

PUBLIC

Code Assessment

of the Enzyme 31Third Adapter

Smart Contracts

November 22, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 13

8 Notes 15

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Enzyme Team,

Thank you for trusting us to help 31Third with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Enzyme 31Third Adapter
according to Scope to support you in forming an opinion on their security risks.

31Third implements an adapter for Enzyme, which allows batch trades using the 31Third protocol. The
adapter was made possible through an Enzyme grant to 31Third.

The most critical subjects covered in our audit are functional correctness, the isolation of the adapter
from the rest of the system, and the correct integration with the external system. The isolation of the
adapter was improved in response to BatchTrade Should Revert On Error. Security regarding all
aforementioned subjects is high.

Some notes on the external system's behavior can be found in Replayable TradeSigner Signature and
Rebasing Tokens with Transfer Loss are Not Supported.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code Corrected 2

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Enzyme 31Third Adapter repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 29 Mar
2024

6a152226acb68a420af5db02feffee2fc2162fff Initial Version

2 15 Apr
2024

5dc7840703af4b8a48a9a8f081a957df7ba935a5 After Intermediate Report

3 19 Nov
2024

edfd4bddaa4b32c8e69a57a890a9df6143152022 Retrieve Dust Asset

The following files are in scope of this review:

contracts/external-interfaces/IThreeOneThird.sol
contracts/release/extensions/integration-manager/integrations/
 adapters/ThreeOneThirdAdapter.sol
contracts/release/extensions/integration-manager/integrations/
 utils/0.8.19/actions/ThreeOneThirdActionsMixin.sol
contracts/utils/0.8.19/AddressArrayLib.sol

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

2.1.1 Excluded from scope
All the contracts that are not explicitly mentioned in the Scope section are excluded from scope. The
external systems, with which the adapter interacts, are assumed to work correctly. Finally, attack vectors
such as trades unfavorable for the fund by the fund manager have not been considered, as the managers
are considered trusted by the system.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Avantgarde Finance offers a 31Third adapter to integrate with Enzyme, which enables batch trading with
two or more assets in a single transaction via the 31Third BatchTrade contract.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Enzyme is an investment management system that allows one to buy shares of certain vaults. Vaults act
like funds and each vault has a vault manager, who is in charge of investing the funds of the vault into
other DeFi protocols. The manager can set certain policies that limit the actions of the users including the
manager's. Furthermore, the manager can only invest in third-party protocols for which an adapter exists.

2.2.1 31Third BatchTrade
31Third is a system designed to facilitate batch trading operations on decentralized liquidity sources such
as DEXes, DEX aggregators, market makers and staking protocols.

Its core feature is batch trading (batchTrade()): The protocol allows users to execute multiple trades in
a single transaction, potentially reducing gas fees and streamlining trading operations. Through a flexible
adapter system, it supports various DEXes, allowing trades across multiple platforms within one batch
operation. Trades are detailed in structured data including the exchange name, token addresses (from
and to), amounts, and minimum receipt requirements. A fee will be charged after each swap, which may
be waived if the msg.sender is a feelessWallet.

A batchTradeConfig will also be passed as input for a batch trade. User may choose to revert the
batch execution in case any swap failed or return without revert by setting the flag
batchTradeConfig.revertOnError.

2.2.2 31Third Adapter
The 31Third Adapter is a permissionless adapter which is designed to facilitate batched swaps from
Enzyme vaults. The fund manager can initiate a call from the Comptroller to trigger the execution on the
IntegrationManager, which will eventually call the 31Third adapter to batch swap on assets the vault
proxy transfers.

The adapter implements parseAssetsForAction() to compute the net change of assets that is
expected. It distinguishes the spending and incoming assets depending on the sign of their net change
represented as int256. The vault proxy will transfer the spending assets to the adapter, before calling
the takeOrder() function on the adapter.

takeOrder() will grant allowance to the BatchTrade contract and invoke batchTrade(). After the
batch swap, all the incoming assets on the adapter will be sent back to the vault proxy.

2.2.3 Roles and Trust Model
Please refer to the main audit report and the extension audit reports for a general trust model of Enzyme
protocol and its extensions.

