PUBLIC

Code Assessment

of the Sulu Extensions IX

Smart Contracts

February 21, 2023

Produced for
S enzyme

by

@EHAINSEEURITY




Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG

10
11
13
14
15


https://chainsecurity.com

1 Executive Summary

Dear Mona and Sean,

Thank you for trusting us to help Avantgarde Finance with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Sulu Extensions
IX according to Scope to support you in forming an opinion on their security risks.

Avantgarde Finance implemented changes to the existing UniswapV2 (support for tokens with fees on
transfer) and Balancer (bat chSwap()) adapters. New external positions for Solv bonds have been
added, similar to the existing external position for Solv convertibles but without support for the secondary
market. A new gated shares wrapper with a redemption queue has been added.

The most critical subjects covered in our audit are functional correctness, access control, and integration
with external protocols.

The general subjects covered are code complexity, upgradeability, and documentation. Security
regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 3


https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

¥ Risk Accepted

(Low)-Severity Findings

J Acknowledged

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG



https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Sulu Extensions IX repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

Date Commit Hash Note

44pb40cbh79df5efe9aa302f440a487d1282¢cf5854 Initial Version
4101e09fcc60f77a54071f5056b02f17b5d3ff86

f04f598f9b88891d1aa0694c01b715e34421397f

30 January 2023
5 February 2023
14 Feburary 2023

Gated shares wrapper

\Y,
1
2
3

Final Version

For the solidity smart contracts, the compiler version 0. 6. 12 was chosen.
The following files and directories were in scope

Adapter Update: Make UniswapV2 swaps work with fee-on-transfer tokens

contracts/rel ease/ ext ensi ons/i ntegrati on- manager/ i nt egrati ons/ adapt er s/ Uni swapV2ExchangeAdapt er . sol
contracts/rel ease/ ext ensi ons/integrati on-nmanager/integrations/utils/actions/Uni swapV2Acti onsM xi n. sol
contracts/rel ease/interfaces/| Uni swapV2Rout er 2. sol

Adapter Update: Add bat chSwap() support to BalancerV2LiquidityAdapter

contracts/rel ease/ ext ensi ons/ i ntegration-manager/integrations/adapters/AuraBal ancer V2LpSt aki ngAdapt er . sol
contracts/rel ease/ ext ensions/integration-manager/integrations/utils/actions/BalancerV2Acti onsM xi n. sol
contracts/rel ease/ extensi ons/integration-manager/integrations/utils/actions/Staki ngW apperActi onsM xi n. sol
contracts/rel ease/ ext ensi ons/integration-nmanager/integrations/utils/bases/Bal ancerV2Li qui di t yAdapt er Base. sol
contracts/rel ease/interfaces/| Bal ancer V2Vaul t. sol

External Position: Solv v2 bonds

contract s/ persi stent/external - posi tions/sol v-v2-bond- buyer/ Sol vvV2BondBuyer Posi ti onLi bBasel. sol
contracts/ persi stent/external -positions/sol v-v2-bond-issuer/ Sol vV2Bondl ssuer Posi ti onLi bBasel. sol

contracts/rel ease/ ext ensi ons/ ext er nal -
contract s/ rel ease/ ext ensi ons/ ext ernal -

contracts/rel ease/ ext ensi ons/ ext er nal

contract s/ rel ease/ ext ensi ons/ ext ernal -
contracts/rel ease/ ext ensi ons/ ext er nal -
contract s/ rel ease/ ext ensi ons/ ext ernal -
contracts/rel ease/ ext ensi ons/ ext er nal -
contract s/ rel ease/ ext ensi ons/ ext ernal -

posi tion-
posi tion-
- posi tion-
posi tion-
posi tion-
posi tion-
posi tion-
posi tion-

manager / ext er na
manager / ext er nal
manager / ext er na
manager / ext er nal
manager / ext er na
manager / ext er na
nmanager / ext er na
manager / ext er nal

contracts/rel ease/interfaces/| Sol vv2BondPool . so
contracts/rel ease/interfaces/| Sol vv2BondVoucher. so

