PUBLIC

Code Assessment

of the Bridge Executors

Smart Contracts

July 26, 2022

Produced for

AAVE

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

N o o B~ WN P

Notes

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG

© O 01 W

10
11
14

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Aave with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of the BridgeExecutor contracts
on Arbitrum/Optimism according to Scope to support you in forming an opinion on their security risks.

The smart contracts implement the Executor for Governance actions on Arbitrum/Optimism, hence they
bear a very privileged role within the Aave contracts on the network.

The most critical subjects covered in our audit are functional correctness and security of the queue /
execution mechanism. The issues reported as part of the holistic assessment of the smart contracts
security might affect the secure operation, depending on the behavior of the trusted roles.

In summary and under the assumption the trusted roles act correctly as expected, we find that the
codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Risk Accepted

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Aave Governance Cross-Chain
Bridges repository based on the documentation files. The table below indicates the code versions
relevant to this report and when they were received.

Date Commit Hash Note

22 June 2022 | fd3al4b8e95a85df54d83cca6386f46b1082badd Version 2
20 July 2022 | 8fa25b0080dd3dcc2390313631aea6796a12c9d8 | AddressAliasHelper update

\Y,
1 | 30 May 2022 | 303bd3e16c8d3465325389a72564126¢c3bacc4f9 | Initial Version
2
3

For the solidity smart contracts, the compiler version 0. 8. 10 was chosen.
The contracts in scope for this review were:

ArbitrumBridgeExecutor - to be deployed on ArbitrumOne
OptimismBridgeExecutor - to be deployed on Optimism Mainnet

The following files were in scope:

OptimismBridgeExecutor.sol, ArbitrumBridgeExecutor.sol, BridgeExecutorBase.sol,L2BridgeExecutor.sol
and interfaces used by these contracts.

EVM equivalence, with the differences described in the Arbitrum/Optimism documentation respectively
was assumed for the execution environment of the smart contracts under review.

2.1.1 Excluded from scope

The messenger contracts and the message passing mechanism from L1 to L2 provided by the L2
solution was not in scope of this review and expected to work correctly as documented.

All files in subfolder dependenci es were not part of the review.

All files related to PolygonBridgeExecutor were not in the scope of this review.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

3 System Overview

The smart contracts reviewed implement the executor contracts for the Aave governance on L2, namely
Optimism and Arbitrum. A similar executor is already live on the Polygon network.

Aave governance takes place on L1 Ethereum. Generally speaking, proposals are calls, which are, if
accepted, queued to be executed by the executor contract. This executor contract e.g., bears privileged
roles in the Aave system and hence can update system parameters.

The BridgeExecutor on L2 will be the executor for governance actions which have been received from L1
Ethereum. Note that the L2 executor contract implementation is similar, but not identical to the existing
implementation of the executor on L1 Ethereum.

To execute an action on L2, the proposal on L1 is a call to the messenger contract on L1 of the L2
solution, the message contains the details for the action to be queued for execution in the BridgeExecutor
contract on L2. The message is relayed when it is executed through the executor contract on Ethereum
L1, this adds the proposal to the queue of the executor contract on L2 where it can be executed.

For Arbitrum the proposal will be a call to the following function in the Arbitrum Inbox contract on
Ethereum:

function createRetryabl eTi cket (
addr ess dest Addr,
ui nt 256 | 2Cal | Val ue,
ui nt 256 maxSubmi ssi onCost ,
addr ess excessFeeRef undAddr ess,
address cal | Val ueRef undAddr ess,
ui nt 256 naxGas,
ui nt 256 gasPri ceBi d,
bytes call data data
) external payable returns (uint256)

For Optimism the proposal will be a call to the following function in the OVM L1 Cross Domain
Messenger contract on Ethereum:

function sendMessage(
address _target,
bytes nenory _nessage,
uint32 _gasLimt

) public

The dest Addr (Arbitrum) / _t arget (Optimism) will be the respective BridgeExecutor contract. The
data (Arbitrum) / _nessage (Optimism) will be the encoded data for the «call to
gueue(targets, values, signatures, calldatas, w thDel egatecall s). Note all the data
should be correctly encoded by the Abi Encoder v2.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The messages relay between L1 and L2 works slightly differently for Optimism vs Arbitrum:
For Optimism:

The message is executed automatically on L2 using the specified gas limit. The cost of such an L1 to L2
transaction is the gas costs on L1 Ethereum. The first 1.92 million gas on L2 are free, a higher gas limit
incurs a cost in the form of an increased gas consumption of the L1 message. No fee is paid on L2.

For Arbitrum:

Deposi t Val ue is credited to the sender's account on L2. A new ticket is created which includes
collection of the submission fee and the callvalue from the senders L2 account balance. This fails when
the L2 account balance is less than MaxSubm ssi onCost + Cal | val ue.

Hence on Arbitrum the L2 address of the ethereumGovernanceExecutor must hold or receive
some balance.

The retryable ticket is automatically executed. If this fails, the retryable ticket is placed in the retry buffer
where it can be executed by anyone within a certain timeframe. The caller pays for the gas and can set
the gas limit.

