

PUBLIC

Code Assessment

of the Aave V4

Smart Contracts

February 19th, 2026

Produced for

Aave Labs

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 15

4 Terminology 16

5 Open Findings 17

6 Resolved Findings 18

7 Informational 27

8 Notes 33

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Adam Schoeman (CISO, Aave Labs), Emilio Frangella (SVP of Engineering, Aave Labs), Stani
Kulechov (CEO, Aave Labs), dear Aave Labs team,

Thank you for trusting us to help Aave Labs with this security audit. Our executive summary provides an
overview of the subjects covered in our audit of the latest reviewed contracts of Aave V4 according to
Scope to support you in forming an opinion on their security risks.

Aave V4 introduces a lending protocol with a modular architecture centered around the Hub and Spoke
model, designed to unify liquidity management across multiple markets while preserving isolation and
configurability.

The most critical subjects covered in our audit are arithmetic precision and asset solvency. Regarding
arithmetic precision the invariant violation reported in Share price can decrease because of fee rounding
has been satisfactorily addressed. Regarding asset solvency, issue 2 Wei rounding can trigger
liquidations and create additional debt has been addressed by increasing the accounting precision of
premium debt.

The general subjects covered are liquidations, functional correctness and event handling. All reported
issues have been addressed.

This version of the code (v0.5.7) is still under review. Additional code and specification changes can be
found in a successive version (v0.5.9), which ChainSecurity is currently reviewing.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but do not replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code Corrected 3

Low -Severity Findings 9

• Code Corrected 6

• Specification Changed 3

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The following contracts are in scope:

src/hub/AssetInterestRateStrategy.sol
src/hub/Hub.sol
src/hub/HubConfigurator.sol
src/hub/libraries/AssetLogic.sol
src/hub/libraries/Premium.sol
src/hub/libraries/SharesMath.sol
src/libraries/math/MathUtils.sol
src/libraries/math/PercentageMath.sol
src/libraries/math/WadRayMath.sol
src/libraries/types/EIP712Types.sol
src/libraries/types/Roles.sol
src/misc/UnitPriceFeed.sol
src/position-manager/GatewayBase.sol
src/position-manager/NativeTokenGateway.sol
src/position-manager/SignatureGateway.sol
src/position-manager/libraries/EIP712Hash.sol
src/spoke/AaveOracle.sol
src/spoke/Spoke.sol
src/spoke/SpokeConfigurator.sol
src/spoke/TreasurySpoke.sol
src/spoke/instances/SpokeInstance.sol
src/spoke/libraries/KeyValueList.sol
src/spoke/libraries/LiquidationLogic.sol
src/spoke/libraries/PositionStatusMap.sol
src/spoke/libraries/ReserveFlagsMap.sol
src/spoke/libraries/UserPositionDebt.sol
src/utils/Multicall.sol
src/utils/NoncesKeyed.sol
src/utils/Rescuable.sol

The assessment was performed on the source code files inside the Aave V4 repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 6 Oct 2025 dc31f9a4d54c0503093ef6939e6e8a8d2586709d Initial Version

2 9 Oct 2025 14a824b258eb76b7a1ec86bd6cbe79da2539aed8 updated code

3 19 Nov 2025 91bb988323a635cdf67c1fb36d039306a8a6528b third version

4 30 Nov 2025 6959e3219b5506bf2acae18551cbb2a68a5b8fba v0.5.6

5 28 Jan 2026 31afa65a91f99ca7ec0437a1b438f65d3261d164 v0.5.7

For the solidity smart contracts, the compiler version 0.8.28 was chosen.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 5

https://github.com/aave/aave-v4/tree/dc31f9a4d54c0503093ef6939e6e8a8d2586709d
https://github.com/aave/aave-v4/tree/14a824b258eb76b7a1ec86bd6cbe79da2539aed8
https://github.com/aave/aave-v4/tree/91bb988323a635cdf67c1fb36d039306a8a6528b
https://github.com/aave/aave-v4/tree/6959e3219b5506bf2acae18551cbb2a68a5b8fba
https://github.com/aave/aave-v4/tree/31afa65a91f99ca7ec0437a1b438f65d3261d164
https://chainsecurity.com

2.1.1 Excluded from scope
Any contracts not explicitly listed in the scope section above are excluded from the assessment. Third
party dependencies are assumed to behave according to their specification.

Deployment scripts and tests are also excluded from the scope.

2.2 System Overview
Version 2This system overview describes of the contracts as defined in the Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Aave Labs offers Aave V4, which introduces a Hub - Spoke architecture that separates global liquidity
accounting from user interactions. The Hub acts as a central vault that holds all assets and tracks the
system's total liquidity and debt, while Spokes serve as gateways through which users supply, withdraw,
borrow, repay, and interact with the protocol. It is expected that one or more Hubs get deployed per chain
and that a variety of Spokes connect to these Hubs. This design aims at increasing modularity and
flexibility.

2.2.1 Hub
The Hub is an immutable contract that holds all assets. The users of the Hub are the Spokes, and for
every supported asset, the Hub keeps track of the amount added (supplied) by every Spoke, the
available liquidity, the amount drawn (borrowed) by every Spoke, the amount swept by governance, and
possibly the deficit (realized bad debt). In short, the Hub keeps a global view of the liquidity and the debt
positions of Spokes for all assets. It also manages the interest rate strategies for each asset and handles
interest accrual over time for each asset.

The Hub implements share-based accounting to keep track of the "added" and "drawn" amount for each
Spoke.

2.2.1.1 Adding Liquidity
Spokes supply (add in Hub terminology) assets to the Hub and get added shares. The value of added
shares is determined by the amount of assets in the Hub and the total existing supply of shares. The total
amount of one asset in the Hub is the sum of the available liquidity, the amount swept, the deficit and the
total owed amount of that asset. The share price for added shares is defined as the ratio between total
assets and total added shares, and is strictly increasing over time. It can increase due to interest accrual,
premium debt interest, and rounding in favor of existing shareholders when assets are added or
removed. The total assets include an amount of virtual assets and dead shares, to prevent first
depositor attacks and prevent share price inflation.

The add() function can be called by a Spoke to supply an asset. The Spoke must be enabled for the
asset, and the Spoke's total added amount cannot exceed the Spoke's addCap for the asset. add()
takes the asset amount as an argument, and mints the corresponding amount of shares, possibly
rounded down. The asset is transferred to the Hub from an address specified by the calling Spoke.
Liquidity can be withdrawn with the remove() function, which lets the Spoke specify an asset amount
and a recipient. Shares belonging to the Spoke are burnt by converting the asset amount, possibly
rounding up. The remove() call can fail because the requested liquidity is unavailable, because it has
been drawn or swept.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.1.2 Drawing Liquidity
Spokes can borrow assets from the Hub (draw in Hub terminology). The amount Spokes owe is recorded
as drawn amount (stored in debt shares) and premium debt. The drawn amount of debt is equal to the
amount of drawn shares times the drawn index. The drawn index of the asset is a 27 decimals precision
number which is linearly increased by the interest rate accrual since the last update starting from 1.
When accrued often, the linear accruals are functionally equivalent to exponentially compounding
accruals. The interest rate is queried from an interest rate strategy and depends on the utilization factor
of the asset in the Hub. Since the interest rate is positive, the drawn index is strictly increasing over time.

Another component of the total owed amount is premium debt. This is a novel Aave V4 feature that
allows charging higher interest rates when borrowing against riskier collaterals. It is described in detail in
the Premium Debt section

Spokes can call the draw() function, specifying the requested amount and the recipient. The function
validates that the requested amount plus current drawn amount do not exceed the drawCap for the
Spoke. Drawn shares are minted by dividing the requested amount by the current drawn index, and
rounding up. Calls to draw() can fail if not enough liquidity is available. Debt can be repaid with the
restore() function which allows specifying both a drawn debt amount and premium debt amount to
repay, and pulls the required funds from the address specified.

It is important to note that the Hub does not perform any solvency checks on Spokes or users. Each
Spoke is responsible for ensuring that its users maintain sufficient collateralization. The Hub is therefore
trusting the Spokes to manage user solvency properly and maintain the overall health of the system. Only
trusted Spokes should be given access to the Hub's liquidity.

2.2.1.3 Assets
Supported assets are non-rebasing ERC20 tokens, without transfer fees and hooks. An asset can be
registered in the Hub through the permissioned addAsset() function. Registering an asset assigns it an
assetId, and the same underlying token can be listed multiple times under different assetIds. The
accounting for every listing of the same underlying will be kept separately. For every asset an interest
rate strategy and interest rate data are configured. Each asset also has its own liquidity fee and fee
receiver, described more in depth in the Fees section.

