

PUBLIC

Code Assessment

of the Uniswap V4 Module

Smart Contracts

December 13, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 15

7 Informational 26

8 Notes 30

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Arrakis Finance with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts for the Uniswap V4
Module of Arrakis Modular according to Scope to support you in forming an opinion on their security
risks.

Arrakis Finance implements modules integrating with Uniswap V4 for Arrakis Modular. That allows
managers to manage a vault's liquidity on Uniswap V4.

The most critical subjects covered in our audit are functional correctness, integration with Arrakis Modular
and external systems, asset solvency and precision of arithmetic operations. The general subjects
covered are specification, gas efficiency, and trustworthiness.

The most significant findings are:

• Array manipulation during iteration

• Bad rounding

• Manager fee collected multiple times

• Token allowance abuse during module change

The first three items have been corrected through code corrections while the risk for the last one has
been accepted. Note that other lower severity issues have been partially corrected or acknowledged.

It is also worth noting that the project is subject to certain roles that are not fully trusted and can,
theoretically, extract small parts of the liquidity in discrete timer intervals. See Possibilities of executors to
drain funds for details.

In summary, we find that the codebase provides a good level of security, although it depends on the
correct usage by trusted accounts.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code Corrected 2

• Risk Accepted 1

Low -Severity Findings 18

• Code Corrected 14

• Code Partially Corrected 2

• Risk Accepted 1

• Acknowledged 1

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Arrakis Modular repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 18 Oct
2024

5d6c5f7f795fd0732d137ac189dd5967bef858e3 Initial Version

2 25 Nov
2024

abc0a63e236a3f03271b17ba26685ca82c1d604d After Intermediate Report

3 29 Nov
2024

601b7bda3c2c20ef898a0ca8dfa34a28923a953d Final Version

4 13 Dec
2024

793588ed55d7e2d36fd749fdde406a606ff7f8f9 Refactor and Partial Fix

5 13 Dec
2024

503682751808527a373a767ecdf639bc2626a909 Final Version

For the solidity smart contracts, the compiler version 0.8.26 was chosen.

The files in scope are:

src/
 abstracts/UniV4StandardModule.sol
 hooks/ArrakisPrivateHook.sol
 interfaces/
 IUniV4ModuleBase.sol
 IUniV4StandardModule.sol
 IArrakisPrivateHook.sol
 IUniV4StandardModuleResolver.sol
 libraries/UnderlyingV4.sol
 modules/
 UniV4StandardModulePublic.sol
 UniV4StandardModulePrivate.sol
 resolvers/UniV4StandardModuleResolver
 structs/SUniswapV4.sol

In Version 4, the following contract was added as part of a refactoring:

src/libraries/UniswapV4.sol

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 5

https://github.com/ArrakisFinance/arrakis-modular/tree/5d6c5f7f795fd0732d137ac189dd5967bef858e3
https://github.com/ArrakisFinance/arrakis-modular/tree/abc0a63e236a3f03271b17ba26685ca82c1d604d
https://github.com/ArrakisFinance/arrakis-modular/tree/601b7bda3c2c20ef898a0ca8dfa34a28923a953d
https://github.com/ArrakisFinance/arrakis-modular/tree/793588ed55d7e2d36fd749fdde406a606ff7f8f9
https://github.com/ArrakisFinance/arrakis-modular/tree/503682751808527a373a767ecdf639bc2626a909
https://chainsecurity.com

2.1.1 Excluded from scope
All other files are not in scope. The core has been part of another review. Further, the correctness of
Uniswap is out of scope. Uniswap is expected to function as documented. Incompatible tokens are out of
scope. Please refer to our core audit report for further details involving assumptions made by the core.

Note that Uniswap v4 is not deployed yet and may be subject to changes. The commits used for the
Uniswap v4 codebase are the relevant submodule commits of the initially reviewed version.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Arrakis Finance implements an Arrakis Modular module integrating with Uniswap v4, allowing the
protocol to manage Uniswap v4 liquidity. A public and a private version are provided to support the
respective metavaults. The overview describes the new module. For details regarding the protocol's core,
refer to the core audit report.

The module allows managers to manage positions on one Uniswap v4 pool at a time. Hence, funds are
allocated to tick ranges of a pool. Note that idle funds are wrapped to ERC-6909 balances. Similarly, the
fees earned on Uniswap v4 will be wrapped to ERC-6909 balances until they are rebalanced into new or
existing positions. On each interaction, the manager's share of the fees is sent to another contract (the
standard manager) from which it can be distributed to the appropriate receiving addresses.

The following functions for adding and removing liquidity are provided (used by the vault):

1. deposit() (only public module): Provides liquidity proportionally to each tick range and the
ERC-6909 balances. Fees are collected accordingly.

2. fund() (only private module): Provides liquidity arbitrarily to ERC-6909 balances (so that the
balances can be used later in rebalancing).

3. withdraw(): Withdraws liquidity proportionally from each tick range and from the ERC-6909
balances (similar to deposit()). Note that a full withdrawal (as required in setModule()) is
supported. Further, fees will be collected accordingly.

4. initializePosition(): Wraps the full token balances received from another module during a
module migration defined in setModule() to the respective ERC-6909 tokens.

The following functions for managing the module's liquidity are provided (usable by the standard
manager through its rebalance() function):

1. rebalance(): A rebalancing initially applies liquidity deltas to tick ranges to add and remove
liquidity for positive and negative deltas, respectively. While in both cases fees will be collected,
specifying the delta to be zero allows collecting fees only. Note that this tracks and untracks tick
ranges accordingly (tick ranges with non-zero liquidity are tracked). Next, an optional swap can be
performed through an arbitrary router contract. Finally, all deltas with Uniswap's pool manager are
settled. Note that this includes token transfers (for the flashloaned amount and received amount
from the swap) and ERC-6909 minting / burning.