Peripheral: Gated shares wrapper

contract s/ persi stent/ gl obal - confi g/ d obal Confi gLi b. sol

- posi tions/sol v-
-positions/solv-
- posi tions/sol v-
-positions/solv-
- posi tions/sol v-
-positions/solv-
- posi tions/sol v-
-positions/solv-

contracts/ persi stent/global -config/interfaces/|d obal Confi g2. sol
contracts/persistent/global-config/interfaces/|d obal ConfigLi bConptrollerV4. sol

contract s/ persi stent/shares-w apper s/ gat ed-r edenpt i on- queue/ Gat edRedenpt i onQueueShar esW apper Fact ory. sol
contract s/ persi stent/shares-w apper s/ gat ed-redenpt i on- queue/ Gat edRedenpt i onQueueShar esW apper Li b. sol

contract s/ persi stent/shares-w apper s/ gat ed-redenpti on- queue/ bases/ Gat edRedenpt i onQueueShar esW apper Li bBasel. sol
contracts/ persistent/vault/interfaces/ | Vault Core. sol
contracts/rel ease/ core/fund/vaul t/|Vaul t.sol
contracts/rel ease/ core/ fund/ vaul t/ Vaul tLib. sol

v2-
v2-
v2-
v2-
v2-
v2-
v2-
v2-

bond
bond
bond
bond
bond
bond
bond
bond

Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG

- buyer/ | Sol vV2BondBuyer Posi ti on. so

- buyer/ Sol vvV2BondBuyer Posi t i onDat aDecoder . so

- buyer/ Sol vvV2BondBuyer Posi ti onLi b. so

- buyer/ Sol vvV2BondBuyer Posi ti onPar ser. so
-issuer/ | Sol vvV2Bondl ssuer Posi ti on. so

- i ssuer/ Sol vV2Bondl ssuer Posi t i onDat aDecoder . so
-i ssuer/ Sol vV2BondI ssuer Posi ti onLi b. so

-i ssuer/ Sol vV2BondI ssuer Posi ti onPar ser. so


https://chainsecurity.com

2.1.1 Excluded from scope

All files not mentioned above are not in scope. UniswapV2, Balancer and Solv are not in scope and are
expected to work correctly as documented.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance implements integrations with various external systems. Some integrations were
newly added, others were updated.

2.2.1 UniswapV2 Adapter: Support of swaps with
fee-on-transfer tokens

The adapter now calls swapExact TokensFor TokensSupporti ngFeeOnTr ansf er Tokens()
instead of swapExact TokensFor Tokens() on the UniswapV2 Router. This allows the adapter to
support tokens with fees on transfer such as the PAXG token.

2.2.2 BalancerV2LiquidityAdapterBase: Add bat chSwap()

takeOrder () which uses Balancer's batchSwap function has been added to
BalancerV2LiquidityAdapterBase. This base contract is inherited by two Adapter contracts,
AuraBalancerV2LpStakingAdapter and BalancerV2LiquidityAdapter. Being able to execute batchwaps is
needed to support LPing to nested Composable Stable Pools like Balancer Boosted Aave USD Pool
(bb-a-USD).

Optionally allows combining "unstake BPT + batchSwap()" and "batchSwap() + stake BPT", i.e.,
mimicking the functionality of lendAndStake() and unstakeAndRedeem().

2.2.3 External Position: Solv v2 bonds

Solv Protocol describes itself as a Web3 liquidity infrastructure that utilizes Solv Payable, a full-suite
semi-fungible token solution to enable institutional entities and retail users to access liquidity by creating,
issuing, or trading semi-fungible tokens in a zero-trust and transparent way.

Issuers create offers for bond vouchers on the initial voucher offering market where buyers can buy them.
Please consider the relevant parts of Solv V2's documentation for further details.

Avantgarde Finance implements two new external positions to integrate with Solv's initial voucher
offering market for bond vouchers. A similar external position for Solv v2 convertibles already exists.

Note that contrary to the external position for convertibles, this external position does not support trades
on the secondary market.

2.2.3.1 Bond Issuer:

* Creat eO f er : Creates an offering on the IVO market by calling of f er () on it. An offer for a fund
currency must be collateralized using the underlying (currency of the voucher) transferred from the
vault. This must match the mar ket . asset of the voucher stored in the IVO market contract. The
current implementation of the external position can't provide another asset. Units to be sold depend
on the amount of underlying supplied and the lowest price specified. When units are sold, the tokens
will be received directly by the external position.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 6


https://docs.solv.finance/solv-documentation/
https://chainsecurity.com

* Reconci | e: Since funds from sales will directly be received by the external position, this action
allows to collect all tokens received to be sent to the vault proxy.