The permissioned addSpoke() allows enabling a Spoke to add and draw liquidity for an asset in the
Hub. Each Spoke-Asset pair is configured with a addCap and a drawCap to limit the total amount of
assets that can be added or drawn by the Spoke. This allows the Hub to manage risk across multiple
Spokes.

2.2.1.4 Swept Liquidity
Every asset potentially has a reinvestmentController address. This is a special role that can
allocate the liquidity of the asset to external products without minting debt shares and therefore accruing
interest. The reinvestmentController can use sweep() to take liquidity from the Hub, and can give
it back with reclaim(). Yield potentially generated by swept liquidity is opaque to the Hub, how the
yield is attributed is at the discretion of the reinvestmentController. Swept liquidity does not
contribute to the utilization factor used to compute the interest rate, for that purpose it is treated as
available liquidity.

2.2.1.5 Deficit
Deficit, that is bad debt incurred by a Spoke, is tracked at the Hub level. The deficit amount is included in
the total asset amount, and therefore still contribute to the value of supply shares, which is therefore
non-decreasing. When a Spoke incurs a deficit, it reports this deficit to the Hub using
reportDeficit(). The Hub then increases the total amount of assets in deficit for that asset. The
deficit can be reduced with eliminateDeficit(). This function must be called from a Spoke and
burns the amount of added shares by that Spoke to cover the deficit. It is assumed that an insurance
mechanism is put in place to cover deficits when they occur.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.2 Spokes
Spokes are contracts that serve as gateways for user interactions with the protocol. Each Spoke is
deployed as an upgradeable proxy that points to the SpokeInstance implementation contract.

Users are expected to interact with the protocol through Spokes. Spokes are responsible for ensuring
user-level solvency. As Spokes keep track of individual user positions, they enforce collateralization
requirements and manage liquidations. They derive a health factor for each user based on their collateral
balances and debt balances. Through the LiquidationLogic library invoked by
liquidationCall(), Spokes allow liquidators to liquidate unhealthy users.

2.2.2.1 Reserves
Each Spoke maintains a list of reserves, where each reserve corresponds to an (assetId,hub) pair.
Remapping assetId s to reserveId s allow Spokes to support assets from different Hubs. Every asset
in a Hub can only be listed once as a reserve in the Spoke, but the same underlying token could be listed
multiple times in a Spoke as different assets in the same Hub, or in different Hubs.

The reserve configuration includes whether it is in the paused or frozen state, where:

• frozen: supplying and borrowing are disabled; the reserve can still be disabled as collateral.
Liquidations are not affected by freezing the collateral or debt reserve.

• paused: supplying, withdrawing, borrowing, and repaying are disabled, the reserve cannot be
enabled/disabled as collateral. Liquidation with that reserve as collateral or debt are also disabled.

The reserve configuration also includes the collateralRisk, better described in section Premium
Debt, and dynamic reserve configurations: the collateralFactor, the maxLiquidationBonus, and
the liquidationFee.

Dynamic reserve configuration is a novel Aave V4 mechanism to update the parameters of a reserve
without affecting existing loans that use that reserve. It allows the protocol to update collateral factors and
liquidation parameters without negatively impacting existing positions right away. Thus, when reducing
the collateral factor of a reserve, existing borrowers cannot be liquidated and have time to adjust their
positions accordingly. Actions that reduce the users health factor (withdraw, borrow) will always use the
latest configuration when verifying the user's solvency but actions that increase the health factor (repay,
supply) will use the configuration key of the user position to allow the user to improve their health factor
even if the current configuration would make their position liquidatable.

In the Spoke's reserve data, a mapping is maintained between an integer configKey and a dynamic
reserve configuration. When the configuration of a reserve is updated, the configKey is incremented
and the new configuration values are stored under the new key. For every user, a configKey is stored
in their position, and it is used when calculating a user's health factor or determining liquidation
parameters. The configuration key for all collaterals of a user are updated whenever they take actions
that can worsen their health, such as withdraw(), borrow() or an asset is removed from the collateral
list with setUsingAsCollateral(). When a reserve is added as collateral, the latest configuration for
that reserve is used.

The user or its position manager can decide to updateUserDynamicConfig() to the latest
configuration key for all collaterals. Authorized callers can also update any user's dynamic configuration if
needed. Note that updating the dynamic configuration can only be done for all the user's collaterals and
not individually.

The Spoke authority can also update any existing configuration with
updateDynamicReserveConfig(). This action potentially worsens the health of existing positions,
making them liquidatable.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.2.2 Supplying liquidity
Users (or their authorized Position Managers) can supply liquidity to a reserve (therefore to an asset in a
Hub) by using the supply() function. The supplied amount is deposited in the Hub of the specified
reserveId, through Hub.add(), which pulls the underlying amount from the user's balance. The Hub
operation increases the Spoke's share in the Hub, and the new amount of shares minted is credited to
user. Therefore, for every reserve, the Spoke holds shares of the corresponding Hub asset, and in the
Spoke the shares are credited to individual users.

Users (or their authorized Position Managers) can withdraw supplied reserves through the Spoke's
withdraw() function. The requested amount (or at most the user's balance) of a reserve is removed
from the Hub, and the amount of shares burned for this operation is subtracted from the user's balance.
Supplied reserves can be used as collateral for borrowing, therefore a collateralization check is
performed when withdrawing a reserve that is used as collateral. If the withdrawn reserve is used as
collateral, the user's risk premium is recomputed after the withdrawal. The withdrawal can also fail in
case not enough liquidity is available in the Hub.

2.2.2.3 Borrowing
Spokes allow users (and Position Managers) to borrow liquidity available in the Hub, through the
borrow() function. The Spoke draws the requested reserve amount from the Hub, through
Hub.draw(), which increases the Spoke drawn shares balance for that asset. These drawn shares are
in turn credited to the borrowing user. To ensure solvency of borrowers, the user's health is validated
after borrowing. The risk premium of the borrower is also updated. Borrowing can revert if not enough
liquidity is available in the Hub.

Debt can be repaid through function repay(). Each user has two separate debt balances, the drawn
debt and the premium debt. The drawn debt is due to the accrual of the borrowed amount according to
the interest rate calculated in the Hub. Additionally, the accrued amount is multiplied with the risk
premium and goes to constitute the premium debt. When repaying, first the premium debt of a user is
reduced, and then the drawn debt.

2.2.2.4 Position Managers
Users can enable positionManager's to manage their positions on their behalf. The
NativeTokenGateway and the SignatureGateway are two instances of position managers. The
NativeTokenGateway allows users to supply and withdraw the native chain token (e.g., ETH) by
wrapping and unwrapping it to its corresponding wrapped token (e.g., WETH). The SignatureGateway
allows users to perform gasless operations by signing messages off-chain that are then relayed on-chain
by a third party. Position managers must be approved by the user to manage their positions through
setUserPositionManager(). Spokes decide which positions managers are available to users
through updatePositionManager().

2.2.3 Collateralization
Aave V4's borrowing is overcollateralized to ensure the solvency of the system. The borrowing power of a
user is the sum of the value of their supplied collaterals multiplied by the collateral factors of the
collaterals. The health factor of a user is then calculated as follows:

 =
∑
i
(CFi ⋅ Vi)

Dv

where is the collateral factor of asset i, is the value of the supplied amount of asset i, and is the
total value of the user's debt.

A Spoke can configure the collateral factor for each of its reserves. If a user's health score falls below 1,
they become liquidatable.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

A user can decide which of their supplied assets to use as collateral with setUsingAsCollateral().
Only assets used as collateral contribute to the user's borrowing power and can be seized during
liquidation.

2.2.4 Position Status Map
A user's positions within a Spoke are stored in a PositionStatusMap. For each reservedId, two bits
are used to indicate whether the reserve is being used as collateral and/or borrowed by the user. One
word can store information for up to 128 reserves. The first 7 bits of the reserveId are used to index
the bit within the word, while the remaining bits specify the bucketId that holds the word for the
corresponding reserve.

Whenever a user adds a reserve as collateral or borrows from a reserve, the corresponding bits in the
PositionStatusMap are set with setBorrowing() and setUsingAsCollateral(). When a user
removes a reserve as collateral or repays all their debt from a reserve, the corresponding bits are
cleared. The Spoke uses this map to efficiently iterate over a user's collaterals and debts when
calculating their health factor and risk premium or when updating the premium debt for every borrow
position.