2. setPool(): Changes the active pool and rebalances the funds on the new pool. For the old pool,
a rebalancing (as in rebalance()) without a swap is performed that removes all liquidity. Then,
for the new pool, a regular rebalancing is performed.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/arrakis-modular-smart-contracts
https://www.chainsecurity.com/security-audit/arrakis-modular-smart-contracts
https://chainsecurity.com

Note that view functions required for rebalancing are implemented as follows:

1. totalUnderlying(): Sums up the tokens currently present (according to the current tick) in the
active tick ranges, the tokens wrapped in the ERC-6909 balances, and the users' share of the
yet-to-be-claimed LP fees.

2. validateRebalance(): Validates the pool's price against the standard manager's oracle price.
Reverts if the deviation is too high. Note that this prevents creating positions at bad prices that
would allow draining the protocol.

Further, withdrawManagerBalance(), callable by arbitrary addresses but typically called by the
metavault or the standard manager, is implemented to allow claiming all generated fees and withdrawing
the manager's share. Note that this collects fees on all tick ranges (as in rebalance() when operating
on all active tick ranges) but without a swap. Additionally, setManagerFeePIPS() is implemented to
allow the standard manager to set its fee. Last, pause() and unpause() allow the guardian to pause all
functionality.

Arrakis Finance offers a dedicated Uniswap v4 Hook that can be used with any Uniswap v4 pool. It allows
only a pre-defined address to add liquidity and defines two different fee tiers depending on whether users
swap from token0 to token1 or token1 to token0.

2.2.1 Changes in Version 2
The following changes (besides corrections) were applied in the second version of the codebase:

1. The locally held balances are not held as the wrapped ERC-6909 tokens on Uniswap but as the
underlying ERC-20 tokens directly on the module.

2. The meta vault's owner can now approve arbitrary addresses with approve(). These contracts
can then pull the tokens from the module. Note that for ETH, a local approval can be given so that
approved address can call the newly added function withdrawEth() to retrieve the native token.
This is done to enable swaps that are performed at a later time (e.g., based on signed transaction
execution).

2.2.2 Changes in Version 4
Much of the logic was moved to the public library UniswapV4 as part of refactoring.

2.2.3 Roles and Trust Model
The module defines the following roles:

• Guardian: Trusted to pause and unpause responsibly.

• Metavault: Fully trusted and expected to be the private or public version accordingly. In case another
vault implementation would be set, the module could be drained.

• Manager: Fully trusted and expected to be the standard manager contract. In case another
implementation would be set, the module could be drained.

• Executors in Manager: Partially trusted. The executors cannot instantaneously drain the protocol.
However, adversarial executors might drain a vault slowly. See Possibilities of executors to drain
funds for details.

• Users: Fully untrusted.

• Version 2Meta Vault Owner: The owner of the meta vault has received additional privileges in .
Namely, the owner can now drain all funds by approving all tokens with the newly added
functionality described in Changes in Version 2.

Note that the system defines several other roles (e.g. vault owners). See the core audit report for more
details.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 7

https://www.chainsecurity.com/security-audit/arrakis-modular-smart-contracts
https://chainsecurity.com

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedToken Allowance Abuse During Module Change

Low -Severity Findings 4

• Code Partially Corrected Risk AcceptedDeposit Frontrunning

• AcknowledgedMissing Cooldown Period Minimum

• Risk AcceptedToken Allowance Abuse During Rebalance

• Code Partially Corrected Risk AcceptedToken Donations

5.1 Token Allowance Abuse During Module
Change
Security Medium Version 1 Risk Accepted

CS-ARRKS-MOD-UNIV4-003

Executors can call arbitrary payloads (except the withdraw() function) on any new module that is set
with ArrakisMetaVault.setModule(). A call to a module's deposit function can be used to abuse
previously set token allowances by users of the given module.

The functions UniV4StandardModulePublic.deposit() and
UniV4StandardModulePrivate.fund() accept the address of the depositor as arguments and then
proceed to transfer ERC-20 tokens from these addresses to the Uniswap PoolManager using
transferFrom(). Any existing allowances can be used to create new positions without any vault
shares being minted (as the vault's mint() function is bypassed). Thus, the new positions benefit all
existing depositors.

Executors can wait until enough allowances have been set to the module, switch to another module and
back to the given module, executing deposit() / fund() payloads for each account with an open
allowance.

Note that the severity is given based on the assumption that end users will interact with the router
contract.

Risk accepted:

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Arrakis Finance states:

Any user or protocol interacting with vault or their modules directly do it on their own risk.
A safe interaction with the vault/modules should happen through routers.

Note that it is of utmost importance that integrating protocols do not give approval to the respective
contracts.

5.2 Deposit Frontrunning
Security Low Version 1 Code Partially Corrected Risk Accepted

CS-ARRKS-MOD-UNIV4-006

Executors can get free shares on empty vaults. They can use this to frontrun the first deposit on a vault
and thus gain parts of the deposit. The scheme works as follows:

1. A new vault with the UniV4StandardModulePublic is deployed.

2. Another, arbitrary module is whitelisted on the vault.

3. 1e18 shares are minted through ArrakisMetaVault.mint().

4. The executor frontruns this deposit:

1. 1 wei of one of the vault tokens is donated to the module. This resets the init0 / init1
functionality.

2. 1e18 shares are minted by depositing 1 wei of the previously donated tokens.

3. ArrakisStandardManager.rebalance() is called with two ranges that are chosen
such that the token amounts for the created liquidity are rounded up to 1 wei.

4. ArrakisStandardManager.setModule() is called to change the module. The
withdrawal of the two ranges results in 0 tokens withdrawn (due to the planned rounding
error). The new module is now initialized with no tokens.

5. setModule() is be called again to switch back to the UniV4StandardModulePublic.

6. Since the module does not contain any value, the init values are active again. The
frontrun deposit now deposits a proportion of 1e18 - exactly the init amounts.

7. The depositor only owns half of the deposited tokens. The other tokens are now owned
by the executor.

Please note that this attack is only viable if done directly through the vault and not through the router.
Furthermore, the first deposit must be done after the deployment in a non-atomic way.