If an L1 transaction underpays for a ticket's base submission free, the ticket creation on L2
simply fails.

Note that callvalue must be zero for messages to queue() since this function is not payable.

3.1 Contracts

The top level contracts, OptimismBridgeExecutor and ArbitrumBridgeExecutor implement the L2 solution
specific modifier used to restrict access to the queue function to the L1 Executor only.

The core functionality is implemented in the L2BridgeExecutor or BridgeExecutorBase contract
respectively.

Actions sets which contain one or multiple sequential actions (calls) are received from L1: The L1
Executor calls the messenger contract of the L2 solution on L1, the message is relayed and eventually on
L2 the queue() function is invoked and the actions set is queued.

A queued actions set can be executed by anyone after it has been queued for a minimum time defined by
the del ay until the gr ace period has elapsed. Actions sets may include actions (calls) with non zero
neg. val ue. Either the caller of execut e() provides these funds or the BridgeExecutor must hold
sufficient funds in order to execute these calls. These funds cannot be transferred alongside the actions
set from L1 to L2, these funds must be transferred to the BridgeExecutor separately.

When executing an actions set, all calls must be successful or the execution reverts.
An actions set can be in one of the four states:

e queued: Queued. May or may not be ready for execution depending on whether the del ay has
already elapsed since the actions set has been queued or not.

« expi r ed: The actions set has not been executed within the grace period.
e cancel | ed: The actions set has been cancelled by the guar di an before it has been executed

e execut ed: The actions set has been executed.

The following state changing functionality is exposed:

e queue():

function queue(
address[] nenory targets,
ui nt 256[] nenory val ues,
string[] nenory signatures,

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

bytes[] nenory call dat as,
bool [] nenory withDel egatecal | s

)

An action consists of the target to call, the callvalue, the signature (A string with the function name &
parameter, used to derive the function selector), and the calldata. The signature may be empty.
Furthermore, it can be specified if the call should be executed as a delegatecall in the context of the
BridgeExecutor. This function can only be invoked by the respective messenger contract and the sender
on L1 must be the _et her eunGover nanceExecut or .

e execut e(): Function which can be called by anyone to execute a pending actions set up for
execution.

e cancel () : The guardian can cancel any queued actions set which has not been executed, expired,
or cancelled yet.

erecei veFunds() Function allowing the contract to receive the native currency, similar to the
default r ecei ve() of solidity.

The internal state variables of the BridgeExecutor (_mi ni unDel ay, _maxi munDel ay, _del ay,
_gracePeriod, guardian, _et hereumover nanceExecut or) can be updated through actions
calling the respective functions of this contract which can only be accessed via a call originating from this
contract itself.

3.2 Trust Model & Roles

Aave Governance: Fully trusted to act honestly and correctly at all times. Notably, this includes that the
governance does not call execut e with another actions set in one actions set, otherwise the atomicity of
the actions set could be broken.

Guardian: Trusted role, can cancel qgueued action sets which have not been executed and expired yet.

Executor: Untrusted, anyone can trigger the execution of pending action sets ready for execution.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Findings

In this section, we describe our findings. The findings are split into these different categories:
- @ Related to vulnerabilities that could be exploited by malicious actors

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 4
ty g

+ Compromised Guardian Can Block the Executor
« Dangerous Delegatecalls

« Function Signature as String, Unicode Charset
» Potential Reentrancy on execute

6.1 Compromised Guardian Can Block the
Executor

D (Cow) (Version 1) (EITTED)

The guardian role has the privilege to cancel queued actions sets before they are executed. Updating the
guardian address can only be done through an action. If the guardian account is compromised, it can
always cancel an actions set which tries to update the guardian role to a new address. Effectively, once
the guardian address is compromised it can block the Executor indefinitely.

Risk accepted:
Aave replied:

The guardi an address is designed to be a multisig or governance executor (never
an EOA) so having a conprom sed guardian is unlikely to happen.

6.2 Dangerous Delegatecalls

D (Low) Version 1) (ETIETED)

Actions sets may include actions (calls) to be executed as DELEGATECALL in the context of the
BridgeExecutor. While this allows to aggregate multiple calls governed by code which can adapt to on
chain state, should the called contract write to storage, this would write to the storage of the
BridgeExecutor. Hence variables of the contract may be overwritten. This can result in the internal

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

variables being changed without respecting the restrictions enforced in their setter function, e.g.
updat eGracePeri od() and the check for the minimum grace period.

Besides, a Delegatecall is also able to modify/delete existing actions sets, insert arbitrary new actions
sets or manipulate entries in _queuedAct i ons. The governance must be aware of this danger.

Untrusted code must never be called with DELEGATECALL.

Furthermore, note that the following corner case exists: An action consisting of a call to the
BridgeExecutor's execut eDel egat eCal | function technically allows the governance to execute a call
as a Delegatecall (with the risks mentioned above) despite the flag wi t hDel egat ecal | s being set to
fal se.