2.2.5 Premium Debt
Aave V4 introduces premium debt, which represents an additional portion of a borrower's debt that
accrues interest based on the risk of their collateral. Borrowers supplying riskier collateral will accrue
higher premium debt, which increases their total debt. Aave V4 updates a borrower's premium debt
whenever the premium risk could increase, such as when a reserve is no longer used as collateral or
when a collateral is withdrawn. As this operation can be costly, the premiums are not updated when the
risk decreases (e.g., when a borrower supplies more collateral or repays debt). Borrowers should
themselves call updateUserRiskPremium() to update their premium debt when the risk decreases.

Note that the premium debt is updated during liquidations as the risk premium change could increase if
the liquidator liquidates a collateral that is configured as safe, while leaving riskier collaterals.

The risk premium of the borrower is a number, and is determined by sorting the collaterals from least
risky to most risky based on their collateralRisk parameter. Then, starting from the least risky
collateral, the system sums up the value of the collaterals multiplied by their respective
collateralRisk until the total value of the collaterals reaches the total debt of the borrower. This
weighted sum is then divided by the total debt to yield the risk premium. In this sense, the risk premium
can be thought of as an average of the collateral risk factors, weighted by collateral amount, truncating
the collaterals where the debt is fully covered:

riskPremium =
∑
i
(Vi ⋅ ri)

Dv

subject to

∑
i
Vi ≤ Dv

and

ri ≤ ri + 1

The last collateral included in the sum may be only partially included to ensure that the total collateral
value matches the debt value exactly.

The risk premium of a user is used to calculate the extra amount of interest that the user is charged. The
risk premium is a factor that is multiplied to the base interest, and the result is the premium interest
charged to the user.

This is implemented by minting premium shares to the user, proportionally to their drawn shares and their
risk premium. The premium shares accrue interest at the same interest as drawn shares, but only the

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

interest of premium shares has to be repaid and not the principal, so when they are issued, their current
value is recorded (this is the premiumOffset), so that it can be later deducted from the future value of
the shares. The difference is the accrued premium.

premiumSharesj = drawnSharesj ⋅ RiskPremium

Every time the drawn shares of the user change (on borrow(), repay(), or liquidations), the risk
premium of the user changes (disable collateral, withdraw()), or the premium debt is repaid (repay()
or liquidations), the accounting of the premium debt is updated. The risk premium in principle is
continuously changing, because the debt and collateral continuously changes because of interest, and
their values change because of price changes, however these changes are ignored as they are
considered minor. In case a user's risk premium in use becomes considerably different to the risk
premium that would be computed, it can be refreshed by a restricted role (or by the user themselves)
through updateUserRiskPremium().

The amount of premium shares changes when the drawn shares change, or the risk premium of the user
changes. The premium debt accrued (accruedPremium) by the old premium shares is therefore
"stashed" in the realizedPremium accumulator, and new premiumShares and premiumOffset
amounts are computed. Likewise, if only premium debt is repaid (and drawn shares and risk premium do
not change), the accounting must also be updated: the new realized premium is computed, the repaid
amount is deducted from it, and the premium offset and shares are updated.

accruedPremium = premiumShares ⋅ drawnIndex − premiumOffset

realizedPremiumn + 1 = realizedPremiumn + accruedPremium

Premium debt is always repaid before drawn debt (which accrues interest) in repayment operations
(liquidations and repayments).

2.2.5.1 Premium delta
The accounting of premium debt is performed at the user level in the Spoke, and at the Spoke level in the
Hub. When a user is updated in a Spoke, the change in their balances is forwarded to the Hub as signed
integer deltas, which are applied to the overall Spoke balances maintained in the Hub.

In conclusion, a borrower's total debt is the sum of their drawn debt, the realized premium, and the
accrued premium debt of each of their borrowing positions.

2.2.6 Interest Model
The interest rate strategy for an asset is defined in the Hub. The interest rate strategy determines the
interest rates for drawn amounts based on the utilization rate of the asset in the Hub. The utilization rate
is defined as the ratio of total borrowed amount to the total supplied amount of the asset. As the
utilization rate increases, the borrow interest rate increases according to the strategy defined for the
asset.

The AssetInterestRateStrategy contract implements a piecewise linear model with two slopes.
The strategy is defined by four parameters: optimalUsageRatio, baseVariableBorrowRate,
variableRateSlope1, and variableRateSlope2.

When the utilization rate is below the optimal utilization rate, the borrow interest rate increases linearly
from the base variable borrow rate to a rate determined by the first slope. When the utilization rate
exceeds the optimal utilization rate, the borrow interest rate increases linearly according to the steeper
second slope.

The maximum interest rate is capped at 1000% in the AssetInterestRateStrategy strategy, and is
determined by

maxInterestRate = baseVariableBorrowRate + variableRateSlope1 + variableRateSlope2

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

AssetInterestRateStrategy is used by the Hub to define interest strategies for its assets with
custom parameters set through restricted Hub function setInterestRateData(). Other interest rate
strategies can be set with updateAssetConfig().

2.2.7 Liquidations
When a user's health factor falls below 1, their position becomes eligible for liquidation. Liquidators can
repay a portion or all of the user's debt in exchange for a corresponding amount of a user's collateral,
plus a liquidation bonus. Liquidators are limited in the amount they can liquidate based on the
targetHealthFactor parameter. A liquidator cannot liquidate more than what would bring the user's
health factor above the target.

The liquidation bonus is controlled by three parameters: maxLiquidationBonus which varies per
reserve, and healthFactorForMaxBonus and liquidationBonusFactor which are global per
Spoke. The bonus starts increasing once a user's health factor drops below the liquidation threshold and
begins at maxLiquidationBonus * liquidationBonusFactor. From there, it rises linearly as the
health factor declines, reaching maxLiquidationBonus when the health factor is equal to or below
healthFactorForMaxBonus.

Liquidations cannot leave less than DUST_LIQUIDATION_THRESHOLD amount of debt or collateral in a
position, which is defined in terms of value (dollars) as $1000. A requested liquidation amount leaving
less debt than this will be increased to the total debt amount, and likewise if the liquidated collateral
would be below the threshold after the liquidation, the full collateral amount is liquidated instead. Amount
below DUST_LIQUIDATION_THRESHOLD can be left in the following conditions:

• A dust amount of collateral can be left after the liquidation if the full debt amount is liquidated.

• A dust amount of debt can be left if the initial requested liquidated debt would leave the
corresponding collateral amount below the threshold. In such a case, the full collateral is liquidated,
potentially leaving debt below the dust threshold.

2.2.8 Oracles
The Spoke uses the AaveOracle contract to query reserve prices. The AaveOracle contains a mapping
from reserves to price sources, which are contracts exposing the Chainlink AggregatorV3Interface
(latestRoundData()). Only the answer return value of the call to the price source is used, the
timestamp of the answer is not validated. It is assumed that the price sources themselves will perform
any necessary sanitization and validation.

2.2.9 Fees
The protocol collects fees from the interest paid by borrowers to suppliers and from liquidations.

For each asset in a Hub, every time interest accrues, some fee shares are given to the feeReceiver of
the specific asset. The amount of fee shares is determined by the liquidityFee parameter of the
asset. The fee shares accrue interest at the same rate as the supply shares.

Liquidation fees are collected during liquidations. A portion of the collateral seized during a liquidation is
allocated to the feeReceiver of the collateral asset through payFeeShares(). The amount of
collateral allocated as fee is determined by the liquidationFee parameter of the collateral asset. The
seized collateral allocated as fee is converted to supply shares at the current share price and given to the
feeReceiver.

The feeReceiver is expected to typically be a TreasurySpoke that receives fees and cannot
borrow(), withdraw() or perform a liquidationCall().

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

2.2.10 Hub & Spoke configurations
The Spoke authority can set global configurations for the Spoke and for its reserves. Additionally, the
authority can be transferred to the SpokeConfigurator which can only call configuration functions on
the Spoke, and it is owned by an owner address.

In a Spoke, a reserve can be frozen or paused.

A HubConfigurator can freeze or pause an asset:

• Frozen: The supply and borrows caps for each Spoke that is enabled for that asset are set to zero.
Operations on the asset are therefore constrained to reduce existing supply and borrow positions.