Code partially corrected:

While the init0 / init1 functionality can no longer be reset by simple donations, the executor still has
the means to perform the attack. If a new vault is deployed with two modules, switching to another
module, donating some wei to the old module and then switching back will set notFirstDeposit in the
UniV4StandardModulePublic to true in initializePosition(). The executor can then
proceed to donate underlying tokens to the module and carry on with the attack as described.

Risk accepted:

Arrakis Finance states that the remaining attack vector will be mitigated by the team performing a small
mint directly after deployment of a new vault, ensuring that the first deposit can not be performed by an
executor.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5.3 Missing Cooldown Period Minimum
Design Low Version 1 Acknowledged

CS-ARRKS-MOD-UNIV4-009

Executors can call ArrakisStandardManager.rebalance() in order to run the rebalance()
function on the UniV4StandardModule. This allows them to move funds between different positions on
the Uniswap PoolManager. Since required token ratios differ between positions with different ticks,
executors can choose to execute a swap during rebalancing. Such swaps can incur losses due to
slippage (which could be absorbed by the executors themselves) and thus, a maximum slippage
percentage is set in the module (and another one in the ArrakisStandardManager) to ensure that
executors can only incur a certain amount of slippage at a time.

To make sure that executors cannot drain the vaults, another mechanism is used that allows them to only
call rebalance() in discrete time intervals. However, this cooldown period can be set to any value
greater than 0. While this prevents draining the contract completely in one block, low values would allow
executors to drain the maximum available slippage multiple times in short time periods.

Acknowledged:

Arrakis Finance stated that it is assumed that the owners should choose cooldown values responsibly.

5.4 Token Allowance Abuse During Rebalance
Security Low Version 1 Risk Accepted

CS-ARRKS-MOD-UNIV4-015

UniV4StandardModule._rebalance() allows executors to perform arbitrary calls from the module.
The calls must return a certain minimum of one of the vault's tokens but have no other restrictions. The
executor could call one of the token contracts and transfer funds from any user that has an open
allowance to the module. These funds are then settled with the PoolManager, creating a new delta for
which new ERC-6909 tokens are minted later. These new funds benefit all existing holders.

Since funds are transferred, the swap's amountIn and expectedMinReturn can be chosen in a way
that ensures execution. The slippage check in ArrakisStandardManager.rebalance(), however,
prevents the executor from adding too many funds this way as it also reverts on positive slippage.

Note that the severity is given based on the assumption that end users will interact with the router
contract.

Risk accepted:

Arrakis Finance states:

We are assuming that only interacting through the router is safe. Protocols integrating Arrakis
Modular should also use the router.

5.5 Token Donations
Design Low Version 1 Code Partially Corrected Risk Accepted

CS-ARRKS-MOD-UNIV4-016

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

UniV4StandardModule defines the values _init0 and _init1 that specify the token amount ratios
for the first deposit. This is enforced with the following code:

currency0Id = CurrencyLibrary.toId(poolKey.currency0);
leftOver0 = IERC6909Claims(address(poolManager)).balanceOf(
 address(this), currency0Id
);

currency1Id = CurrencyLibrary.toId(poolKey.currency1);
leftOver1 = IERC6909Claims(address(poolManager)).balanceOf(
 address(this), currency1Id
);

...

if (length == 0 && leftOver0 == 0 && leftOver1 == 0) {
 leftOver0 = _init0;
 leftOver1 = _init1;
}

However, PoolManager balances are transferrable. This means that anyone can donate some of these
tokens to the module beforehand to disable the mechanism and therefore set the ratio themselves.

Code partially corrected:

Regular token donations no longer reset the _init0 / _init1 ratio. Executors, however, are still able to
circumvent the ratio in the following circumstances:

• A new public vault has been deployed.

• A second module has been added to the vault.

In this case, executors can call setModule() two times to automatically set notFirstDeposit to
true (they have to donate some tokens to the module after thet first setModule() call), circumventing
the new mechanism for initial deposits.

Risk accepted:

Arrakis Finance states that the remaining attack vector will be mitigated by the team performing a small
mint directly after deployment of a new vault, ensuring that the first deposit can not be performed by an
executor.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedArray Manipulation During Iteration

• Code CorrectedManager Fee Collected Multiple Times

Low -Severity Findings 14

• Code CorrectedAllowance Abuse Through Hooks

• Code CorrectedBad Rounding

• Code CorrectedLack of Event Emissions

• Code CorrectedManager Fee Finalization DoS

• Code CorrectedMissing Init Minima

• Code CorrectedMissing Range Check

• Code CorrectedNo Accrual During Fee Change

• Code CorrectedPausing Without Effects

• Code CorrectedPrivate Hook Unusable

• Code CorrectedUni V4 Resolver Ignores Token Order

• Code CorrectedUni V4 Resolver Math

• Code CorrectedWrong Counting of Minted and Burned Tokens

• Code CorrectedWrong Liquidity Invariant

• Code CorrectedUnderlyingV4 Ignores Management Fees for Mint Amounts

Informational Findings 5

• Code CorrectedIncorrect Unused Leftovers

• Code CorrectedBalance Function Errors

• Code CorrectedEmpty Return Values

• Code CorrectedIrrelevant Actual Balances in Rebalance()

• Code CorrectedNatSpec Inaccuracies

6.1 Array Manipulation During Iteration
Correctness Medium Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-001

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

UniV4StandardModule._withdraw() iterates over the _ranges array to withdraw an equal amount
from all positions. If the full liquidity of a position is withdrawn, its corresponding range is removed from
the _ranges array:

uint256 length = _ranges.length;

for (uint256 i; i < length; i++) {
 Range memory range = _ranges[i];
 ...
 if (liquidity == uint256(state.liquidity)) {
 ...
 _ranges[indexToRemove] = _ranges[l - 1];
 _ranges.pop();
 }
 ...
}

The array length is decreased during this operation, leading to an out-of-bounds access once the
iteration progresses to the end of the now shortened array.

Code corrected:

Now, the iteration is performed on a memory array. All removals are performed on the storage array.