* Ref und: Refund allows to fund the voucher. This will let holders receive the fund currency. Calls
ref und() on the voucher's bond pool and sends the fund currency there.

* Renoved f er : Removes an offer from the IVO market by calling r enove() on it. Could receive
some underlying tokens from unsold units which it forwards to the vault proxy. Additionally,
reconciles the sale currency and sends it to the vault proxy. This function should also be called if an
offer successfully sold all units in order to delete the offer stored in the external position.

« W t hdr aw. Withdraws the underlying not needed for buyers' payouts to the external position with a
call to the bond pool's wi t hdraw() function. Sends the received funds to the vault proxy.

Note that the external position implements the following two methods to comply with the interface:
» get Debt Asset s() : Since no debt is created, this will return two empty arrays.

e get ManagedAsset s() : Accumulates the withdrawable (claimable through Wt hdr aw) and the
refundable (claimable through r enove()) amounts from all vouchers issued and considers the
reconcilable balances. Caution: Intentionally reverts if one voucher has not reached maturity.

2.2.3.2 Bond Buyer:

«BuyOF f eri ng: Buys the specified amount of the specified offerld from the IVO market. Offers
requiring Ether are not supported. The external position receives a token from the voucher
representing its ownership of the bought amount of units.

« Cl ai m After maturity, vouchers can be claimed by calling cl ai nifo() on the voucher contract. This
action claims the voucher and sends the funds received to the vault proxy. The fund manager can
specify how many units to claim. Note that either the underlying token, the fund currency or in the
corner case of i sl ssuer Ref unded=true and settl ePrice > slotDetail.highestPrice,
both can be received.

Note that the external position implements the following two methods to comply with the interface:
» get Debt Asset s() : Since no debt is created, this will return two empty arrays.

e get ManagedAsset s() : Accumulates the claimable amounts from all vouchers held or sold and
considers the reconcilable balances. Caution: Intentionally reverts if one voucher has not reached
maturity.

2.2.4 Peripheral: Gated shares wrapper

Shares wrapper for Enzyme v4 and future versions. Handles deposits and redemption according to
certain rules:

» The manager of the wrapper may force redemptions

* The manager can optionally require that deposits, redemptions or transfers require prior approval
from the manager. Deposits and Transfers must use exactly the approval amount specified.
Removals may use at most the approval amount, but can also use less. Each approval can only be
used once and is removed afterward, even if not using the full amount. The manager can also give
an infinite approval, which allows any size and any amount of the specified action for an address.

*There is a rel ati veShar esCap that limits how much of the total supply of shares may be
withdrawn in each epoch. Consider an example where the relativeSharesCap is 25%, the total
supply of shares is 1000, and the total shares requested by all users is 300. This means the
absol ut eCap of shares for that epoch will be 25% 1000=250 shares. When the admin executes
the redemptions, each user that is processed receives 250/ 300=83. 3% of the shares that they
currently have requested. A user that has requested 100 shares, will receive 83.3 shares. A user
that has requested 200 shares will receive 166.6 shares.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 7


https://chainsecurity.com

» The manager defines a redemption window frequency and duration. Users can only make requests
outside of the redemption window duration. Requests can be serviced once per user in each
redemption window.

The shares wrapper has the following main functions:

e deposit allows a user to deposit to an enzyme vault in return for ERC-20 shares wrapper tokens. It
must be a single-asset deposit. For Enzyme V4 vaults it is enforced that this must be the
denomination asset.

*request Redeem allows a user to request that their shares be redeemed in a single-asset
redemption from the vault when the next redemption window happens. It may take multiple windows
until the request is completely fulfilled. This function must be called outside of a redemption window.

e cancel Redeemallows a user to cancel their redemption request.

e r edeenfr omQueue allows the manager to execute requested redemptions. Depending on the
inputs, either all users in the queue or only some of them will be processed. This means that if the
gueue is long, redemptions can be split over multiple calls. Each processed user will receive their
pro-rata share of requested shares, out of the total available shares allowed for redemption. If the
manager does not call r edeenfr onfQueue in a redemption window, users will not be able to
withdraw. If the manager calls it in a later window, users will not receive extra redemptions due to
having been skipped earlier.

* ki ck allows the manager to immediately force a user to redeem their wrapper tokens. This forces
an immediate full redemption, ignoring any redemption limits.