• Paused: All reserves of this asset in all Spokes are set to inactive. add(), draw(), repay(),
withdraw(), reportDeficit(), eliminateDeficit(), payFeeShares(),
refreshPremium(), and transferShares() are therefore disabled.

A specific Spoke can also be frozen or paused for all its reserves coming from the Hub:

• Frozen: The supply and borrow caps for all reserves of that Spoke that are linked to an asset from
the Hub are set to zero. Operations on these reserves are therefore constrained to reduce existing
supply and borrow positions.

• Paused: All reserves of that Spoke that are linked to an asset from the Hub are set to inactive.
add(), draw(), repay(), withdraw(), reportDeficit(), eliminateDeficit(),
payFeeShares(), refreshPremium() and transferShares() are therefore disabled for
these reserves.

2.3 Trust Model
The following roles exist in the protocol:

• Hub Authority: The Hub has restricted functionality, an authority contract defines by
which callers these functions can be accessed. The authority contract can therefore give
permission to configure the Hub and its assets, adding Spokes, setting interest rate strategies,
liquidity fee, supply and borrow caps for Spokes, and pausing or freezing assets, and setting the
feeReceiver and reinvestmentController. The authority contract is expected to be
correctly configured, in a way to limit privileged actions to fully trusted roles.

• Spoke Authority: The Spokes have restricted functionality, an authority contract defines
by which callers these functions can be accessed. The authority contract can therefore give
permission to configure the Spokes and their reserves, including setting collateral factors, collateral
risk, liquidation parameters such as the max liquidation bonus and fee, and pausing or freezing
reserves. The roles that can access these functionalities are fully trusted.

• Spoke Proxy Admin: fully trusted, can upgrade the Spoke implementation to a new version if the
Spoke is deployed as an upgradeable proxy.

• Spokes: if Spokes are added in a Hub which are not instances of the Spoke.sol under review,
they are fully trusted by the protocol.

• SpokeConfigurator Owner: fully trusted, can use the SpokeConfigurator to configure Spokes.

• HubConfigurator Owner: fully trusted, can use the HubConfigurator to configure Hubs.

• Fee Receivers: receive fees collected by the protocol. Expected to be instances of the
TreasurySpoke contract. Otherwise fully trusted.

• Reinvestment Controller: fully trusted, manages the allocation of assets swept from the Hub
to external products and can reclaim them when needed.

• Position Managers: fully trusted, can manage user positions on their behalf, including supplying,
withdrawing, borrowing, repaying, and liquidating positions. They must be approved by the user to
act on their behalf and by the Spoke to be allowed as a position manager.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

• Oracles: fully trusted to provide accurate prices on-chain.

• Users: untrusted, can supply, borrow, repay, withdraw and liquidate positions through Spokes.

Tokens added to Hubs are considered to behave as standard ERC20 tokens, they are non-rebasing, they
do not have hooks on transfers, they are not double-entrypoint tokens, and do not implement fees on
transfers.

Spokes have full control over the premium drawn values in the Hub. Therefore, Hubs fully trust Spokes to
truthfully report premium debt updates to the Hub when a user's risk premium changes. In the worst-case
scenario, a malicious Spoke could inflate the amount of premium shares for a given asset in the Hub,
which would inflate the value of added shares after accrual allowing the malicious Spoke to drain the Hub
liquidity for that asset. Therefore, users using a Spoke must not only trust the Hub but also all other
Spokes connected to that Hub that have at least one common asset with the Spoke they are using.

Version 42.3.1 changes
Version 4 introduces several changes including:

• Underlying asset in the Hub are now unique, i.e. the same underlying token cannot be added
multiple times as different assets in the same Hub.

• supply() and repay() in the Spoke now pull the underlying tokens from the user, and push them
to the Hub, instead of the Hub pulling them directly from the user.

• A new flag paused was introduced for Spokes to allow for a more granular pausing mechanism
instead of only having active/inactive. The paused state is similar to inactive, but allows
refreshPremium() to succeed, which is part of the liquidation flow of unrelated reserves in the
Spoke.

• The SpokeConfigurator holds a reserve limit per Spoke that limits the number of reserves that
can be added to a Spoke.

• Dynamic key configurations keys are now uint24 instead of uint16. Moreover, dynamic configs
are no longer stored in a ring buffer but are capped to uint24.max.

• On liquidations where deficit is reported, the risk premium is now updated to 0.

• Fee shares are no longer minted in accrue but in a separate function mintFeeShares which is
permissioned.

• Liquidators can now choose to receive collateral shares instead of the underlying asset during
liquidations.

• ReserveFlagMap is now used to store Reserve states in Spokes.

• Premium debt calculations have been optimized by no longer tracking the realized premium fee
separately but including it in the premium offset, thus making the premium offset signed.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code Corrected2 Wei Rounding Can Trigger Liquidations and Create Additional Debt

• Code CorrectedLiquidation Revert Due to Unrelated Paused Asset in Hub

• Code CorrectedShare Price Can Decrease Because of Fee Rounding

Low -Severity Findings 9

• Code CorrectedLiquidation With Deficit Reverts Due to Paused Assets

• Code CorrectedFees Can Be Minimized by Accruing Often

• Code CorrectedLiquidations Can Fail Due to Low Liquidity

• Code CorrectedMissing Events

• Code CorrectedOverflow in Config Key Makes It Possible to Update CF to 0

• Specification ChangedProfitable Multi-Step Liquidations

• Specification ChangedSlippage in Liquidations

• Code CorrectedSpokes Do Not Return Minted/Burned Share Amounts

• Specification ChangedArray.sort() Can Revert Due to EVM Stack Limit

6.1 2 Wei Rounding Can Trigger Liquidations and
Create Additional Debt
Correctness Medium Version 1 Code Corrected

CS-AAVE4-001

When recalculating a user's premium debt, 1 to 2 wei of additional debt can be introduced due to
rounding. Although the impact is bounded to 2 wei, it can be enough to make a position liquidatable if the
user's health factor is very close to 1, as the added debt may push it just below the liquidation threshold.

This rounding effect can also occur during a liquidation, since the premium debt of a user is recalculated
after the liquidation has taken place. As a result, the rounding difference can slightly increase the user's
total debt each time a liquidation occurs.

There are two main scenarios where this can be exploited to create bad debt:

1. A liquidator can perform a series of 1 wei liquidations where each action increases the user's debt by 1
or 2 wei. Over time, this effectively creates additional debt, allowing the liquidator to seize all the user's
collateral even if the position was originally overcollateralized (collateral value > debt value) before the
first liquidation. The profit for the liquidator is then the whole overcollateralization of the loan, instead of
just the liquidation bonus.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

2. A user can open a small position, and by repeatedly calling updateUserRiskPremium() create bad
debt. Each iteration increases the totalAddedAssets() in the Hub, and this increase can be (partially)
extracted as profit from the attacker by being a supplier of that asset. The gains can be maximized by
holding a larger fraction of the total supply of the asset. This can be achieved by flashloaning the debt
asset and supplying it to Spoke up to the add cap before triggering the repeated rounding errors to create
debt. Then, the liquidator can withdraw the supplied assets, repay the flashloan and keep the profits
made.

While 1 or 2 wei of assets are insignificant in most cases, the effect could be significant for low-decimal
tokens (e.g., WBTC) on chains with low gas prices.

Another scenario where the rounding due to the recomputation of the premium debt could be harmful is
in external protocols integrating with Aave V4: There a user of the external protocol could cause the
recomputation (and increase in debt) on a position they do not own, possibly leading to liquidations.

Additionally, this rounding behavior can allow a user to open a position that is liquidatable in the same
transaction as it is opened.

Code corrected:

The premium debt calculation has been updated to keep the amount of premium debt in full precision
(RAY + asset decimal precision) internally. Thus, the 2 wei rounding error no longer occurs when
updating the premium debt. Rounding still needs to occur when the premium debt must be converted to
asset decimals (e.g., when repaying debt).

6.2 Liquidation Revert Due to Unrelated Paused
Asset in Hub
Correctness Medium Version 1 Code Corrected

CS-AAVE4-002

The function pauseAsset in the HubConfigurator contract allows pausing an asset in the Hub by
marking all corresponding Spoke configurations for that asset as inactive.

When an asset is inactive for a given Spoke, the following Hub actions are disabled for that asset within
the Spoke: add, remove, borrow, repay, reportDeficit, eliminateDeficit, and
transferShares.