Note that in version 4, an issue has been introduced as part of a gas optimization but has been resolved
in version 5.

6.2 Manager Fee Collected Multiple Times
Correctness Medium Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-002

Every time a position in the Uniswap PoolManager is updated, accrued fees are added to the unlock
delta. In this case, the UniV4StandardModule calculates the manager fee, transfers it to the
ArrakisStandardManager and mints ERC-6909 tokens for the remaining delta.

During (public vault) deposits and rebalances, the accrued fees for all positions are first calculated before
the positions are updated.

UniV4StandardModulePublic._deposit() iterates through all available positions and calls
PoolManager.modifyLiquidity(). In contrast, that is not the case for
UniV4StandardModule._rebalance() where the function only iterates over the positions supplied
by the executor. Meaning, that the function first calculates the manager fee on all positions but then
possibly only calls modifyLiquidity() on some of them. The remaining positions will yield the same
fees that have already been accounted for the next time they are updated in the PoolManager.
Consider the following example:

1. The manager fee is 10%.

2. The module holds 2 positions #0 and #1.

3. After some time, both positions have accrued 10 tokens in fees each.

4. An executor calls rebalance(), reducing position #0 and creating a new position #2.

5. 2 tokens are sent to the manager, position #0's fee growth is updated on Uniswap and 9 ERC-6909
tokens are minted with the remaining delta.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6. In the next transaction, some user deposits tokens to the vault. The fees are calculated again.
Since position #1 has not been updated before, a manager fee of 1 token is calculated and another
9 ERC-6909 tokens are minted from the delta.

7. In total, 3 tokens in manager fees have been taken from 20 tokens of total fees.

Code corrected:

Fees are now only taken from positions that are getting changed (and therefore accounted in Uniswap)
during the rebalance.

6.3 Allowance Abuse Through Hooks
Security Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-004

When adding liquidity, hooks are called that might modify the deposit deltas. As a consequence,
malicious hooks could be used to drain user approvals.

Consider the following scenario:

1. A user wants to create a large deposit and sends a transaction. They added some margin to their
approval to be sure that the transaction executes successfully.

2. A malicious executor sees it and sets a malicious pool with a post-add-liquidity hook and
rebalances it so that there is one position.

3. The user's transaction arrives thereafter.

4. Liquidity is added to the position. The hook specifies an additional delta to receive. Optimally, the
hook computes an amount so that the maximum amount pullable from the user will be taken by the
module. Note that the hook can take the funds instantly.

5. The user has lost funds as only the regular delta is credited.

Note that in case of maximum approvals, the user's funds could be drained fully.

Note that the severity is given based on the assumption that end users will interact with the router
contract.

Code corrected:

The code has been adjusted so that no pools with post-add-liquidity hooks are allowed.

6.4 Bad Rounding
Design Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-005

UniV4StandardModulePublic._deposit() calculates the amount of liquidity necessary to be
added to each position in the following way:

uint256 liquidity = FullMath.mulDiv(
 uint256(state.liquidity), proportion_, BASE
);

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

For token1, liquidity on Uniswap v4 is calculated with the following formula:

L = ΔY
Δ√ P

This indicates that liquidity values can be numbers significantly smaller than 1e18 if the following
conditions apply:

• Token1 has low decimals.

• The sqrtPrice is high (either if token1 has a really low value or if token0 also has low decimals).

• The range of the position is large.

Consider the following example:

• Token0 has 6 decimals (e.g. USDC).

• Token1 has 6 decimals (e.g. USDT).

• 1 full token0 is worth exactly 1 full token1. The sqrtPrice, considering the given decimals,
therefore is 1.

• The liquidity for 1000 token1 in a price range of 0.75 to 1.25 is:

A user could mint a small proportion (~2.5e8) to the vault such that the liquidity calculated for this position
is effectively 0. They would then gain free shares.

Note that UnderlyingV4.getUnderlyingBalancesMint() contains the same rounding error.

Code corrected:

liquidity is now rounded up.

6.5 Lack of Event Emissions
Design Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-007

The following event emissions are missing:

• LogDeposit in UniV4StandardModulePublic.deposit(). Note that the event is commented
out.

• LogInitializePosition in UniV4StandardModulePosition(). Note that the event is not
defined but ValantisHOTModule emits such an event in the same function.

Code corrected:

• Corrected: LogDeposit is now emitted accordingly.

• LogInitializePosition seems no longer necessary as the associated state change is now
always the same and therefore covered with the LogSetModule event in setModule().

6.6 Manager Fee Finalization DoS
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-008

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Updating the manager fee of a vault is subject to a waiting period. The process is thus divided into two
different calls:

1. ArrakisStandardManager.submitIncreaseManagerFeePIPS()

2. ArrakisStandardManager.finalizeIncreaseManagerFeePIPS()

finalizeIncreaseManagerFeePIPS() calls UniV4StandardModule.setManagerFeePIPS()
with the fee that has been passed to submitIncreaseManagerFeePIPS() before.
submitIncreaseManagerFeePIPS(), however, does not perform a check that is done in
setManagerFeePIPS():

if (newFeePIPS_ > PIPS) revert NewFeesGtPIPS(newFeePIPS_);

If a fee greater than PIPS is submitted, it can never be finalized. Submissions can also not be altered,
leading to a DoS of fee increases in the given vault.

Code corrected:

ArrakisStandardManager.submitIncreaseManagerFeePIPS() now checks that the new fee
does not exceed PIPS.

6.7 Missing Init Minima
Design Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-010

UniV4StandardModule.initialize() sets the parameters _init0 and _init1 during
initialization. These parameters are used to determine the ratio of the initially deposited tokens. If these
values are set to 0, arbitrary amounts of vault shares can be minted for free. Note that this may DoS a
vault (e.g. minting the maximum number of shares).

Code corrected:

The init values are now required to be non-zero.

6.8 Missing Range Check
Design Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-011

ArrakisStandardManager.setModule() allows executors to change the currently used module of a
given vault. It calls the vault's setModule() function that changes the module storage variable to the
address of the new module before calling withdraw() on the old module.