2.2.5 Roles and Trust Model

Please refer to the main audit report and the extension audit reports for a general trust model of Sulu.
Note that it is now accepted that unsupported assets may be added as tracked asset to a vault. E.g. this
may happen when an external position returns assets to the vault. Since no price feed for such assets
exists in the system, calculating the GAV or share price will fail. This can be resolved by untracking or
trading away the unspported asset. Ultimately it's the fund owner's responsabilty to handle this
appropriately.

In general, we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple entry
points, callbacks or other special behaviours.

Fund owners and asset managers are generally fully trusted for a fund. However, their powers can be
limited through the fund's settings. The funds settings/policies are assumed to be set up correctly for the
intended configuration / usage.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting with which includes choosing appropriate parameters.

All external systems are expected to be non-malicious and work correctly as documented. Note that Solv
is fully upgradeable and hence may change its behavior. Notably, for the Solv Bond Issuer External
Position in the InitialConvertibleOfferingMarket we assume mar ket . asset of the voucher is set to the
under | yi ng of the voucher, the external position doesn't support to provide another asset as collateral.
INITIAL_BOND_OFFERING_MARKET_CONTRACT must be correctly initialized, the vouchers are
assumed to be Bond Vouchers.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 8


https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 9


https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 10


https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-Severity Findings 0

CL:)-Severity Findings 0

(Medium)-Severity Findings 1
« Preferential Withdrawal

(Low)-Severity Findings 1

« BondBuyer: Claims Involving Ether Track Wrong Asset(_ )

5.1 Preferential Withdrawal
(Design LT (RIETIRY| Risk Accepted

When there are more withdrawal requests than can be serviced, all users receive the same percentage
of their withdrawals. A user that wants to make a partial withdrawal could take advantage of this.

Consider an example where withdrawal requests are fulfilled at 50%. A user that wants to withdraw 100
shares could instead request to withdraw 200 shares (given he has enough shares). Their request would
be fulfilled by half, giving them 100 shares. Now they can cancel the remaining withdrawal request.

In this way, the user was able to circumvent the withdrawal limit at no cost. Other users were able to
withdraw fewer shares than they would have otherwise.

Risk accepted:

Avantgarde Finance states:

This is the intended behavior. Al so note that redeenmers who request to redeem nore
than they actually would like to redeemare risking that their entire requested
anount be redeenmed in full if the cap is not nmet, the cap is updated by the manager,
or other redeenmers cancel their requests.

5.2 BondBuyer: Claims Involving Ether Track
Wrong Asset

D (Low) (Version 1)( )

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 11


https://chainsecurity.com

Claiming a position involving Ether will result in the wrong asset being added to the tracked assets of the
vault. Note that the vault actually supports receiving Ether (it immediately wraps it as WETH).

Consider the parser of the SolvvV2BondBuyerPosition:

else if (_actionld ui nt 256( 1 Sol vvV2BondBuyer Posi tion. Actions. Claim) {
(address voucher, uint256 tokenld, ) __decoded ai mAct i onAr gs(_encodedActi onArgs) ;

| Sol vV2BondVoucher voucher Contract I Sol vV2BondVoucher (voucher) ;

ui nt 256 slotld voucher Cont ract . voucher S| ot Mappi ng(t okenl d);
I Sol vvV2BondPool . Sl ot Detai | nenory sl ot Detai | voucher Contract. get Sl otDetail (slotld);

asset sToRecei ve_ new address[](2);
asset sToRecei ve_[ 0] voucher Contract . under | yi ng() ;
asset sToRecei ve_[ 1] sl ot Detail.fundCurrency;

For arbitrary vouchers, one of the assets may be Ether as Ether is technically supported by the Solv v2
smart contracts.

Solv v2 represents the Ether asset as "OxEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEEE" which in
this case will be added to asset sToRecei ve. Within Enzyme, however, the correct asset to track in this
case would be the address of WETH.

This results in an unsupported asset being tracked by a vault which may have severe consequences. For
example, it breaks cal cGav() .

Whether such vouchers actually exist depends on the market configurations administrated by Solv
Protocol. These markets may change in the future. Since the external position may interact with any offer
on the IVOMarket / any voucher, such an issue may arise.

The InitialVoucherOfferingMarket currently doesn't support to create offers with Ether as underlying since
of fer () misses the payabl e modifier. Note that the implementation otherwise supports the case to
handle Et her.