Risk accepted:
Aave replied:

The Executor contract assumes that any set of transactions

that are queued by a successful proposal is legit. Thus, there are no bad actions that
the contract can execute since the proposal passes multiple checks by the community,
devs, white hats, auditors, etc.

The execut eDel egateCall function is designed to be used for executing payl oad
contracts, where a set of actions are described (instead of having nultiple encoded
cal | datas). The governance shoul d check that the del egate call execution does not
update or alter any executor contract's state variable

Apart fromthat, the correct way of doing a delegate call is through the action set and
the execute function, instead of calling directly to executeDel egateCall. The
conmmunity woul d detect and raise this concern if applicable.

6.3 Function Signature as String, Unicode
Charset
EZII (Low) (Version 1) CEIEXEETD)

An action may contain the function signature as a string. This allows to display the function to be called in
a human readable way. However, this can be dangerous as strings support the unicode charset and
many lookalike characters of different alphabets exist in this charset. Hence users might be tricked to
approve an action which seemingly contains the intended function call, but actually results in a different
function selector. Given a function selector consists of 4 bytes only, it might be feasible to find such a
collision.

For more insights into lookalike characters, please refer to:
https://util.unicode.org/UnicodeJsps/confusables.jsp?a=setReserveActive

Risk accepted:

Aave replied:

Governance shoul d assess, test and sinulate each proposal, checking the outcome of its changes
wi thout trusting string function signatures. Having the function signature hunan-readable is
not a way of validating the legitimcy of proposals by any neans.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 12

https://util.unicode.org/UnicodeJsps/confusables.jsp?a=setReserveActive
https://chainsecurity.com

6.4 Potential Reentrancy on execut e

D (Cow) (Version 1) (EITTED

The function execut e is not protected against reentrancy. While the governance is trusted to not create
actions sets which reenter into execut e() and start executing another actions set, generally speaking
an action may reach untrusted third-party code. This untrusted code may reenter the BridgeExecutor.
This would break the atomicity of sets of actions and may result in unexpected executions and states.

Risk accepted:

Aave replied:

The community and governance decide if an action set shoul d execute any
ot her action set of the same executor. The comunity shoul d asses every

gover nance proposal carefully.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Execution Order of Queued Actions Sets

Multiple queued actions sets which are ready for execution may be executed in an arbitrary order. All
actions which depend on a particular execution order must be placed within the same actions set where
the order of execution is defined. If multiple actions sets exist at the same time, they must be
independent of each other.

Moreover, updating critical system variables in one actions set might change the behavior of other
actions sets. For example, assume _del ay is set to one day at the beginning. Actions set A is queued in
the BridgeExecutor, A updates _del ay to one second. On L1, the governance decides on actions set B.
Governance should be careful, depending on whether A is executed before/after actions set B is queued
on L2, a different _del ay is applied before B can be executed.

7.2 Impact of Rollback, Finality of Actions

Especially regarding finality, L2 solutions based on optimistic rollups behave differently than L1
Ethereum.

Should a rollback happen due to the discovery of an incorrect tx, this tx and all subsequent tx have to be
reexecuted. This impacts the timestamp of the transaction. Most of the times incorrect transaction results
are detected immediately and the rollback happens immediately, however in a worst-case scenario the
rollback might happen just before the end of the fault proof period. In such cases the timestamp of the
transaction changes significantly.

The BridgeExecutor heavily relies on the timestamps, e.g. to determine whether an action can be
executed or if it already expired. Similarly the execution time is calculated based on the timestamp when
gueue() is executed. After a rollback the timestamps may have shifted and e.g. a previously executed
actions set can no longer be executed as it has expired.

Furthermore, the order of transactions after a rollback is not guaranteed, there may be a change of
sequence between a transaction to execut e() or cancel () a pending actions set.

Validating all transactions may help to detect incorrect transactions early, however in a worst-case
scenario (e.g. a bug in the validator software) may not detect such a wrong transaction and an
unexpected fraud proof may be submitted resulting in a rollback.

The governance needs to be careful about finality on L2. Overall L2 solutions are still considered as
experimental, interactions must be done with care.

Note that at the time of this review Optimism has not yet implemented fraud proofs while in Arbitrum only
whitelisted addresses can create a challenge.

7.3 Potentially Resurrected ActionsSet

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

An actions set expires if the _gracePeri od has elapsed since the executi onTi me. However, an

expired actions set may resurrect if the _gracePeri od is extended by the governance later in the
future. Resulting an expired actions set might be executable again.

It should be carefully thought about if this suspended state should be allowed, especially as the
guar di an can only cancel queued actions set which have not yet expired.

@ Aave - Bridge Executors - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Contracts
	3.2 Trust Model & Roles

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 Compromised Guardian Can Block the Executor
	6.2 Dangerous Delegatecalls
	6.3 Function Signature as String, Unicode Charset
	6.4 Potential Reentrancy on execute

	7 Notes
	7.1 Execution Order of Queued Actions Sets
	7.2 Impact of Rollback, Finality of Actions
	7.3 Potentially Resurrected ActionsSet