During a liquidation in a Spoke, executed via liquidationCall(), the system recalculates the
liquidated user's risk premium. This updated premium is propagated to
_notifyRiskPremiumUpdate(), which calls hub.refreshPremium() to update the premium debt
for all assets borrowed by the user.

However, if any borrowed asset has been paused (i.e., marked inactive) in the Hub, the premium debt
update for that asset will revert, causing the entire liquidation transaction to fail. This occurs because
refreshPremium() includes a validation check ensuring that the asset is active for the Spoke.

As a result, when a Hub sets an asset to inactive, liquidations involving users who borrowed that asset
will revert. This behavior can be exploited: a malicious user could borrow a minimal amount (e.g., 1 wei)
of every available reserve in a Spoke, along with their actual desired borrow. If any of those borrowed
assets later becomes inactive in the Hub, all liquidations for that user will revert, making their position
unliquidatable.

Note that the inactive asset itself cannot be liquidated as restore will revert during the liquidation
process. Similarly, if the liquidation logic enters the deficit branch, it will also revert as reportDeficit
will revert for the inactive asset. Thus, the debt in the inactive asset cannot be reduced and the only way
to unlock liquidations is to unpause the asset in the Hub.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

An additional flag, paused, has been introduced in the Hub for each Spoke configuration. If a Spoke
configuration is paused and active then hub.refreshPremium() is allowed to update the premium
debt for that Spoke configuration. Liquidations are therefore no longer blocked by an unrelated paused
Spoke configuration.

6.3 Share Price Can Decrease Because of Fee
Rounding
Design Medium Version 1 Code Corrected

CS-AAVE4-003

One invariant of the system is that the added share price ratio between totalAddedAssets and
totalAddedShares should never drop. However, it is possible for the ratio to decrease because of the
rounding of the fee computation.

Every time interest accrues because of a change in drawnIndex (as time passes), a portion of that
interest is given to the protocol as liquidity fee. The portion of interest for the fee is converted to shares,
which increase the fee receiver balance. View functions are aware of this behavior and simulate fee
accrual and share minting when computing totalAddedShares.

Fee shares are computed in the following way:

uint256 feesAmount = (asset.drawnShares.rayMulDown(indexDelta) +
 asset.premiumShares.rayMulDown(indexDelta)).percentMulDown(liquidityFee);

return feesAmount.toSharesDown(asset.totalAddedAssets() - feesAmount, asset.addedShares);

The returned amount can therefore round down in multiple places, when multiplying with the
indexDelta, when multiplying with the liquidityFee, and when converting to shares with
toSharesDown().

If the amount rounds down and does not result in the minting of shares, it can be considered as a
donation to the existing shares, and increases their value. However, if the amount causes shares to be
minted, the existing shares do not increase value.

Every time accrue() is called, the rounding behavior is "realized", and the share price either increases
or does not, however, when accessing the vault state through view functions, the behavior is "simulated".
It could in a block round down, therefore increasing the total assets, but accrue() is not called until the
next block. The amount that was considered "donated" in the previous block (but not realized), is now
reallocated to mint fees. This appears as a drop of share price.

As an example let us consider a liquidityFee of 100%, and unrealistic index values which, however,
explain the behavior. At step 2, accrue() is not called, the accrual is therefore not "realized".

asset
drawnIndex

simulated
drawnIndex

drawn
Shares

totalAdded
Assets

totalAdded
Shares

2e+27 2e+27 5 10 5

2.2e+27 2.2e+27 5 11 5

2.4e+27 2.4e+27 5 12 6 (1 minted for fee)

The violation of the monotonicity of share price can cause issues in integrations which follow the initial
Aave V4 specification, which specify that share price is only increasing.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

Code corrected:

Version 3In , the fee mechanism has been modified such that accrual stashes the fee amount, in asset
units, as a separate accounting variable.

6.4 Liquidation With Deficit Reverts Due to
Paused Assets
Correctness Low Version 3 Code Corrected

CS-AAVE4-021

reportDeficit() ensures that the asset being reported is active and not paused in the Hub.

If a user is being liquidated in a Spoke and the liquidation process enters the deficit branch,
reportDeficit() is called for each borrowed asset of the user to report any deficits. If any of those
borrowed assets are paused in the Hub, the reportDeficit() call for that asset will revert, causing
the entire liquidation transaction to fail. Thus, liquidations on assets that are not paused can be blocked if
the user has borrowed any assets that are now paused. Note that for this to happen, the liquidation must
result in bad debt that needs to be reported.

Code corrected

The Hub reportDeficit function is now allowed for paused assets, ensuring that this call does not
block liquidations of unrelated assets.

Aave Labs states

The Hub reportDeficit function is now allowed for paused spokes, ensuring that this call is not
blocked when it is executed as part of higher-level operations triggered through the Spoke by user
actions

6.5 Fees Can Be Minimized by Accruing Often
Correctness Low Version 1 Code Corrected

CS-AAVE4-004

Repeated asset.accrue() calls can be used to reduce or suppress protocol fees by forcing the
computed amount to round down (possibly to zero) on each call. In getFeeShares(), the fee is
obtained by rounding down the products of the drawn and premium shares with the index delta, and only
then applying the liquidity fee percentage. This ordering enables a loss of fees when accrues are made at
very short intervals.

uint256 feesAmount = (
 asset.drawnShares.rayMulDown(indexDelta) + asset.premiumShares.rayMulDown(indexDelta)
).percentMulDown(liquidityFee);

We illustrate the effect and estimate its monetary impact with a concrete example. Let's assume a chain
with a 1-second block time. Consider a liquidity fee of 10% and $1M WBTC as borrowed liquidity. With a
10% APR, indexDelta after 1 second will be 3170979198376459264 (~3*10**19) and the amount of
drawn shares will be 10**9 assuming 1 WBTC is worth $100k.

Then, with no premium debt, the feesAmount will be:

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

feesAmount = (10 * * 9 * 3170979198376459264/10 * * 27) * 0.1 = 0
In general, up to one added share per second can be lost due to this rounding pattern, which
corresponds roughly (assuming 1 share = 1 asset) to $30k per year in foregone fees.

This issue is more pronounced on chains with short block times and low fees, and for assets with high
values for a single wei of shares (e.g., WBTC).

Code corrected:

Version 1

Version 3

In , the accrued fee rounds down in two locations: the muldiv with liquidityFee and the
conversion from asset to added shares. In , accrue() no longer mints fee shares, which has
been moved to a separate function mintFeeShares(). This function is restricted so that griefing here is
protected. However, the first muldiv with liquidityFee still rounds down, losing a fee amount of up to
1 asset "wei" per block.

Aave Labs acknowledges the possiblity of losing 1 asset "wei" per block but considers it as negligible and
that it is not lost, as it is instead forwarded to liquidity providers. Aave Labs states:

Interest is not lost under any circumstances; it is either accrued as fees for the treasury or forwarded
to suppliers. This behavior can be modulated through risk configuration parameters, depending on
the specific scenario. To ensure that at least 1 unit of the underlying asset is accrued as fees per
block (in the case of accrual occurring every block), the condition
deltaGrowth × liquidityFee > 1 must hold. This may be more challenging for assets with a
low number of decimals, as precision constraints increase the likelihood of rounding to zero.
However, by adjusting either the liquidityFee or the draw rate, this condition can be consistently
satisfied. These parameters are assessed and configured by risk providers to ensure that the
treasury accrues fees when appropriate.

6.6 Liquidations Can Fail Due to Low Liquidity
Design Low Version 1 Code Corrected

CS-AAVE4-005

During a liquidation, hub.remove() is called to repay the liquidator. The liquidator is awarded part of the
liquidated user's collateral in exchange for repaying part of their debt. However, remove() can fail if the
Hub has insufficient liquidity and additional liquidity cannot be provided because the addCap has been
reached.

This was not an issue in Aave V3, as the liquidator could choose to receive aTokens instead. In Aave V4,
liquidators can only receive the underlying asset, so if the Hub does not have enough liquidity of that
asset, the liquidation will fail.

Code corrected:

Liquidations have been updated to allow the liquidator to receive shares instead of the underlying asset.

6.7 Missing Events
Design Low Version 1 Code Corrected

CS-AAVE4-006

1. In _liquidateDebt the premiumDelta is applied but never emitted. This makes it difficult to track a
user's premium position based on events. Another premiumDelta is applied to that position later in a

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

liquidation, in _notifyRiskPremiumUpdate(). That premiumDelta is emitted, but since the previous one
is not, the information about the total premium change during the liquidation is lost.