In general, we assume Enzyme only interacts with normal ERC-20 tokens that do not have multiple entry
points, callbacks, fees-on-transfer, or other special behaviors.

Fund owners and asset managers are generally fully trusted for a fund. However, their powers can be
limited through the fund's settings. The funds' settings/policies are assumed to be set up correctly for the
intended configuration/usage (e.g. a policy to limit the slippage in 31Third batch trade).

The managers are expected to regularly claim the fees and to pause the position if under-/overvaluation
of the fund occurs.

Governance is fully trusted and expected to not only behave honestly but also to fully understand the
systems they are interacting which includes choosing appropriate parameters.

All external systems are expected to be non-malicious and work correctly as documented.

The owner of 31Third protocol is partially trusted. They can configure feeless wallets, adjust fees, and
pause or unpause the protocol. If 31Third is paused, the adapter cannot be used. The tradeSigner of
31Third protocol is partially trusted. The adapter and 31Third protocol cannot be used if the signer stops
signing trade data.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.4 Changes in Version 2
Version 2In of the contracts, the call to 31Third batchTrade() is now always made with

revertOnError set to true.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code CorrectedBatchTrade Should Revert on Error

• Code CorrectedDust of Spending Asset May Be Left on the Adapter

Informational Findings 2

• Code CorrectedInaccurate minToReceive Computation

• Code CorrectedRedundant Pragma

6.1 BatchTrade Should Revert on Error
Design Low Version 1 Code Corrected

CS-EZTOT-001

The batchTrade function takes a revertOnError config parameter. When it is set to false, the
contract will not always revert on error. Instead, it will send the input tokens back to the caller. This could
result in tokens remaining on the ThreeOneThirdAdapter.

In most cases, the failed BatchTrade will revert anyway, due to Enzyme's minIncoming check.

To ensure no funds can be left on the adapter, it should only be possible to call batchTrade() with
revertOnError set to true.

Code corrected:

The revertOnError parameter has been removed from the enzyme input list. batchTrade() is now
always called with revertOnError set to true.

6.2 Dust of Spending Asset May Be Left on the
Adapter
Design Low Version 1 Code Corrected

CS-EZTOT-006

Note: This issue was reported by Avantgarde Finance.

The adapter will distinguish a token as a spending or incoming asset based on the expected net balance
changes (based on the outgoing and min incoming amounts) over all the trades in

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

parseAssetsForAction(). Hence, for an expected net-outgoing token, it will not be regarded as an
incoming asset even if the actual trades lead to a net income on it. Consequently, there might be left over
of a token which is used as both trade input and output.

Code corrected:

A modifier, postActionSpendAssetsTransferHandler has been added to takeOrder(), which
will push the remaining spending assets back to the vault proxy.

6.3 Inaccurate minToReceive Computation
Informational Version 1 Code Corrected

CS-EZTOT-002

The fee charged in 31Third protocol is computed and rounded down as:

feeAmount = (_receivedAmount * feeBasisPoints) / 10000;

As a result, the minimum amount to receive after fees will be rounded up. However, in
parseAssetsForAction() the minimum amount to receive after fees is rounded down:

assetChanges = assetChanges.addItem(int256(trades[i].minToReceiveBeforeFees *
 (10000 - feeBasisPoints) / (10000)));

As a result, the amount to receive after fees will be slightly inaccurate.

Code corrected:

The assetChanges calculation now correctly rounds up instead of down.

6.4 Redundant Pragma
Informational Version 1 Code Corrected

CS-EZTOT-004

ABIEncoderV2 is explicitly declared in ThreeOneThirdAdapter and
ThreeOneThirdActionMixin. After solidity v0.8.0, ABI encoder v2 is activated by default, thus the
following pragma has no effect.

pragma experimental ABIEncoderV2;

Code corrected:

The redundant pragma was removed.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Rebasing Tokens With Transfer Loss Are Not
Supported
Informational Version 1 Acknowledged

CS-EZTOT-003

The BatchTrade contract does pre- and post-balance checks when transferring tokens. This ensures at
least fromAmount will be received.