In the case that the new module is the UniV4StandardModule and the old module allows for some
form of reentrancy (for example, this would also be possible in the UniV4StandardModule if it would
allow hooks for removing liquidity), ArrakisStandardManager.rebalance() or setPool() could
be called on the new module during a callback.

This would allow an executor to create new ranges (after donating some Uniswap ERC-6909 tokens to
the module) before initializePosition() is called. Since initializePosition() does not
check for any pre-existing ranges, the module can be changed successfully. On newly created vaults,
this results in the init0 / init1 checks of the first deposit being bypassed.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

While it is still possible to create positions before the initialization of a module, the first deposit check can
no longer be bypassed this way as it is no longer dependent on the _ranges array.

6.9 No Accrual During Fee Change
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-012

UniV4StandardModule.setManagerFeePIPS() does not accrue manager fees before changing the
fee. Thus, the new fee is applied to any past gains of a module's positions starting from the point of the
last liquidity modification.

Code corrected:

The function has been adjusted to withdraw the manager balance before updating the fee.

6.10 Pausing Without Effects
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-013

The guardian may pause the module with pause(). However, no function besides pause() and
fund() (in UniV4StandardModulePrivate) has the whenNotPaused modifier. Effectively, no
functionality will be pausable.

Code corrected:

Now, fund(), deposit() and all manager functions are pausable. Note that is the expected behaviour
according to Arrakis Finance.

6.11 Private Hook Unusable
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-014

ArrakisPrivateHook defines a hook that is called when liquidity is removed.
UniV4StandardModule, which is supposed to be compatible with pools using the hook contract, does,
however, not allow pools with a hook that is called when liquidity is removed.

Code corrected:

All hooks unsupported by the UniV4StandardModule are now unsupported by the
ArrakisPrivateHook.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.12 Uni V4 Resolver Ignores Token Order
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-017

The return values of UnderlyingV4.totalUnderlyingForMint() are ordered according to the
pool's currencies. However, UniV4StandardModule.isInversed() is not considered in the
UniV4StandardModuleResolver. Thus, the resolver will confuse the tokens and currencies if the
token order is inversed.

Code corrected:

Return values, max amounts and init values are now correctly swapped if isInversed() is true.

6.13 Uni V4 Resolver Math
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-018

The UniV4StandardModuleResolver provides important values to the router. Namely, it specifies
how many shares to mint and how many funds to pull from a user. However, the resolver could compute
wrong results.

Problem 1: The first problem that occurs is that the rounding of the proportion computation differs from
the rounding in the public vault. More specifically, on line #122, a number of shares to mint is computed
and defined. Thereafter, the required token amounts are computed. The proportion is computed as
follows:

uint256 proportion =
 FullMath.mulDiv(shareToMint, BASE, totalSupply);

In contrast, ArrakisMetaVaultPublic.mint() rounds up, favoring the system. Ultimately, in cases
where the proportion is not perfectly rounded down, the returned token amounts might be too low for the
shareToMint which could possibly result in the router approving less tokens than required.

Problem 2: The reduction of the deposit maxima by the number of ranges might not account for all
rounding errors leading to a violation of the specified max amounts. The code below essentially ensures
that numberOfRanges rounding errors in the final computation are tolerated:

uint256 numberOfRanges = _ranges.length;

if (
 numberOfRanges >= maxAmount0_
 || numberOfRanges >= maxAmount1_
) {
 revert MaxAmountsTooLow();
}

maxAmount0_ = maxAmount0_ - numberOfRanges;
maxAmount1_ = maxAmount1_ - numberOfRanges;

The code below specifies the amounts to pull from a user:

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

(amount0ToDeposit, amount1ToDeposit) = UnderlyingV4
 .totalUnderlyingForMint(underlyingPayload, proportion);

However, totalUnderlyingForMint() might have a higher error than numberOfRanges. The first
reason being that the potential rounding up regarding the leftovers is not considered. Second, the errors
of the SqrtPriceMath might have higher rounding errors than 1 (e.g. double division rounded up might
have higher errors). Ultimately, the max amounts could be violated.

Code corrected:

The computation of the proportion is now done equivalently. The max amounts are now reduced
sufficiently.

6.14 Wrong Counting of Minted and Burned
Tokens
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-019

UniV4StandardModule._rebalance() counts the minted and burned liquidity in both tokens.
However, it does not consider the fees accrued when returning from _addLiquidity() and
_removeLiquidity(). Namely, that is due to the callerDelta returning deltas including fees.

Consider the following scenario:

1. One position is defined with 10 tokens each at the current price. Assume that 2 tokens of fees have
been earned in both tokens.

2. The position is rebalanced to remove half of the liquidity.

3. _removeLiquidity() will remove 5 of both tokens. The delta returned, however, will specify 7
tokens each due to fees being included.

4. The burned liquidity will result being 7 instead of 5 (as the fees are not burned liquidity from the
position).

Note that if the fees had been collected before removing the liquidity, the result would have been 5 for
both tokens. Thus, the accounting can be inconsistent.

Code corrected:

The code has been adjusted to not include the fees.

6.15 Wrong Liquidity Invariant
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-020

UniV4StandardModule._rebalance() calls _addLiquidity() before making any delta
adjustments regarding the fees. _addLiquidity() then performs the following checks right after the
call to PoolManager.modifyLiquidity():

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

if (currency0BalanceRaw_ > 0) revert InvalidCurrencyDelta();
uint256 currency0Balance =
 SafeCast.toUint256(-currency0BalanceRaw_);
if (currency1BalanceRaw_ > 0) revert InvalidCurrencyDelta();
uint256 currency1Balance =
 SafeCast.toUint256(-currency1BalanceRaw_);

However, since modifyLiquidity() adds the earned fees since the last position update to the delta, it
can also be positive in case token amounts required for adding the given liquidity are smaller than the
actual fees that have been accrued since the last update.

Removing liquidity beforehand can also exacerbate this problem as the delta becomes already positive
before _addLiquidity() is called.

