol

contracts/rel easel/interfaces/| Mapl eV2Pr oxyFact ory. sol

contracts/rel easel/interfaces/ | Mapl eV2W t hdr awal Manager . sol

contracts/rel ease/interfaces/| ERC4626. sol

Address List Registry Owners
contracts/ persistent/address-|list-registry/address-I|ist-owners/

Aave Adapters and Debt Position

contract s/ persi stent/external -positions/aave-v2-debt/ AaveDebt Posi ti onLi bBasel. sol

contract s/ rel ease/ ext ensi ons/ ext er nal - posi ti on- manager/ ext er nal - posi ti ons/ aave- v2- debt/

contract s/ rel ease/ ext ensi ons/ i nt egrati on- manager/ i nt egrati ons/ adapt er s/ AaveV2Adapt er . sol
contracts/rel ease/ ext ensi ons/ i ntegrati on-manager/i ntegrati ons/ adapt er s/ AaveV3Adapt er . sol
contracts/rel ease/ ext ensi ons/ i ntegrati on-manager/integrations/utils/actions/AaveActionsM xi n. sol
contracts/rel ease/ extensi ons/integrati on-manager/integrations/utils/actions/AaveV2Acti onsM xi n. sol
contracts/rel ease/ extensi ons/integration-manager/integrations/utils/actions/AaveV3Acti onsM xi n. sol
contracts/rel ease/ ext ensi ons/integrati on-manager/integrations/utils/bases/ AaveAdapt er Base. sol
contracts/rel ease/infrastructure/price-feeds/derivatives/feeds/ AavePri ceFeed. sol

contracts/rel ease/interfaces/| AaveAToken. sol

contracts/rel ease/interfaces/| AaveLendi ngPool . sol

@ Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

contracts/rel ease/interfaces/| AaveV2l ncenti vesControll er. sol
contracts/rel ease/interfaces/| AaveV2Lendi ngPool . sol

contracts/rel ease/interfaces/| AaveV2Lendi ngPool Addr essPr ovi der . sol
contracts/rel ease/interfaces/| AaveV2Pr ot ocol Dat aPr ovi der. sol
contracts/rel ease/interfaces/| AaveV3Pool . sol

contracts/rel ease/interfaces/| AaveV3Pool Addr essProvi der . sol

Compound V3 Adapter

contracts/rel ease/ ext ensi ons/ i ntegrati on-manager/integrations/adapt ers/ ConpoundV3Adapt er. sol
contracts/rel ease/ ext ensi ons/i ntegrati on-manager/integrations/utils/actions/ConpoundV3Acti onsM xi n. sol
contracts/rel ease/interfaces/| ConpoundvV3Conet . sol

contracts/rel ease/interfaces/| CompoundV3Conet Rewar ds. sol

contracts/rel ease/interfaces/| CompoundV3Confi gurator. sol

WSstETH Price Feed

contracts/rel ease/infrastructure/price-feeds/derivatives/feeds/WtethPriceFeed. sol
contracts/rel ease/interfaces/|LidoSteth. sol

2.1.1 Excluded from scope

All files not mentioned above are not in scope. Maple, Aave, Compound, and Lido are not in scope and
are expected to work correctly as documented.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance implements integrations with various external systems. Some integrations were
newly added, others were refactored.

2.2.1 External Position: Maple Finance v2

Maple will migrate to V2 of their contract. We describe Avantgarde Finance's external position for V2
during migration and after migration.

2.2.1.1 Considerations for the Migration to V2

Maple Finance is upgrading its protocol, which means migration from V1 to V2 is necessary. In this
section, we outline the relevant technical details to facilitate the migration.

1. Before Maple starts their migration, the Enzyme council will upgrade the library for the external
position. Additionally, for the coordination of the Migration on Avantgarde Finance's side, the
contract Mapl eV1ToV2Pool Mapper will be deployed.

2. While Mapl eV1ToV2Pool Mapper allows for snapshots to be taken, the function
snapshot Pool TokenV1Bal anceVal ues() should be called (callable by anyone and also
multiple times) on every external position. This stores the total value of the position in terms of the
liquidity asset such that the position's value can be robustly estimated during migration. Note that
this estimates the value in the pool in the same way that the get ManagedAsset s() for V1 did.

@ Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Also note that Mapl eV1ToV2Pool Mapper offers a batched function
snapshot Ext er nal Posi ti ons() that calls snapshot Pool TokenV1Bal anceVal ues() on
multiple external positions.

. Council calls Mapl eV1ToV2Pool Mapper . freezeSnapshots() to disallow creating new
shapshots.

4. Maple runs their migration, which airdrops Maple V2 LP tokens.

5. The council calls Mapl eV1ToV2Pool Mapper . mapPool s() to map V1 to V2 pools.

6. Once Maple has cross-checked the mapping and the council has validated that each external

To

position received a valid amount of V2 LPs, the council calls
Mapl eV1ToV2Pool Mapper . al | owM grati on() to allow migrations to happen.

. Anyone can migrate any V1 position by using mi gr at eV1ToV2Pool s() (only possible after 6.).
Note that there is a batched function
Mapl eV1ToV2Pool Mapper . m gr at eExt er nal Posi ti ons() . This initializes the used V2 pools
by mapping the used V1 pools to V2 pools using

Mapl eV1ToV2Pool Mapper . get Pool TokenV2Fr onPool TokenV1() and untracks V1 pools
and deletes their snapshots.

summarize, all external positions have some shared state

(snapshot sAl | owed, migrationDi sall owed) and some individual state defining whether it has
completed migration. The values will change according to the following order

1.(true, true) and position migration not completed - initialization. get ManagedAsset s() will

account for V1 positions by taking snapshots and returning them.

.(fal se, true) and position migration not completed -
Mapl eV1iToV2Pool Mapper. freezeSnapshot s(). get ManagedAsset s() will account for V1
positions according to the snapshots taken.

.(fal se, fal se) and position migration not completed -
Mapl eV1iToV2Pool Mapper. al |l owM gration(). get ManagedAssets() will automatically
migrate the position and will not account for V1 tokens anymore.

.(fal se, fal se) and position migration completed -
Ext ernal Posi ti on. m grat eVlToV2Pool s() . get ManagedAsset s() will not account for V1
tokens anymore.

2.2.1.2 External Position

This section focuses on the integration with Maple Finance v2. Their special behavior during migration is
described in the section above. Note that Maple V2 can be interacted with even during the migration.
However, Request RedeenV2 is blocked since redemption could allow untracked airdropped V2 tokens
to be redeemed.

The following actions are available for V2:

e LendV2: Deposits the Maple pool's underlying asset (I Mapl eV2Pool . asset()) with

| Mapl eV2Pool . deposi t () into the Maple pool and starts tracking the pool if it was untracked.

The parser validates the pool against the pool proxy factory.

* Request RedeenV2: Redemptions must first be requested. Shares will be escrowed (nhot

necessarily all shares specified). The parser validates the pool against the pool proxy factory.

« Cancel Redeen¥2: Cancels redemption requests. Hence, funds are moved from Maple's withdrawal

manager to the position. The parser validates the pool against the pool proxy factory.

* RedeenmV2: Redeems locked shares and moves funds to the vault proxy. The parser validates the

pool against the pool proxy factory.

Note that the pool validation is done with the pool factory'si sl nst ance() function.

S

Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

The action Cl ai nRewar ds was renamed to C ai nRewar dsV1 but has functionally not changed. This
action allows the collection of legacy rewards on V1.

get ManagedAsset s() iterates over the used pools and computes the value of the held and locked
shares in terms of the underlying asset. Note that the managed value may include the V1 value as
described in the previous section. get Debt Asset s() will return empty arrays since no debt is created.

2.2.2 Add-Only List Contract Base Infrastructure

Two new abstract contracts are introduced to create address list owners with validation checks and to
interact with them.

*« AddOnl yAddr essLi st Oamer Base: On construction, the add-only list owner contracts create an
add-only list in the address list registry and attest ownership for the list. Note that items can be
added by anyone by default with the function addVal i dat edl t ensToLi st () which validates the
items with the abstract function __val i dat el t ens() that derived contracts must implement. Note
that addVal i dat edl t ensToLi st () by default does not have any access control. This can be
added in derived contracts if necessary.

e AddOnl yAddr essLi st Oamner Consuner M xi n: Contracts inheriting from this mix-in will be
provided with the i nt er nal function __val i dat eAndAddLi stltem f Unr egi st ered() which
ensures that after its successful execution the item is in the list owned by the owner contract
specified on construction.

