PUBLIC

Code Assessment

of the Enzyme 31Third Adapter
Smart Contracts

November 22, 2024

Produced for

S enzyme

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG

© 0 01 W

10
11
13
15

https://chainsecurity.com

1 Executive Summary

Dear Enzyme Team,

Thank you for trusting us to help 31Third with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Enzyme 31Third Adapter
according to Scope to support you in forming an opinion on their security risks.

31Third implements an adapter for Enzyme, which allows batch trades using the 31Third protocol. The
adapter was made possible through an Enzyme grant to 31Third.

The most critical subjects covered in our audit are functional correctness, the isolation of the adapter
from the rest of the system, and the correct integration with the external system. The isolation of the
adapter was improved in response to BatchTrade Should Revert On Error. Security regarding all
aforementioned subjects is high.

Some notes on the external system's behavior can be found in Replayable TradeSigner Signature and
Rebasing Tokens with Transfer Loss are Not Supported.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Enzyme 31Third Adapter repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V | Date Commit Hash Note

1 | 29 Mar 6al152226achb68a420af5db02feffee2fc2162fff Initial Version
2024

2 | 15 Apr 5dc7840703af4b8a48a9a8f081a957df7ba935a5 After Intermediate Report
2024

3 | 19 Nov edfd4bddaa4b32c8e69a57a890a9df6143152022 Retrieve Dust Asset
2024

The following files are in scope of this review:

contracts/external -interfaces/| ThreeOneThi rd. sol

contracts/rel ease/ extensi ons/ i ntegration-nmanager/integrations/
adapt er s/ Thr eeOneThi r dAdapt er . sol

contracts/rel ease/ ext ensi ons/ i ntegration-nmanager/integrations/
utils/0.8.19/actions/ ThreeOneThi rdActi onsM xi n. sol

contracts/utils/0.8.19/ AddressArraylLib. sol

For the solidity smart contracts, the compiler version 0. 8. 19 was chosen.

2.1.1 Excluded from scope

All the contracts that are not explicitly mentioned in the Scope section are excluded from scope. The
external systems, with which the adapter interacts, are assumed to work correctly. Finally, attack vectors
such as trades unfavorable for the fund by the fund manager have not been considered, as the managers
are considered trusted by the system.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

At the end of this report section we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance offers a 31Third adapter to integrate with Enzyme, which enables batch trading with
two or more assets in a single transaction via the 31Third BatchTrade contract.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Enzyme is an investment management system that allows one to buy shares of certain vaults. Vaults act
like funds and each vault has a vault manager, who is in charge of investing the funds of the vault into
other DeFi protocols. The manager can set certain policies that limit the actions of the users including the
manager's. Furthermore, the manager can only invest in third-party protocols for which an adapter exists.

2.2.1 31Third BatchTrade

31Third is a system designed to facilitate batch trading operations on decentralized liquidity sources such
as DEXes, DEX aggregators, market makers and staking protocols.

Its core feature is batch trading (bat chTr ade()): The protocol allows users to execute multiple trades in
a single transaction, potentially reducing gas fees and streamlining trading operations. Through a flexible
adapter system, it supports various DEXes, allowing trades across multiple platforms within one batch
operation. Trades are detailed in structured data including the exchange name, token addresses (from
and to), amounts, and minimum receipt requirements. A fee will be charged after each swap, which may
be waived if the nsg. sender isafeel essWal | et.

A bat chTr adeConfi g will also be passed as input for a batch trade. User may choose to revert the
batch execution in case any swap failed or return without revert by setting the flag
bat chTradeConfi g. revert OnError.

2.2.2 31Third Adapter

The 31Third Adapter is a permissionless adapter which is designed to facilitate batched swaps from
Enzyme vaults. The fund manager can initiate a call from the Comptroller to trigger the execution on the
IntegrationManager, which will eventually call the 31Third adapter to batch swap on assets the vault
proxy transfers.

The adapter implements par seAsset sFor Acti on() to compute the net change of assets that is
expected. It distinguishes the spending and incoming assets depending on the sign of their net change
represented as i nt 256. The vault proxy will transfer the spending assets to the adapter, before calling
the t akeCOr der () function on the adapter.

t akeOr der () will grant allowance to the Bat chTr ade contract and invoke bat chTr ade() . After the
batch swap, all the incoming assets on the adapter will be sent back to the vault proxy.