2. In _reportDeficit, the debt of a user is cleared for each borrowed asset, similarly to what happens
in repay() or liquidate(); however, no event is emitted.

Code corrected:

Version 3Since , events are emitted for both.

6.8 Overflow in Config Key Makes It Possible to
Update CF to 0
Design Low Version 1 Code Corrected

CS-AAVE4-008

The function updateDynamicReserveConfig() forbids setting the collateralFactor of an
existing Dynamic Reserve Config to 0, a special value that makes the asset invalid as collateral (it has no
borrowing power and cannot be liquidated).

An existing Dynamic Reserve Config, however, can be updated to have a collateralFactor of 0 by
using addDynamicReserveConfig(). addDynamicReserveConfig() will create new
configurations until Reserve.dynamicConfigKey is below type(uint16).max. When
type(uint16).max is reached, the reserve config key will wrap around and start overwriting existing
dynamic reserve keys. This allows setting the collateralFactor of an existing config to 0, which
would otherwise be forbidden through updateDynamicReserveConfig().

Setting collateralFactor to 0 in an existing dynamic config can lead to a position with outstanding
debt but an activeCollateralCount of 0, which makes it impossible to report the deficit.

Code corrected:

Aave Labs modified the type of Reserve.dynamicConfigKey from uint16 to uint24. Furthermore,
addDynamicReserveConfig() was updated to prevent overwriting existing dynamic reserve config
keys by ensuring that the new key is always smaller than type(uint24).max.

6.9 Profitable Multi-Step Liquidations
Correctness Low Version 1 Specification Changed

CS-AAVE4-009

Liquidations are intended to improve the health factor of a user by reducing their debt in exchange for a
discounted amount of collateral. However, the health factor can worsen in certain circumstances. If this is
the case and the health factor for the maximum liquidation bonus has not yet been reached, a liquidator
is incentivized to perform multiple smaller liquidations instead of a single large one. Each smaller
liquidation worsens the health factor further, allowing for a larger liquidation bonus to be earned in
subsequent liquidations.

First, we will describe under which conditions a liquidation worsens the health factor of a user. Then, we
will analyze the conditions under which the maximum liquidation bonus is not yet reached and show that
an overlap exists between these two conditions.

The health factor of a user before a liquidation is given as

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

HFpre = Cv
Dv

where is the collateral value, with the collateral factor applied, and is the total debt value.

The health factor after a liquidation is given as:

HFpost = Cv − f ⋅ x
Dv − x

Lb

where is the collateral factor of the collateral being liquidated, the value of the collateral being
liquidated, and the liquidation bonus earned by the liquidator.

The condition for a liquidation to worsen the health factor is

HFpost < HFpre

If we replace and with their respective formulas, we get

Cv − f ⋅ x
Dv − x

LB

< Cv
Dv

⇔ Cv ⋅ Dv − f ⋅ x ⋅ Dv < Cv ⋅ Dv − Cv ⋅ x
LB

⇔ f ⋅ LB > Cv
Dv

⇔ f ⋅ LB > HFpre

Thus, a liquidation worsens the health factor of a user if the product of the collateral factor and the
liquidation bonus is greater than the health factor before the liquidation.

If this condition is satisfied, but the maximum liquidation bonus has not yet been reached, a larger
liquidation can be split into multiple smaller liquidations. Each liquidation will have an increasing
liquidation bonus, therefore seizing more of the borrower's collateral than intended by the protocol.

Specification changed:

Aave Labs will ensure that:

f ⋅ maxLB ≤ HFmaxBonus

Thus, liquidations that worsen the health factor do not create an incentive for multi-step liquidations,
because when the health starts to worsen because of a liquidation the maximum bonus has already been
reached.

6.10 Slippage in Liquidations
Design Low Version 1 Specification Changed

CS-AAVE4-010

Liquidators will compete with one another to perform profitable liquidations. The auction mechanism in
the liquidation bonus means that the liquidation bonus can change unexpectedly if the health of the user
being liquidated improves. This creates a scenario where:

1. User A is liquidatable, health factor is such that bonus is B1.

2. Liquidator E1 sends a transaction to liquidate A, expecting bonus B1.

3. Liquidator E2 sends a transaction to (partially) liquidate A.

4. Transaction of E2 is executed first, health factor of A improves and is now giving bonus B2 < B1.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

5. Transaction of E1 is executed, bonus is B2, lower than expected, so the liquidator has overpaid for
the liquidation.

Liquidators should therefore implement slippage protection in a calling contract, making integration with
the protocol more cumbersome.

Specification changed:

Aave Labs will clearly describe the behavior in developer documentation and states it is the
responsability of the liquidators to enforce slippage protection. Aave Labs states:

Liquidations guarantee at least the minimum liquidation bonus, which can increase progressively
depending on the user's health factor. It is reasonable to assume that liquidators enforce profitability
and slippage constraints, using the minimum bonus as a baseline and estimating the final bonus
based on user conditions, such that transactions revert or are not executed if those expectations are
not met.

6.11 Spokes Do Not Return Minted/Burned Share
Amounts
Design Low Version 1 Code Corrected

CS-AAVE4-011

The Spoke contracts expose core actions such as supply(), withdraw(), borrow(), and repay().
However, these functions do not return the actual amounts of shares or assets supplied, withdrawn,
borrowed, or repaid. As a result, third-party integrators must independently compute these values,
typically by calling additional view functions before and after each operation, or simulating the operations.

A similar issue is present in NativeTokenGateway supplyNative(), withdrawNative(),
borrowNative(), and repayNative(), and in TreasurySpoke supply() and withdraw().

This makes integration with the system harder and increases the likelihood of errors on the integrator
side.

Code corrected:

The Spoke contract has been updated such that supply(), withdraw(), borrow(), and repay()
now return the actual amounts of shares and assets involved in the operations.

6.12 Array.sort() Can Revert Due to EVM Stack
Limit
Correctness Low Version 1 Specification Changed

CS-AAVE4-012

When computing the risk premium for a user, the Spoke sorts the collateral assets provided by the user
using Array.sort() from least to most risky. When 170 or more collateral assets are sorted, the
sorting algorithm (quicksort) can revert because the EVM limit of 1024 stack elements is reached.
Quicksort is a recursive algorithm, and every internal recursive call increases the stack utilization. The
revert happens with 170 elements when the list before being processed by quicksort is initially already in
sorted order (ascending risk), or inversely sorted (descending risk), as these conditions provide the

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

worst-case complexity for this variant of quicksort: O(n^2) operations, and n recursive calls. A randomly
sorted list requires O(log(n)) recursive calls.

In practice, enabling more than 170 collaterals could mean that a position can no longer be liquidated as
_calculateUserAccountData() reverts in liquidationCall().

Specification changed:

Aave Labs modified the Spoke Configurator to set a reserve limit on Spokes.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Fee Receiver Has Non-Zero Add Cap
Informational Version 3 Acknowledged

CS-AAVE4-023

In _addFeeReceiver(), the add and draw caps are set for a fee receiver. While the draw cap is set to
0, the add cap is set to MAX_ALLOWED_SPOKE_CAP. However, the fee receiver is not expected to add
liquidity and receiving fees does not require a non-zero add cap.

Acknowledged:

Aave Labs acknowledges the behavior with the following statement:

The fee receiver is initialized with a non-zero supply cap to facilitate its ability to add assets and use
the linked Spoke to deposit additional funds. This configuration can be updated by the Hub owner if
deemed necessary, either to block further additions or to regulate this behavior.

7.2 Risk Premium Threshold Can Prevent
Borrows and Liquidations
Informational Version 3 Acknowledged

CS-AAVE4-022

riskPremiumThreshold is a parameter in the Hub for a Spoke configuration that defines the
maximum ratio of premium debt shares to total debt shares that a Spoke can have. This threshold is
intended to prevent a malicious Spoke from inflating its premium debt excessively. Currently, there is no
minimum value enforced for this parameter. As such, if the collateral risk factor for a collateral listed in a
Spoke is larger than riskPremiumThreshold, it could lead to a situation where users are unable to
borrow due to their premium debt exceeding the threshold immediately after borrowing.

Furthermore, liquidations could fail since the liquidated user's premium shares can increase during a
liquidation, and can exceed the threshold after liquidation. The premium shares of a liquidated user can
increase if the liquidated collateral is a "safe" one, leaving the remaining debt covered by "unsafe"
collaterals.

The value of the riskPremiumThreshold should therefore be considered carefully.