function _claimAndApproveFromToken(IExchangeAdapter, _exchangeAdapter,
 Trade memory _trade) private {
 if (_trade.from != ETH_ADDRESS) {
 uint256 fromBalanceBefore = _getBalance(_trade.from);
 IERC20(_trade.from).safeTransferFrom(
 msg.sender,
 address(this),
 _trade.fromAmount
);
 uint256 fromBalanceAfter = _getBalance(_trade.from);
 if (fromBalanceAfter < fromBalanceBefore + _trade.fromAmount) {
 revert NotEnoughClaimed(_trade, _trade.fromAmount,
 fromBalanceAfter - fromBalanceBefore);
 }

 IERC20(_trade.from).safeIncreaseAllowance(
 _exchangeAdapter.getSpender(),
 _trade.fromAmount
);
 }
}

However, this check may revert on transferring rebasing tokens such as stETH. Due to the shares to
underlying conversion, there may be 1-2 wei loss during the transfer and the receiver will receive less
than what is passed to safeTransferFrom(). A similar check is also performed in _callExchange.

This means that tokens such as stETH cannot always be traded using BatchTrade.

The 31Third docs explicitly state that fee-on-transfer tokens are not supported, but does not mention
rebasing tokens.

31Third responded:

The 31Third backend is aware of this. This will also be adressed in v2 of the 31Third protocol.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7.2 Replayable TradeSigner Signature
Informational Version 1 Risk Accepted

CS-EZTOT-005

The BatchTrade contract (out of scope) has a _preTradeCheck, which verifies that the
tradeSigner has signed the trade fields: spender, from, fromAmount, to,
minToReceiveBeforeFees, and data.

The signed fields:

• Do not contain the domain separator.

• Are not bound to a msg.sender.

• Do not contain a nonce or expiration timestamp.

As a result, a signature can be reused in multiple ways:

• One user can reuse the signed trade data from another user.

• A trade data signed for Ethereum contracts can be replayed and accepted by contracts on another
chain (e.g. Polygon) if they share the same tradeSigner.

Note that the same address may contain different code on different chains.

These scenarios should be carefully analyzed on 31Third protocol to ensure no unintended behavior is
possible.

Risk accepted:

31Third responded:

Since only fund managers can rebalance
their Enzyme funds this issue can be neglected.

Additionally, 31Third stated that they would change the signer on Polygon to be a different address than
the one on Ethereum. This mitigates the cross-chain signature replay.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 The Adapter Should Not Be a Feeless Wallet
on 31Third BatchTrade
Note Version 1

The owner of the 31Third BatchTrade contract has the privilege to set feeless wallets. An address
registered as a feeless wallet has their fees waived in batch swaps.

In addition to the Enzyme Integration Manager, anyone can use the adapter for batch swaps, as it is
permissionless.

31Third should not set the adapter as a feeless wallet, otherwise anyone can use the adapter to trade
without fees.

8.2 Unsupported Trades
Note Version 1

Some batch trades are not supported by the adapter due to the way parseAssetsForAction()
works: it goes through all the trades in a batch, and compute the net balance change given the exact
outgoing and min expected incoming amount. An asset is regarded as an incoming asset if it has net
incoming amount, and vise versa. Only the net outgoing balance is approved to the adapter.

As a result, if an asset is used as both input and output in a batch, there may be insufficient funds for the
trade where it is input, hence the batch trade may revert. For instance, assume there is a batch of two
trades between token A, B, C:

1. Trade1: x A -> y B

2. Trade2: z C -> x A

3. Net spending asset would be z C and 0 A.

4. As trades are executed in order, Trade1 will revert due to insufficient A token.

Avantgarde Finance - Enzyme 31Third Adapter - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 31Third BatchTrade
	2.2.2 31Third Adapter
	2.2.3 Roles and Trust Model
	2.2.4 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 BatchTrade Should Revert on Error
	6.2 Dust of Spending Asset May Be Left on the Adapter
	6.3 Inaccurate minToReceive Computation
	6.4 Redundant Pragma

	7 Informational
	7.1 Rebasing Tokens With Transfer Loss Are Not Supported
	7.2 Replayable TradeSigner Signature

	8 Notes
	8.1 The Adapter Should Not Be a Feeless Wallet on 31Third BatchTrade
	8.2 Unsupported Trades