2.2.3 Aave V2 and V3

Avantgarde Finance introduces an integration adapter for Aave V3. Note that some refactoring was
performed for Aave V2-related files performed due to renamings of files. Both adapters share the same
actions:

| end() : Validates (or adds the lent token address to the add-only list) and lends out tokens.

e redeem() : Validates (or adds the lent token address to the add-only list) and redeems tokens.

For the Aave V2 adapter, the most notable change (compared to the previous version) is that the
validation of aTokens is performed with a list and not, as before, with a price feed. For the Aave V3
adapter, the tokens are lent with Pool . suppl y() and are redeemed with Pool . wi t hdr aw() .

Both the V2 and the V3 add-only list owner contract, check aToken addresses against the respective
pool's reserve data when adding new items to the list.

Note that Aave V2 and V3 LPs will be registered to use their underlying's price feeds since the exchange
rate of aToken to underlying is 1:1.

2.2.4 Compound v3

Compound v3 is a lending protocol that enables borrowing a base asset against different collateral
assets. Avantgarde Finance implements an adapter that allows depositing the base asset into Compound
v3.

The adapter supports three actions:

| end() : Validates the cToken (Comet) and spends the Comet's base asset to mint LPs to the vault
proxy.
e redeem() : Validates the cToken (Comet) and burns LPs to receive the Comet's base asset.

e cl ai nRewar ds() : Calls cl ai m() on the rewards contact to claim rewards for the vault proxy.

@ Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.5 Lido wstETH Price Feed

Avantgarde Finance introduces a new price feed that computes wstETH's value in stETH. wstETH
reflects the underlying shares system of stETH and, hence, can be priced through the stETH contract's
get Pool edEt hByShar es() function.

2.2.6 Roles and Trust Model

Please refer to the main audit report and the extension audit reports for a general trust model of Sulu.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting with which includes choosing appropriate parameters.

Fund owners and asset managers are generally fully trusted for a fund. However, their powers can be
limited through the fund's settings.

All external systems are expected to be non-malicious and work correctly as documented. For Maple, we
assume that the migration is handled as specified, convert ToExi t Asset s() is not manipulatable, and
that not redeeming requests has no impact on the value of the position. For Aave and Compound, we
assume that rounding errors will be minor. For Lido, we expect the get Pool edEt hByShar es() to be
not manipulatable.

In general, we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple entry
points or callbacks.

2.2.7 Changes in Version 2 of the code base

» The actions for Maple V2 can only be executed after migration.

« If a Maple position has not been migrated, the actions for Maple V2 try to migrate it (if possible).
Earlier, these reverted and required a call to m gr at ePool sV1ToV2() beforehand.

2.2.8 Changes in Version 3 of the code base

Avantgarde Finance notified us that pools will not be deployed through the MapleProxyFactory. Pools will
be deployed through a PoolDeployer contract with function depl oyPool () which deploys pools during
the initialization of the PoolManager contracts. Hence, the validity checks were updated to ensure that
pools and their pool managers match and to validate that a pool's pool manager has been deployed by a
valid factory.

Note that we assume that depl oyPool deploys a PoolManager contract so that it can be validated with
i sl nstance() . Further, we assume that the pool manager factory is stored with key " POOL_ MANACGER"
in Maple's Globals contract and that a factory, once activated, will not be deactivated. In case a factory is
deactivated, we expect that Maple clearly communicates such changes to Avantgarde Finance so that
Avantgarde Finance has enough time to find a solution if that is a breaking change (validity checks fail for
some position).

@ Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

@ Avantgarde Finance - Sulu Extensions VIl - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0

(CL:0)-Severity Findings 1
» Double Counting During Maple Migration

(Medium)-Severity Findings 0

(Low)-Severity Findings 2

¢ Incorrect Comment G e e o el TED|
» Unused Import (eI

6.1 Double Counting During Maple Migration
(Correctness JHigH JNEETTB Code Corrected)

During the migration of Maple positions, double counting of Maple LP tokens is possible as there are no
restrictions enforced on | end() .

Consider the following scenario:
1. The position holds 10 v1 LP tokens.
2. The snapshot is taken and snapshots are frozen.