Risk accepted:

Aave Labs accepts the risk with the following statement:

The riskPremiumThreshold is a security lever in the Hub that can be used to protect against
faulty or malicious spokes submitting invalid premium data, by blocking any actions that would
update the value beyond the established threshold. It also enables configuration of spoke activity, as
it can be set to zero for spokes that do not rely on any premium mechanism. Updates to this
parameter undergo risk and technical assessment by the Hub authority.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

7.3 assetId Cannot Be Determined From
Underlying
Informational Version 3 Acknowledged

CS-AAVE4-024

The Hub contract uses an internal mapping from assetId to Asset which contains the address of the
underlying asset. However, there is no reverse mapping from the underlying asset address to the
corresponding assetId. This might make it difficult for third-party integrators to determine the assetId
associated with a given underlying asset address.

Acknowledged:

Aave Labs acknowledges the finding.

7.4 riskPremiumThreshold Condition Is Slightly
Overestimated
Informational Version 3 Acknowledged

CS-AAVE4-025

In _applyPremiumDelta(), the premium shares of a Spoke are enforced to be less than or equal to a
certain ratio of its drawn shares, defined by riskPremiumThreshold. However, the condition is
implemented as:

spoke.premiumShares <= spoke.drawnShares.percentMulUp(riskPremiumThreshold)

This condition allows the premium shares to be slightly higher than the intended threshold due to the
rounding behavior of percentMulUp(). Specifically, if the product of spoke.drawnShares and
riskPremiumThreshold is not an integer, percentMulUp() rounds it up to the nearest integer,
effectively allowing a small excess in premium shares.

Acknowledged:

Aave Labs acknowledges the behavior with the following statement:

The condition is validated using the same rounding direction as the one applied in the Spoke when
calculating a user’s premium shares based on drawn shares and the risk premium, ensuring
consistency and alignment.

7.5 Ambiguous Revert Reasons
Informational Version 1 Code Partially Corrected Acknowledged

CS-AAVE4-013

• In _validateReportDeficit() and _validateRestore(), the drawnAmount and the
premiumAmount are verified to be respectively less than or equal to drawn and premium.
However, both require calls will revert with the same error SurplusDeficitReported. The
error has an argument, which could represent either drawn or premium debt,

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

but with no indication on which one it is. Therefore, which condition failed in case of a revert, and the
meaning of the error's argument could be ambiguous.

• In SignatureGateway.updateUserDynamicConfigWithSig(),
block.timestamp <= deadline is checked to ensure that the signature is still valid. However, if
this condition fails, the function will revert with InvalidSignature error. This error name does not
clearly indicate the exact reason of the revert (i.e. an expired signature).

Code partially corrected:

The first issue was addressed by introducing two distinct errors : SurplusDrawnDeficitReported
and SurplusPremiumRayDeficitReported in _validateReportDeficit() and
_validateRestore().

The second issue remains unaddressed, as the InvalidSignature error is still used when the
signature has expired.

Acknowledged:

Aave Labs acknowledges the findings and states:

The first issue has been fixed. For the second, introducing a dedicated error for expired signatures is
not considered necessary, as an expired signature is still an invalid signature in all cases.

7.6 Hanging Approval in SignatureGateway
Informational Version 1 Risk Accepted

CS-AAVE4-015

Function repayWithSig() of SignatureGateway computes the repayAmount by taking the minimum
of the amount passed by the user as an argument and the user's actual debt in the Spoke:

uint256 repayAmount = MathUtils.min(
 amount, _spoke.getUserTotalDebt(reserveId, onBehalfOf));

The calculated repayAmount is therefore possibly lower than the amount passed as an argument,
which should correspond to the user's approval of the underlying to the contract. The transferFrom()
call is therefore likely to leave a hanging approval from the user to the contract.

underlying.safeTransferFrom(onBehalfOf, address(this), repayAmount);

Risk accepted:

Aave Labs accepts the risk with the following statement:

The amount of debt to be repaid is adjusted to allow the function to fully repay the user's outstanding
debt. It is assumed that a user performing a max repayment is aware that a residual allowance may
remain, as the approved amount must exceed the current debt at the time of transaction signing in
order to cover interest accrued between signing and confirmation. Furthermore, since the function
returns the amount of assets repaid, a subsequent action can be performed to adjust any remaining
allowance, if required.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

7.7 Inconsistent Variable Names
Informational Version 1 Acknowledged

CS-AAVE4-016

• In SignatureGateway, some functions use onBehalfOf as parameter name (e.g.
setUsingAsCollateralWithSig()), while others use user (e.g.
setSelfAsUserPositionManagerWithSig()) to refer to the same address.

Acknowledged:

Aave Labs acknowledges the finding.

7.8 Low Granularity in drawCap and addCap
Informational Version 1 Risk Accepted

CS-AAVE4-018

The drawCap and addCap parameters offer low granularity for expressing cap amounts. The minimum
granularity is 1 unit of an asset (10**asset.decimals). This granularity can be very different between
assets (e.g., $1 for USD stablecoins vs. $100k for BTC derivatives). In the case of high-value assets, this
prevents setting precise caps.

Risk accepted:

Aave Labs accepts the risk with the following statement:

Caps are considered appropriate to be expressed in asset terms as a best-effort measure, given that
total supplied assets and total drawn amounts may exceed the limits over time due to accrued
interest.

7.9 Multicall Operations Can Be Front-Run and
Forced to Revert
Informational Version 1 Acknowledged

CS-AAVE4-007

The SignatureGateway contract inherits from Multicall, allowing users to execute multiple
operations in a single batched transaction. However, many of the actions supported by
SignatureGateway rely on off-chain signatures that can be used by anyone who possesses them.

If another party submits the same signed message before the original caller's transaction is confirmed,
the signature becomes invalid for subsequent calls (e.g., due to nonce consumption or replay protection).

As a result, any transaction batching multiple operations via multicall() can be front-run and
reverted, because a single operation in the batch (using the same signature) will fail.

For example, the following flow can be problematic:

• A relayer sends a transaction for Multicall to execute three intents from a user: [A1, A2, A3].

• An attacker front-runs the call, and executes [A1].

• The batch from the relayer reverts, [A2, A3] are not executed.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

If this is not handled correctly by the relayer, the intents of a user can remain partially fulfilled. An attacker
could have some incentive to censor some user intents: for example they might profit from a delayed
repayment through increased interest accrual, or because of the victim becoming liquidatable. Therefore,
attention is required when implementing systems that relay user signatures on-chain, such that user
intents are not left partially fulfilled.

Acknowledged:

Aave Labs acknowledges the behavior and states:

The SignatureGateway is not intended to function as a transaction builder. Users should not rely
on this contract to batch multiple actions into a single transaction, as it operates on a best-effort
basis. Additionally, there is no economic benefit to performing such batching in this context, making
the described behavior a griefing vector only. In any case, the user can retry the action if necessary.

7.10 No On-Chain Reverse Mapping for
reserveId
Informational Version 1 Acknowledged

CS-AAVE4-019

In the Spoke, it is possible to obtain the assetId and Hub address from a reserveId, but it is difficult
to check if a given (assetId, hub) pair is already listed in the Spoke, and with what reserveId,
without iterating through all reserves.

An inverse mapping could be made available by expanding the internal _reserveExists function for
this purpose.

Acknowledged:

Aave Labs acknowledges the finding.

7.11 preview* and convert* Return 1:1
Exchange Rate for Unsupported Assets
Informational Version 1 Risk Accepted

CS-AAVE4-020

In the Hub contract, functions such as previewAddByShares() or convertToAddedShares() will
not revert if the asset passed as a parameter is not yet added to the Hub. Instead, they will return
amounts corresponding to an exchange rate of 1:1 due to the virtual shares mechanism. This can lead to
problems for integrators who expect these functions to revert in such cases.

Note that drawnAssets/ drawnShares preview and conversions will always return 0 for an
unsupported asset as the drawnIndex will be zero for it.

Version 3Changes in :

Version 3convertTo.. functions are removed in thus this only applies to preview* functions.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Risk accepted:

Version 5In Aave Labs accepts the remaining risk with the following statement:

Integrators should not rely on preview functions returning 1 to determine whether an asset is listed,
and should instead use explicit getters such as isUnderlyingListed.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Liquidation Gas Cost Is Possibly More Than
Reward
Note Version 1

Liquidations must iterate through all the borrowed assets and collaterals of the liquidated user. For each
asset, the process involves loading the asset configuration, querying an oracle, loading user balances,
and querying the Hub to convert share balances to assets. Every iteration consumes some gas, and the
number of iterations is only capped by the number of enabled reserves in the spoke.