Code corrected:

Note that the checks in _addLiquidity() have been removed. Also note that the check was not
strictly needed in the first place.

6.16 UnderlyingV4 Ignores Management Fees
for Mint Amounts
Correctness Low Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-021

The minting-related functionality of UnderlyingV4 (e.g. totalUnderlyingForMint()) ignores
self.managerFeePIPS() so that the amounts needed for minting will be overestimated.

Code corrected:

The code has been adjusted to deduct the fees.

6.17 Incorrect Unused Leftovers
Informational Version 2 Code Corrected

CS-ARRKS-MOD-UNIV4-030

The leftovers computed in UniV4StandardModulePublic._deposit() on line 187 are incorrectly
computed as they do not account for the msg.value that has been passed to the
UniV4StandardModulePublic.deposit() function. However, the leftovers are unused as they do
not impact the fee computations.

Code corrected:

Fees are now directly summed up from the modifyLiquidity() calls over all ranges.
UnderlyingV4.totalUnderlyingWithFees() (and the respective leftovers) is no longer used in
the _deposit() function.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6.18 Balance Function Errors
Informational Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-022

The UniV4StandardModule defines several view functions that return the current balances held. For
example, totalUnderlying() returns the total amount of token0 and token1 held by the module. That
accounts for LP fees and manager fees and returns the amounts in the order of token0 and token1 of the
vault.

Other similar functions are inconsistent with that. Namely,

1. totalUnderlyingAtPrice() does not deduct the manager fees from the returned amounts,

2. managerBalance0() does not consider isInversed and might return the manager balance in
token1,

3. and managerBalance1() does not consider isInversed and might return the manager balance
in token0.

Code corrected:

All mentioned functions now correctly consider the isInversed flag.

6.19 Empty Return Values
Informational Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-023

UniV4StandardModule.rebalance() defines return values to which no values are assigned.
However, the return values are also not parsed in ArrakisStandardManager.rebalance().

Code corrected:

UniV4StandardModule.rebalance() now returns the return values of the internal function.

6.20 Irrelevant Actual Balances in Rebalance()
Informational Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-027

In the swap part of UniV4Module._rebalance(), the variables balances.actual0 and
balances.actual1 are calculated after take() is done on the PoolManager. take(), however, will
always send the exact specified amount or revert. Additionally, the values are then never used when
setting the token allowances to the swap router.

Furthermore, the values are added to expectedMinReturn in the slippage check. This addition will
always add 0 as the actual value of the token that has not been taken before is added:

if (swapPayload_.zeroForOne) {
 ...
 balances.actual0 = _token0.balanceOf(
 address(this)
) - balances.initBalance0;

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

 ...
} else {
 ...
 balances.actual1 = _token1.balanceOf(
 address(this)
) - balances.initBalance1;
 ...
}
...
if (swapPayload_.zeroForOne) {
 if (
 balances.actual1
 + swapPayload_.expectedMinReturn
 > balances.balance1
) {
 revert SlippageTooHigh();
 }
} else {
 if (
 balances.actual0
 + swapPayload_.expectedMinReturn
 > balances.balance0
) {
 revert SlippageTooHigh();
 }
}

Code corrected:

The mentioned balances have been removed.

6.21 NatSpec Inaccuracies
Informational Version 1 Code Corrected

CS-ARRKS-MOD-UNIV4-031

The NatSpec comments provide documentation about functions. Below is a list of NatSpec inaccuracies:

1. UniV4StandardModulePublic.deposit(): Specifies that proportion_ is the number of
shares that need to be added. However, it is the proportion of liquidity that needs to be added.

2. UniV4StandardModule.initialize(): Specifies that init1_ is the initial amount provided to
the Valantis module. However, it is the initial amount provided to the Uniswap V4 module.

Code corrected:

All mentioned items have been correctly adjusted.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Floating Pragma
Informational Version 1 Acknowledged

CS-ARRKS-MOD-UNIV4-024

Arrakis Finance uses a floating pragma solidity ^0.8.26. Contracts should be deployed with the same
compiler version and flags that have been used during testing and audit. Locking the pragma helps to
ensure that contracts do not accidentally get deployed using, for example, an outdated compiler version
that might introduce bugs that affect the contract system negatively. Further, the foundry.toml file
does not specify a fixed compiler version either.

Note that for UnderlyingV4, a floating pragma may be suitable to ensure the reusability of the code in
the future.

Acknowledged:

Arrakis Finance states:

We need to be sure during deployment we are using the right solidity version 0.8.26.

7.2 Gas Inefficiencies
Informational Version 1 Code Partially Corrected

CS-ARRKS-MOD-UNIV4-025

The gas consumption can be reduced in several places. Below is a non-exhaustive list:

1. _checkTicks() is redundant. Namely, that is due to Uniswap v4 performing the same check in
any modifyLiquidity() calls.

2. The module requests the full position info from the pool manager in setPool(), _withdraw(),
_removeLiquidity() and _deposit(). However, only the liquidity is needed which could be
requested through the library function StateLibrary.getLiquidity(). That would reduce the
amount of storage reads. Further, in many occasions that would reduce the amount of memory
writes to the Position.State struct, too.

3. _deposit() uses UnderlyingV4.totalUnderlyingWithFees() to compute the earned
fees. However, the computation is not strictly necessary. Namely, the fees could be easily
computed after all modifyLiquidity() calls by summing them up. Therefore, the storage reads
and external call made for the UnderlyingV4::totalUnderlyingWithFees() function could
be skipped if the action order in _deposit() were to be reordered. Note that this is similarly the
case when removing all liquidity in setPool().

4. Further, some computations of UnderlyingV4.totalUnderlyingWithFees() are not needed
for functions managerBalance0() and managerBalance1().

5. sync() on the pool manager is always called. However, it is not strictly needed for the native
token, as settle() would be sufficient in such cases.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6. UnderlyingV4.totalUnderlyingForMint() queries UniV4StandardModule.poolKey()
to retrieve the tokens from the key. However, given the assumption that the payload has the correct
tokens, the token retrieval is redundant.