The currency of a voucher may be Ether. Contrary to of fer () buy() features the payabl e modifier
and hence such vouchers can be bought successfully. Note that one can't buy such a position in Ether
via the external position since it doesn't support providing ERC20 tokens. This however doesn't prevent
all scenarios where cl ai m() may return Ether as such an NFT may be transferred directly to the
external position.

Acknowledged:

Avantgarde Finance states:

Wil e ETH can technically be the currency of the offer, Solv's refund
| ogi ¢ depends on it being a stabl ecoin:

htt ps://gi thub. conf sol v-fi nance/ sol v-v2-ivo/ bl ob/

acl2b7f9la7af 67993a0501dc705687801eb3673/ voucher s/ bond- voucher/

cont ract s/ BondPool . sol #L174

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 12


https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CI)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

6.1 Missing I ndexed in Event

(Informational] [Version 1]

The eventinitialized emitted in Gat edRedenpt i onQueueShar esW apper Li b. i ni t () contains
the address of the VaultProxy. This field is not indexed, hence one can't easily search such events for a
certain VaultProxy. Given that the Factory doesn’t implement access control when deploying new shares
wrappers it may be helpful to have this field indexed so that one can more easily search the events.

Code corrected:

The parameter of the event has been indexed.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 13


https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Number of Assets
(Informational] [Version 1]

By design, the external position framework adds all assets specified as incoming assets to the tracked
assets of the vault, regardless whether the vault has a non-zero balance at the end of the operation.

Notably | Sol vvV2BondBuyer Posi ti on. Acti ons. C ai madds two assets as both may be received. In
a corner case scenario, despite actually receiving one asset only, adding two may exceed the position
limit and hence the operation fails.

7.2 OpenZeppelin ERC20 Hooks

(Informational] [Version 1]

The GatedRedemptionQueueSharesWrapperLib overrides t ransfer () /t ransfer From() in order to
validate the transfer (__pr eProcessTr ansf er).

The OpenZeppelin ERC20 implementation provides a hook, (_bef or eTokenTr ansf er ) which could be
used for this. Note that this hook is also executed upon minting/burning. For more information please
refer to documentation of OpenZeppelin:

« https://docs.openzeppelin.com/contracts/3.x/extending-contracts#using-hooks

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 14


https://docs.openzeppelin.com/contracts/3.x/extending-contracts#using-hooks
https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bond Buyer Requires Trusted Fund Manager

Investors need to trust the fund manager to a certain degree.

A fund manager can always drain funds e.g. through bad trades. This is documented:
https://specs.enzyme.finance/topics/known-risks-and-mitigations#opportunistic-managers

Note that this is amplified when a fund can use the SolvV2BondBuyer External Position: A malicious fund
manager may create an IVO offer via the Solv Protocol with a very high | owest Pri ce set for their
collateral asset. Then they can buy this offer through the External Position and never pay back the
principal to the Bond. This would leave the fund with a small amount of collateral, while the fund manager
could keep all value that was in the fund.

8.2 Deployment of
GatedRedemptionQueueSharesWrapper

Anyone may deploy a GatedRedemptionQueueSharesWrapper for any fund through the factory. This
includes setting the initial configuration. For example, a deployer can set themselves as manager.

Users and fund owner should be aware and excercise extra caution. The owner of a fund has full control
over any such GatedRedemptionQueueSharesWrapper and can reconfigure it.

Multiple SharesWrapper can be deployed for the same fund. Note that they all bear the same nane and
synbol .

8.3 Kick Ignores Redemption Limit

The ki ck function in the shares wrapper allows an admin to immediately force a user redemption. This
ignores the redemption limit.

Note that the limit of other users' withdrawals is not reduced by this, so the maximum redeemed amount
in that period can be the redemption limit, plus any ki ck actions in addition.

8.4 Redemption Requests Not Always Possible

Note that redemption requests to the shares wrapper can only be made outside of the redemption
window.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 15


https://specs.enzyme.finance/topics/known-risks-and-mitigations#opportunistic-managers
https://chainsecurity.com

The comments in the code suggest that window frequency could be chosen every 2 weeks and duration
1 week:

struct Redenpti onW ndowConfig {
uinte4 firstWndowStart ;

ui nt 32 frequency;

ui nt 32 duration;

ui nt 64 rel ati veShar esCap;

With these settings, users would only be able to make redemption requests half of the time. If a user is
unlucky, they would need to wait for an entire week until they can make a transaction that does not
revert.