The number of iterations is potentially unbounded because:

• there is no maximum number of reserves.

• there is no maximum number of collaterals or borrowed assets per user.

So in practice, a borrower could enable all collaterals and all borrowable assets on their account to
maximize the liquidation cost.

Moreover, the cost of each iteration as a portion of the liquidation reward is not bounded. There is no
minimum debt size for a borrowed asset, therefore the liquidation incentive could be smaller than the
liquidation gas cost. A borrower could split a position into several smaller ones to make it less attractive
to liquidate.

The positions could be created when gas prices are low; however, liquidations often need to happen
during times of high asset price volatility when gas prices are high. Therefore, the gas price for the
borrowers is less than for the liquidators.

As an example, let us consider a position with 10 borrowed assets and 10 collateral assets. For
simplicity, only 1 of the borrowed assets has a significant debt balance, and only one of the collaterals
has a significant balance, and the liquidator therefore only needs to perform a single liquidation.

Let us assume gas prices are 1 Gwei, ETH price is $3000, liquidation bonus is 5%, and every asset
enabled by the borrower costs 80'000 gas to iterate through.

The gas cost of the liquidation is therefore:

20 (assets enabled) * 80k (gas per asset) * 10^-9 (ETH per gas) * 3000 (USD p
er ETH) == $4.8

With a 5% liquidation bonus, debt smaller than ~$100 becomes therefore unprofitable to liquidate.

Despite the asymmetry of gas prices between the time of creation of the position and the time of
liquidation, the borrower uses considerably more gas to create the position than what is used to calculate
their health. Creating the position involves setting storage slots for the first time, which is considerably
more gas intensive than reading (cold) storage slots.

Aave Labs confirms that this behavior is intended and adds the following statement:

The described scenario occurs only when the liquidation bonus is lower than the gas cost required to
execute the liquidation, which represents an edge case. This would require a combination of unlikely
conditions, such as exceptionally high network gas prices and user positions composed of many
collateral and borrow reserves. Even if this situation arises, the position can still be liquidated at a
loss in order to resolve it. Additionally, the number of listed reserves in a Spoke can be

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

restricted through off-chain coordination or enforced via the SpokeConfigurator, with the goal of
reducing the likelihood of complex user positions involving a large number of reserves.

8.2 Paused Assets Keep Accruing Interest
Note Version 1

In the HubConfigurator contract, pauseAsset() can be used to pause a specific asset in the Hub.
This leads to all Spoke configs for this asset being set to inactive.

When an asset is paused, no actions can be performed with this asset in the Spokes, e.g., no new loans
can be opened, no new deposits can be made, and no repayments can be performed. However, interest
on existing loans continues to accrue. Users that have an open loan in such an asset cannot repay their
loan, as repayments are disabled for paused assets.

Users are therefore forced to let their loan continue to accrue interest.

Typically, such a situation is not expected to last long, and interest accrual during negligible time frames
is not a big issue. However, if an asset remains paused for a long time, this can lead to significant interest
accrual on existing loans that users cannot repay.

Aave Labs confirms that this behavior is intentional, and states:

Pausing an asset is not expected to be a long-lasting condition, and therefore the interest accrued
during that period is not considered significant enough to cause harm to the protocol. By contrast, if
the interest generated during the pause is deemed problematic, the Spoke owner can update the
interest rate to mitigate its impact.

8.3 Tokens With Hooks Are Not Supported
Note Version 1

Tokens that implement callbacks on transfers (for example to the receiver), such as tokens adhering to
the ERC-777 standard, are not supported by Aave V4. Aave V4 does not implement reentrancy guards
and sometimes violates the CEI (checks - effects - interactions) pattern. For example, during liquidations,
the liquidated collateral is transferred to the liquidator before updating the debt of the position. Therefore,
during the interaction with the external contract, the liquidated position is in an inconsistent state.

This can be an issue if the liquidated collateral implements arbitrary logic on transfer, for example, calls
to the receiver. Tokens should therefore be thoroughly vetted to not implement arbitrary logic during
transfers.

8.4 Type Bound Considerations
Note Version 1

• Version 2The drawnIndex has been modified from a uint128 to a uint120 in . This implies that
for an asset at 30% APR (compounded daily) the drawnIndex will overflow after approximately 70
years. This is a theoretical limit and in practice it is unlikely that an asset will remain in the protocol
for such a long time without any intervention.

• Premium debt is stored with added precision (RAY) which is 27 extra decimals of precision. As
premiumOffset is stored as a int200, possibility of overflow/underflow should be considered.
Premium risk factor can be at most 1000%, i.e. 10 times more premium shares than drawn shares,
so we can have the following:

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

• 27 decimals precision takes log2(10^27) = 89.69 bits

• 1000% (10x) premium risk takes up to log2(10) = 3.32 bits

• sign of the integer takes 1 bit

We are left with 200 - 89.69 - 3.32 - 1 = 105.98 bits for the maximum amount of borrowed assets
(drawnShares * drawnIndex). This corresponds to 31 decimal digits. For tokens with high circulating
supply (in terms of balance amounts), such as PEPE, balances of the order of 10**31 are feasible. The
total supply of PEPE is 4.2 * 10**32.

Aave Labs agrees that balances of the order of 10**31 are technically feasible in the Hub, but points out
that with the current Spoke implementation, tokens with such a high balance are not feasible. Aave Labs
states:

While such values may be theoretically possible from the Hub’s perspective, the Spoke only supports
oracles with 8 decimals. As a result, the minimum representable price is 1e-8, implying that a
balance of 10^31 would correspond to 10^23 USD, which is not considered a realistic or feasible
amount.

• drawCap and addCap are represented as uint40 which limits the cap to 2**40 - 1 units of asset
which is about 1 Trillion. For assets with low unit price the caps might not be able to grow enough to
accommodate a significant amount of liquidity.

Aave Labs - Aave V4 - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Hub
	2.2.1.1 Adding Liquidity
	2.2.1.2 Drawing Liquidity
	2.2.1.3 Assets
	2.2.1.4 Swept Liquidity
	2.2.1.5 Deficit

	2.2.2 Spokes
	2.2.2.1 Reserves
	2.2.2.2 Supplying liquidity
	2.2.2.3 Borrowing
	2.2.2.4 Position Managers

	2.2.3 Collateralization
	2.2.4 Position Status Map
	2.2.5 Premium Debt
	2.2.5.1 Premium delta

	2.2.6 Interest Model
	2.2.7 Liquidations
	2.2.8 Oracles
	2.2.9 Fees
	2.2.10 Hub & Spoke configurations

	2.3 Trust Model
	2.3.1 changes

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 2 Wei Rounding Can Trigger Liquidations and Create Additional Debt
	6.2 Liquidation Revert Due to Unrelated Paused Asset in Hub
	6.3 Share Price Can Decrease Because of Fee Rounding
	6.4 Liquidation With Deficit Reverts Due to Paused Assets
	6.5 Fees Can Be Minimized by Accruing Often
	6.6 Liquidations Can Fail Due to Low Liquidity
	6.7 Missing Events
	6.8 Overflow in Config Key Makes It Possible to Update CF to 0
	6.9 Profitable Multi-Step Liquidations
	6.10 Slippage in Liquidations
	6.11 Spokes Do Not Return Minted/Burned Share Amounts
	6.12 Array.sort() Can Revert Due to EVM Stack Limit

	7 Informational
	7.1 Fee Receiver Has Non-Zero Add Cap
	7.2 Risk Premium Threshold Can Prevent Borrows and Liquidations
	7.3 assetId Cannot Be Determined From Underlying
	7.4 riskPremiumThreshold Condition Is Slightly Overestimated
	7.5 Ambiguous Revert Reasons
	7.6 Hanging Approval in SignatureGateway
	7.7 Inconsistent Variable Names
	7.8 Low Granularity in drawCap and addCap
	7.9 Multicall Operations Can Be Front-Run and Forced to Revert
	7.10 No On-Chain Reverse Mapping for reserveId
	7.11 preview* and convert* Return 1:1 Exchange Rate for Unsupported Assets

	8 Notes
	8.1 Liquidation Gas Cost Is Possibly More Than Reward
	8.2 Paused Assets Keep Accruing Interest
	8.3 Tokens With Hooks Are Not Supported
	8.4 Type Bound Considerations