7. totalUnderlyingWithFees() calls _totalUnderlyingWithFees() without price which
triggers the automatic price retrieval. However, the same price is retrieved in each iteration of the
function.

8.

Version 2

The iteration in _withdraw() has complexity of . However, the complexity could be reduced
to if the iteration would start at the last item instead of the first one. Note that this has been
reported in .

Code partially corrected:

The code has been partially corrected:

1. _checkTicks() has been removed completely.

2. The code now uses the library function getPositionLiquidity().

3. _deposit() now calculates the fees from the return values fo modifyLiquidity().

4. Not corrected.

5. sync() is now only called for non-native tokens.

6. Not corrected to potentially support modules with multiple pools in the future.

7. Not corrected to potentially support modules with multiple pools in the future.

8. Corrected: The computation has been improved significantly.

7.3 Inconsistent First Deposit Checks in Resolver
Informational Version 1 Code Partially Corrected Risk Accepted

CS-ARRKS-MOD-UNIV4-026

The resolver uses the total supply as a check whether the init values should be used (first deposit).
However, that is inconsistent with the module which performs other checks. While typically the checks
should be roughly equivalent, they can differ under certain circumstances. Thus, the resolver might return
wrong results.

Please note that this change also requires a mitigation for Deposit frontrunning. Otherwise, the issue will
also extend to deposits done via the router.

Code partially corrected:

The code has been generally corrected. Namely, the total supply check is typically valid now. However,
the init values can be circumvented. This is possible by calling setModule() twice and donating tokens
after the first call. Hence, in such cases, the supply will remain zero and the resolver could return wrong
results.

Risk accepted:

Arrakis Finance states that the remaining issue will be mitigated by the team performing a small mint
directly after deployment of a new vault, ensuring that the first deposit can not be performed by an
executor.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

7.4 Old Library Used
Informational Version 1 Code Partially Corrected

CS-ARRKS-MOD-UNIV4-028

UnderlyingV4.getUnderlyingBalances() uses the library LiquidityAmounts to calculate the
correct token amounts for Uniswap positions. The token amounts are meant for Uniswap v4 but the
library is from a Uniswap v3 repository. In the event that some calculations change in the future, this will
not be detected.

Similarly, UnderlyingV4.getAmountsForDelta() uses the library SqrtPriceMath from a Uniswap
v3 repository to calculate the token deltas for a liquidity delta in a price range.

Code partially corrected:

SqrtPriceMath in UnderlyingV4 has been updated to the v4 version. LiquidityAmounts is still a
v3 library.

7.5 Uncommon Style Choices
Informational Version 1 Code Partially Corrected

CS-ARRKS-MOD-UNIV4-029

The code deviates from the programming-style choices followed and from best practices on several
occasions. Below is a non-exhaustive list:

1. UniV4StandardModule.totalUnderlyingAtPrice() could reuse
UniV4StandardModule._getPoolRanges(). Generally, the usefulness of
_getPoolRanges() is questionable, given that always the same pool is added to the structs.
Thus, UnderlyingV4 could simply receive the pool as an argument for a batch of positions on a
given pool.

2. The UnderlyingV4 library allows specifying multiple pools. However, the tokens might differ,
resulting in the result being incorrect. Note that this point relates to the above.

3. The UniV4StandardModule._unlockCallback() function passes the
SUniswapV4.Withdraw struct as an argument. However, four out of seven struct members are
used as temporary variables in the function. Thus, it may be clearer to declare them in
UniV4StandardModule._withdraw().

4. Computing UniV4StandardModule.isInversed() from the vault's token0 and token1 on
initialization could simplify the deployment process of the module for owners.

5. The positionKey used when getting the position information with
StateLibrary.getPositionInfo() could be computed with
Positions.calculatePositionKey() to reuse code.

6. token0 and token1 in UniV4StandardModule._getTokens() shadow the storage variables
declared in UniV4StandardModule.

7. UniV4StandardModule.validateRebalance() handles the case where the pool's token1 is
the native token. However, that is impossible. Further, for consistency with
UniV4StandardModule._initializePosition(), CurrencyLibrary.isAddressZero()
could be used.

Code partially corrected:

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

1. _getPoolRanges() is now reused (but still used).

2. No change.

3. No change.

4. No change.

5. Position keys are now computed using the appropriate library functions.

6. The variables have been renamed.

7. validateRebalance() now only checks if the first token is native.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Approval Considerations
Note Version 2

Version 2In , an approval feature has been added to the modules. Namely, the metavault owner can give
approvals to arbitrary addresses.

As a consequence, the feature could be used to drain funds. However, note that as part of the trust
model, the owner is fully trusted. It is thus expected that only trusted address will be approved.

Nevertheless, below is a non-exhaustive list of considerations for owners when approving addresses:

• The approved address is fully trusted. In case of issues, the module could be attacked (limited by the
approval amounts). Optimally, the approved address is a contract with limited but clearly defined
functionality.

• No asynchronous value exchanges are allowed. Namely, if some approval is used, tokens with an
equivalent value shall be returned to the module immediately. Note that there are no slippage
checks present in the module.

• The approved address should ensure that the control over the execution is only ever handed to
trusted addresses. For example, if an approved address pulls ETH and performs a trusted swap
where ETH is first sent out to an untrusted recipient, the recipient could mint shares at a discount.
Namely, that is due to the leftover accounting not being accurate.

Ultimately, approved addresses must be evaluated carefully to ensure the safety of users' funds.

8.2 Hook Considerations
Note Version 1

The ArrakisPrivateHook implements a hook contract. Vault owners should be aware that flags are
set as part of the address. The owners should ensure that the flags are set correctly. Otherwise, the hook
will not provide the desired functionality.

Note that the Uniswap best practices suggest validating the hook flags directly in the constructor of the
contract (e.g. Example Hook).

8.3 Module Oracle
Note Version 1

In UniV4StandardModule.initialize(), the oracle is not validated. Hence, it could be different
from the oracle defined in ArrakisStandardManager.vaultInfo. Owners should ensure that the
oracle is meaningful and optimally equal to the oracle defined in the standard manager.