8.5 Vault May Track Unsupported Assets

The external position framewaork relies on the parser of the external position to check the assets returned
as _asset sToRecei ve. The code of the external position framework doesn't do any checks itself and
simply adds any asset to the tracked assets of the vault. Note that this is also independent of the
balance.

Vaul tLib. _call OnExternal Position():

function __cal | OnExt ernal Posi ti on(
address _external Position,
bytes nenory _actionDat a,
address[] nenory _assetsToTransfer,
ui nt 256[] nenory _anount sToTransfer
address[] nenmory _asset sToRecei ve
) private {
require(
i SActi veExternal Position(_external Position),
' __call OnExternal Position: Not an active external position"

)

for (uint256 i; i _assetsToTransfer.length; i++) {
__withdrawAsset To(_assetsToTransfer[i], _external Position, _anmountsToTransfer[i]);

}

| Ext er nal Posi ti on(_external Position).receiveCall FronVault (_actionData);

for (uint256 i; i _assetsToReceive.length; i++) {
__addTrackedAsset (_asset sToRecei ve[i]);
}
}
. 2e42850b7bbc2237618c38f b01e767d14b606e00
function __addTrackedAsset (address _asset) private not Shares(_asset) {
it (!isTrackedAsset(_asset)) {
__validatePositionsLimt();
asset Tol sTracked|[ _asset] true;
trackedAsset s. push(_asset);
emt TrackedAsset Added(_asset);
}
}

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 16


https://chainsecurity.com

The Solvw2BondBuyerPositionParser doesn't check these assets sufficiently:

else if (_actionld ui nt 256( 1 Sol vv2BondBuyer Posi ti on. Actions. Caim) {
(address voucher, uint256 tokenld, ) __decoded ai mActi onAr gs(_encodedActi onArgs);

| Sol vvV2BondVoucher voucher Cont r act | Sol vvV2BondVoucher (voucher) ;

ui nt256 slotld voucher Contr act . voucher Sl ot Mappi ng(t okenl d) ;
| Sol vV2BondPool . Sl ot Detai | nenory sl ot Detai l voucher Contract.getSlotDetail (slotld);

asset sToRecei ve_ = new address[](2);
asset sToRecei ve_[ 0] voucher Cont ract . under| yi ng() ;
asset sToRecei ve_[ 1] sl otDetail . fundCurrency;

}

A voucher's underlying and fundCurrency may be any asset the IVO market supports. There is no check
that the fundCurrency is an asset supported by Enyzme. If the position was bought through the external
position, it's likely that the underlying is supported (else it couldn't have been bought.) Note that Solv
Bond Voucher NFT positions may be transferred to an external position and consequently one cannot
rely on the underlying to be supported.

Even when no value is returned in the specific asset, the asset is still added as tracked asset.

Similarly this situation may arise in the SolvvV2BondlssuerPosition: Cr eat eOf f er () only validates that
the received currency is not the native token (Ether). There is no further check on this asset which will be
incoming to the vault upon r econci | e() .

It's unclear if Enyzme supports all possible assets by default (e.g. also when new assets are added by
Solv). Unsupported assets tracked by a vault may have severe consequnces as they break e.g.
cal cGav().

It's the fund manager's responsibility to be aware and to act appropriately.

@ Avantgarde Finance - Sulu Extensions IX - ChainSecurity - © Decentralized Security AG 17


https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.1.1   Excluded from scope

	2.2   System Overview
	2.2.1   UniswapV2 Adapter: Support of swaps with fee-on-transfer tokens
	2.2.2   BalancerV2LiquidityAdapterBase:  Add batchSwap()
	2.2.3   External Position: Solv v2 bonds
	2.2.3.1   Bond Issuer:
	2.2.3.2   Bond Buyer:

	2.2.4   Peripheral: Gated shares wrapper
	2.2.5   Roles and Trust Model


	3   Limitations and use of report
	4   Terminology
	5   Findings
	5.1   Preferential Withdrawal
	5.2   BondBuyer: Claims Involving Ether Track Wrong Asset

	6   Resolved Findings
	6.1   Missing indexed in Event

	7   Informational
	7.1   Number of Assets
	7.2   OpenZeppelin ERC20 Hooks

	8   Notes
	8.1   Bond Buyer Requires Trusted Fund Manager
	8.2   Deployment of GatedRedemptionQueueSharesWrapper
	8.3   Kick Ignores Redemption Limit
	8.4   Redemption Requests Not Always Possible
	8.5   Vault May Track Unsupported Assets