3. The airdrop of v2 LP tokens happens and the position receives 10 v2 LP tokens. Note that
get ManagedAsset s() does not consider v2 LP tokens since the v2 pool is not tracked. Hence,
the valuation is 10 v1 LP tokens.

4. The manager lends tokens to Maple v2 and creates 10 v2 LP tokens. Now,
get ManagedAsset s() considers both vl and v2 LP tokens since lending will start tracking the v2
pool. Hence, the valuation is 10 v1 LP tokens and 20 v2 LP tokens.

Thus, funds could be overvalued between airdop and migration execution.

Code corrected:

Lending is now only allowed if the position has been migrated.

6.2 Incorrect Comment

(ITED (Low) (Version 1) (TR e

On the __val i dat eAndAddLi st1tem f Unregi stered function of
AddOnlyAddressListOwnerConsumerMixin there is the following comment:

@ Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The addToLi st function does not actually perform the validation. The _ val i dat el t ens function
does.

Specification changed:

The comment now specifies that the function addVal i dat edl t ensToLi st () is used.

6.3 Unused Import
CIETD) (Low) (Version 1) (CXISIEED)

Mapl eV1ToV2Pool Mapper imports " @penzeppel i n/ contracts/token/ ERC20/ ERC20. sol "
which is unused.

Code corrected:

The import has been removed.

@ Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Lido Rebasing

Lido has epochs for rebasing. It could be possible to sandwich oracle updates with buying and selling
shares.

7.2 Maple V2 Migrations Can Start Before
Snapshots

al | oM gration() is a governance function that should be called after all snapshots. Note that there
is no sanity check that all snapshots have been made. Governance should not call this function too early.

Further, note that the function should only be called after snapshots have been disallowed with
freezeSnapshot s().

7.3 Pool Address

Note that for the Aave v2 and Aave v3 adapters, the lending pool's address is stored and not queried
from Aave's registry. Managers should be aware that the (lending) pool address used could be outdated.

Avantgarde Finance plans to upgrade the library contract in the case that the lending pool address
changes.

7.4 Potential Maple V2 Rollback

Note that Maple V2 could rollback their migration process. Avantgarde Finance should be aware and
quick to react.

7.5 Redeemable Amount

The action RedeenV2 tries to redeem the input amount pool TokenAnount . However, note that Maple's
W t hdr awal Manager contains the following code

@ Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

requi re(request edShares_ | ockedShares , "VWu PE: | NVALI D_SHARES") ;

Hence, managers should be aware that Redeeni2 will only succeed if pool TokenAnount is equal to its
locked shares.

Avantgarde Finance prefers this in case future implementations of Maple change this logic.

7.6 Reverts on Batching Maple Migration

The Maple mapper contract implements a batched function for migrating to v2. If a position has already
been migrated, the batched function may revert.

Avantgarde Finance replied:

Pretty unlikely to occur and nicer to be able to easily preview a tx failure
by not skipping reverting itens.

7.7 Theoretical Out-Of-Gas During Maple V2
Migrations

(D (Version T

snhapshot Pool TokenV1Bal anceVal ues() and ni grat ePool sV1ToV2() load all used pools from
storage. Theoretically, these functions could result in an out-of-gas problem that cannot be resolved
without a contract upgrade.

In contrast, if too many pools are added for get ManagedAsset s(), this can be resolved by a manager.

@ Avantgarde Finance - Sulu Extensions VIII - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 External Position: Maple Finance v2
	2.2.1.1 Considerations for the Migration to V2
	2.2.1.2 External Position

	2.2.2 Add-Only List Contract Base Infrastructure
	2.2.3 Aave V2 and V3
	2.2.4 Compound v3
	2.2.5 Lido wstETH Price Feed
	2.2.6 Roles and Trust Model
	2.2.7 Changes in Version 2 of the code base
	2.2.8 Changes in Version 3 of the code base

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Double Counting During Maple Migration
	6.2 Incorrect Comment
	6.3 Unused Import

	7 Notes
	7.1 Lido Rebasing
	7.2 Maple V2 Migrations Can Start Before Snapshots
	7.3 Pool Address
	7.4 Potential Maple V2 Rollback
	7.5 Redeemable Amount
	7.6 Reverts on Batching Maple Migration
	7.7 Theoretical Out-Of-Gas During Maple V2 Migrations