Users and owners should be aware that an oracle returning zero would allow draining the module.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 30

https://github.com/Uniswap/v4-periphery/blob/example-contracts/contracts/BaseHook.sol#L19
https://chainsecurity.com

8.4 Native Token Constant
Note Version 1

ArrakisStandardManager contains immutable variables for the native token address and decimals.
For no deployment should these immutable variables be different from the constants used in the
UniV4StandardModule.

8.5 Out-of-Gas Possibility
Note Version 1

The UniV4StandardModule function keeps track of the tick ranges _ranges. Note that the size of that
array is not restricted. Executors should be aware that increasing the size of the array might lead to
potential out-of-gas scenarios where the module could be in a full DoS scenario. Note that this is due to
every function relying on fully loading the array from storage.

8.6 Possibilities of Executors to Drain Funds
Note Version 1

Executors can call arbitrary functions on arbitrary contracts during rebalance() to be able to swap
tokens. These calls are only constrained by the fact that amountIn and expectedMinReturn have to
be set to some value other than 0, which requires the call to return at least 1 wei of one of the vault's
tokens back to the module. While this prevents niftier attacks (like setting the operator of the module's
balances in the PoolManager), executors can still use this call to siphon off tokens up to the maximum
allowed slippage in every rebalance action. Consider the following examples:

1. The executor calls their own contract which transfers a specific amountIn token0 (or token1) from
the module and sends back the least amount of token1 (or token0) still covered by
_checkMinReturn().

2. The executor performs a normal swap an some AMM but sandwiches the whole rebalance call so
that they can siphon off the maximum slippage.

3. The executor performs a call to PoolManager.donate() with amountIn = 1 and
expectedMinReturn = 1 (depending on the price) on a different pool (with the same tokens but
their own custom hook that sends back 1 wei of token0/token1) and donates the maximum liquidity
that still allows the slippage check in ArrakisStandardManager to pass. The donation is done
to one of their own positions.

4. The executor performs a call to PoolManager.modifyLiquidity() with amountIn = 1 and
expectedMinReturn = 1 (depending on the price) on a different pool (with one of the vault's
tokens, another worthless token and their own custom hook that sends back 1 wei of
token0/token1) and adds the maximum liquidity) that still allows the slippage check in
ArrakisStandardManager to pass. One-sided liquidity for the vault token must be added and
then traded against with the worthless token.

5. The executor performs a call to PoolManager.modifyLiquidity() with amountIn = 1 and
expectedMinReturn = 1 (depending on the price) on a different pool (with the same tokens but
their own custom hook that sends back 1 wei of token0/token1) and adds the maximum liquidity
that still allows the slippage check in ArrakisStandardManager to pass. The pool must be
highly imbalanced so that the executor can then trade against the position afterwards.

It is also worth noting that the first two points can be repeated multiple times (as
ArrakisStandardManager.rebalance() allows calling the module's rebalance function multiple

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

times in a row) if the slippage protection for the swap in the module is set tighter than the slippage
protection in the standard manager.

8.7 Supported Tokens
Note Version 1

The Uniswap V4 module supports a wide range of tokens which includes standard ERC-20 tokens and
the native token. However, some token types are not supported. Below is a non-exhaustive list of such
tokens:

1. Tokens with fees: Not supported due to the transfers to the pool manager providing an insufficient
amount of funds to the fee taken.

2. Rebasing tokens: Not supported due to the lack of support for such tokens in Uniswap v4.

3. Reentrant tokens: Not supported as the core does not support such tokens (see core audit report).

4. ERC-1363: Tokens with a function such as approveAndCall() could allow an attacker to drain
funds during a module migration. Assume that, during a migration, the withdraw() on a
hypothetical module hands over the control over the execution flow to a malicious executor after
some tokens have been sent to the Uniswap v4 module. Then, the attacking executor could
rebalance the position (not reentrancy protected) to call approveAndCall() a token contract to
hand out approvals and perform a "swap" correctly. Once rebalancing has successfully finished, the
tokens could be pulled out of the module before the module is initialized with the position
initialization. Ultimately, no slippage protection would catch such an attack.

Arrakis Finance - Uniswap V4 Module - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Changes in Version 2
	2.2.2 Changes in Version 4
	2.2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Token Allowance Abuse During Module Change
	5.2 Deposit Frontrunning
	5.3 Missing Cooldown Period Minimum
	5.4 Token Allowance Abuse During Rebalance
	5.5 Token Donations

	6 Resolved Findings
	6.1 Array Manipulation During Iteration
	6.2 Manager Fee Collected Multiple Times
	6.3 Allowance Abuse Through Hooks
	6.4 Bad Rounding
	6.5 Lack of Event Emissions
	6.6 Manager Fee Finalization DoS
	6.7 Missing Init Minima
	6.8 Missing Range Check
	6.9 No Accrual During Fee Change
	6.10 Pausing Without Effects
	6.11 Private Hook Unusable
	6.12 Uni V4 Resolver Ignores Token Order
	6.13 Uni V4 Resolver Math
	6.14 Wrong Counting of Minted and Burned Tokens
	6.15 Wrong Liquidity Invariant
	6.16 UnderlyingV4 Ignores Management Fees for Mint Amounts
	6.17 Incorrect Unused Leftovers
	6.18 Balance Function Errors
	6.19 Empty Return Values
	6.20 Irrelevant Actual Balances in Rebalance()
	6.21 NatSpec Inaccuracies

	7 Informational
	7.1 Floating Pragma
	7.2 Gas Inefficiencies
	7.3 Inconsistent First Deposit Checks in Resolver
	7.4 Old Library Used
	7.5 Uncommon Style Choices

	8 Notes
	8.1 Approval Considerations
	8.2 Hook Considerations
	8.3 Module Oracle
	8.4 Native Token Constant
	8.5 Out-of-Gas Possibility
	8.6 Possibilities of Executors to Drain Funds
	8.7 Supported Tokens