2.2.3 Roles and Trust Model

Please refer to the main audit report and the extension audit reports for a general trust model of Enzyme
protocol and its extensions.

In general, we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple entry
points, callbacks, fees-on-transfer, or other special behaviors.

Fund owners and asset managers are generally fully trusted for a fund. However, their powers can be
limited through the fund's settings. The funds' settings/policies are assumed to be set up correctly for the
intended configuration/usage (e.g. a policy to limit the slippage in 31Third batch trade).

The managers are expected to regularly claim the fees and to pause the position if under-/overvaluation
of the fund occurs.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting which includes choosing appropriate parameters.

All external systems are expected to be non-malicious and work correctly as documented.

The owner of 31Third protocol is partially trusted. They can configure feeless wallets, adjust fees, and
pause or unpause the protocol. If 31Third is paused, the adapter cannot be used. The tradeSigner of
31Third protocol is partially trusted. The adapter and 31Third protocol cannot be used if the signer stops
signing trade data.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.4 Changes in Version 2

In of the contracts, the call to 31Third batchTrade() is now always made with
revert OnError setto true.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E
(2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CLZ)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 2

» BatchTrade Should Revert on Error
« Dust of Spending Asset May Be Left on the Adapter

Informational Findings 2

* Inaccurate minToReceive Computation (SN EIEa L)

* Redundant Pragma (SN

6.1 BatchTrade Should Revert on Error
7D (Low) (Version 1) (YR

The bat chTrade function takes a revert OnError config parameter. When it is set to false, the
contract will not always revert on error. Instead, it will send the input tokens back to the caller. This could
result in tokens remaining on the ThreeOneThirdAdapter.

CS-EZTOT-001

In most cases, the failed BatchTrade will revert anyway, due to Enzyme's minincoming check.

To ensure no funds can be left on the adapter, it should only be possible to call bat chTr ade() with
revert OnError setto true.

Code corrected:

The revert OnEr r or parameter has been removed from the enzyme input list. bat chTr ade() is now
always called with r ever t OnEr r or set to true.

6.2 Dust of Spending Asset May Be Left on the
Adapter
7DD (Low) (Version 1) (CXIESIEED)

Note: This issue was reported by Avantgarde Finance.

CS-EZTOT-006

The adapter will distinguish a token as a spending or incoming asset based on the expected net balance
changes (based on the outgoing and min incoming amounts) over all the trades in

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

par seAsset sFor Acti on() . Hence, for an expected net-outgoing token, it will not be regarded as an
incoming asset even if the actual trades lead to a net income on it. Consequently, there might be left over
of a token which is used as both trade input and output.

Code corrected:

A modifier, post Acti onSpendAsset sTr ansf er Handl er has been added to t akeOr der (), which
will push the remaining spending assets back to the vault proxy.

6.3 Inaccurate minToReceive Computation

[Informational] [Version 1]

The fee charged in 31Third protocol is computed and rounded down as:

CS-EZTOT-002

f eeAmount (_recei vedAnount f eeBasi sPoi nt s) 10000;

As a result, the minimum amount to receive after fees will be rounded up. However, in
par seAsset sFor Acti on() the minimum amount to receive after fees is rounded down:

asset Changes asset Changes. addl ten(i nt 256(trades[i] . m nToRecei veBef or eFees
(10000 f eeBasi sPoi nt s) (10000)));

As a result, the amount to receive after fees will be slightly inaccurate.

Code corrected:
The asset Changes calculation now correctly rounds up instead of down.

6.4 Redundant Pragma
[Informational] [Version 1] Code Corrected
CS-EZTOT-004

ABI Encoder V2 is explicitly declared in Thr eeOneThi r dAdapt er and
Thr eeOneThi r dAct i onM xi n. After solidity v0O. 8. 0, ABI encoder v2 is activated by default, thus the
following pragma has no effect.

pragma experi nental ABI Encoder V2,

Code corrected:

The redundant pragma was removed.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Rebasing Tokens With Transfer Loss Are Not
Supported

(Informational) (Version 1)()

CS-EZTOT-003

The Bat chTr ade contract does pre- and post-balance checks when transferring tokens. This ensures at
least f r omAnmount will be received.

function _clal mAndApproveFromloken(1 ExchangeAdapt er, _exchangeAdapt er,
Trade nmenory _trade) private {
if (_trade.from ETH_ADDRESS) {
ui nt 256 fronBal anceBef ore _getBal ance(_trade. from;
| ERC20(_trade. from . saf eTransf er Fron(
neg. sender,
address(this),
_trade. fromAnount
B
ui nt 256 fronBal anceAfter _getBal ance(_trade. from;
i f (fronmBal anceAfter fronBal anceBef ore _trade. fromAmount) {
revert Not Enoughd ai med(_trade, _trade.fromAnount,
fronmBal anceAfter fronmBal anceBef ore) ;

}

| ERC20(_trade. from . saf el ncreaseAl | owance(
_exchangeAdapt er . get Spender (),
_trade. fromAnount

)i
}

However, this check may revert on transferring rebasing tokens such as stETH. Due to the shares to
underlying conversion, there may be 1-2 wei loss during the transfer and the receiver will receive less
than what is passed to saf eTr ansf er Fr on() . A similar check is also performed in _cal | Exchange.

This means that tokens such as stETH cannot always be traded using Bat chTr ade.

The 31Third docs explicitly state that fee-on-transfer tokens are not supported, but does not mention
rebasing tokens.

31Third responded:

The 31Third backend is aware of this. This will also be adressed in v2 of the 31Third protocol.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7.2 Replayable TradeSigner Signature
[Informational] [Version 1]

The Bat chTrade contract (out of scope) has a _preTradeCheck, which verifies that the
tradeSi gner has signed the trade fields: spender, from fromAmount, to,
m nToRecei veBef or eFees, and dat a.

CS-EZTOT-005

The signed fields:
» Do not contain the domain separator.
* Are not bound to a nsg. sender .

* Do not contain a nonce or expiration timestamp.

As a result, a signature can be reused in multiple ways:
» One user can reuse the signed trade data from another user.

« A trade data signed for Ethereum contracts can be replayed and accepted by contracts on another
chain (e.g. Polygon) if they share the same tradeSigner.

Note that the same address may contain different code on different chains.

These scenarios should be carefully analyzed on 31Third protocol to ensure no unintended behavior is
possible.

Risk accepted:
31Third responded:

Since only fund managers can rebal ance
their Enzyme funds this issue can be negl ected.

Additionally, 31Third stated that they would change the signer on Polygon to be a different address than
the one on Ethereum. This mitigates the cross-chain signature replay.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 The Adapter Should Not Be a Feeless Walllet
on 31Third BatchTrade

The owner of the 31Third BatchTrade contract has the privilege to set feeless wallets. An address
registered as a feeless wallet has their fees waived in batch swaps.

In addition to the Enzyme Integration Manager, anyone can use the adapter for batch swaps, as it is
permissionless.

31Third should not set the adapter as a feeless wallet, otherwise anyone can use the adapter to trade
without fees.

8.2 Unsupported Trades

Some batch trades are not supported by the adapter due to the way par seAsset sFor Acti on()
works: it goes through all the trades in a batch, and compute the net balance change given the exact
outgoing and min expected incoming amount. An asset is regarded as an incoming asset if it has net
incoming amount, and vise versa. Only the net outgoing balance is approved to the adapter.

As a result, if an asset is used as both input and output in a batch, there may be insufficient funds for the
trade where it is input, hence the batch trade may revert. For instance, assume there is a batch of two
trades between token A, B, C:

1. Tradel: xA->yB
2. Trade2: zC ->x A
3. Net spending asset would be z C and 0 A.

4. As trades are executed in order, Tradel will revert due to insufficient A token.

I:$: Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 31Third BatchTrade
	2.2.2 31Third Adapter
	2.2.3 Roles and Trust Model
	2.2.4 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 BatchTrade Should Revert on Error
	6.2 Dust of Spending Asset May Be Left on the Adapter
	6.3 Inaccurate minToReceive Computation
	6.4 Redundant Pragma

	7 Informational
	7.1 Rebasing Tokens With Transfer Loss Are Not Supported
	7.2 Replayable TradeSigner Signature

	8 Notes
	8.1 The Adapter Should Not Be a Feeless Wallet on 31Third BatchTrade
	8.2 Unsupported Trades

