

PUBLIC

Code Assessment

of the CowSwap Adapters

Smart Contracts

Nov 25, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Open Findings 10

6 Informational 11

7 Notes 13

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Aave team,

Thank you for trusting us to help AAVE with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of CowSwap Adapters
according to Scope to support you in forming an opinion on their security risks.

AAVE implements convenience contracts for Aave users to perform the following actions more efficiently:

• Swap the collateral of a loan to a different asset

• Swap the debt of a loan to a different asset

• Repay a loan with posted collateral

The code is well structured and written. We carefully assessed if the protocol interactions are correct,
amounts are passed correctly and there is any way to interact maliciously with the instance by e.g., using
permits/approvals. We could not identify any major issues. However, because the solvers have freedom
in their executions, there is no guarantee that the expected appData instructions are followed, so the
interactions might need to be monitored carefully. Besides, we could not find an attack scenario for the
intra-hook but this hook allows alternative execution paths for users that are not intended in normal
operation.

In summary, we find that the codebase provides a high level of security. Yet, it is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace
other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the following source code files inside the CowSwap Adapters
repository based on the documentation files.

• src/contracts/AaveV3AdapterFactory.sol

• src/contracts/AaveV3BaseAdapter.sol

• src/contracts/BalancerV3AdapterFactory.sol

• src/contracts/BaseAdapterFactory.sol

• src/contracts/CollateralSwapAaveV3Adapter.sol

• src/contracts/DebtSwapAaveV3Adapter.sol

• src/contracts/RepayWithCollateralAaveV3Adapter.sol

• src/libraries/DataTypes.sol

• src/interfaces/

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 27 Oct 2025 85e0e648d64bc5d97afe4fc73d1ef4d24faddc4d Initial Version

2 24 Nov 2025 114ec7b4a5f1142be53a4b37753a95fa089eebb2 Final Version

For the Solidity smart contracts, the compiler version 0.8.28 was chosen.

2.1.1 Excluded from scope
All third-party contracts like libraries or contracts called from the system are excluded from scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

AAVE offers convenience contracts for users to perform the following actions more efficiently:

• Swap the collateral of a loan to a different asset

• Swap the debt of a loan to a different asset

• Repay a loan with posted collateral

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Each action would require temporary capital and multiple calls to perform the actions without helper
contracts. The adapter doesn't require additional capital from the user. The contracts will take a flash
loan, swap and perform the action, and finally use the remaining funds to repay the flash loan.

For each scenario the high-level idea is:

1. Collateral swap:

1. Get a flash loan in the old collateral asset (sellToken)

2. Swap the old collateral asset (sellToken) for the new collateral asset (buyToken)

3. Supply the new collateral asset as collateral for the loan (buyToken)

4. Withdraw the old collateral asset from the loan (sellToken)

5. Repay the flash loan in the old collateral asset (sellToken)

6. Sweep any dust

2. Debt swap:

1. Get a flash loan in the new debt asset (sellToken)

2. Swap the new debt asset for the old debt asset (buyToken)

3. Repay the old loan with the old debt asset (buyToken)

4. Open a new loan with the new debt asset (sellToken)

5. Repay the flash loan in the new debt asset (sellToken)

6. Sweep any dust

3. Repay with collateral:

1. Get a flash loan in the collateral asset (sellToken)

2. Swap the collateral asset for the debt asset (buyToken)

3. Repay (part of) the loan with the debt asset (buyToken)

4. Withdraw (part of) the collateral (sellToken)

5. Repay the flash loan in the new debt asset (sellToken)

6. Sweep any dust

To initiate an action the user must place an order in the CowSwap protocol off-chain order-book. The
order must include an appData hash and the corresponding appData JSON must be available for the
solver. The appData must define the flash-loan parameters and the pre- and post-hook actions. The
signature provided by the user in combination with the order will be an EIP-712 signature over the
AdapterOrderSig object.

The solver who will execute the order will call into the FlashLoanRouter contract with
flashLoanAndSettle. This will trigger the interaction with the
AdapterFactory.flashLoanAndCallBack. The factory (depending on whether it takes a Balancer
or Aave flash loan) will interact with either the Balancer vault or Aave pool to initiate the flash loan in
_triggerFlashLoan. In case of the AAVE AdapterFactory, this will call the flashLoan function of the
AAVE Pool. In case of the Balancer AdapterFactory, this will call the unlock function of the Balancer
Vault.

AAVE and Balancer will use the provided callback data to call back into the msg.sender (Balancer) or
the provided receiver (AAVE) address. In both cases this will be the AdapterFactory contract and
ultimately end up in _executeFlashLoan to call borrowerCallBack on the FlashLoanRouter
contract. After the flash loan is taken, the FlashLoanRouter will start to settle the order by calling
settle on the settlement contract. The settle function calls the pre-hook interaction to deploy the

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

AdapterInstance contract and transfer the flash loaned assets to the instance. Using the
GPv2Interaction.Data array provided by the user, this will trigger
deployAndTransferFlashLoan from the BaseAdapterFactory contract, and deploy the
AdapterInstance contract (by using cloneDeterministic), initialize the contract via
setParameters and transfer the flash loaned assets to it. After deployment the instance will be
initialized with the parameters from the order. The owner of the adapter instance is the user who signed
the order. They have the ability to sweep the adapter instance with rescueTokens.

The CowSwap protocol will then verify and compute the trade executions put together by the solver in
computeTradeExecutions. The verification includes verifying the user's EIP-712 signature over the
AdapterOrderSig by calling back into the instance's isValidSignature function. The instance uses
the order to rebuild the AdapterOrderSig digest (via the factory), verifies userSig, and also re-hashes
order to ensure orderHash matches. This ensures that AdapterOrderSig (user signature) is under the
Factory's EIP-712 domain (name/version/chainId/Factory-address) and includes the instance address.
The returned inTransfers from computeTradeExecutions will then be distributed to the accounts
affected by the trades.

Users have the option to execute another intra-hook but this should be empty in normal operation. The
execution then distributes the outTransfers to the accounts involved in the trades, including the
AdapterInstance contract. With the funds available, the AdapterInstance will perform one of the
three actions: collateral swap (collateralSwapWithFlashLoan), debt swap
(debtSwapWithFlashLoan) or repay with collateral (repayWithCollateralWithFlashLoan).
Each function will perform the steps outlined in the detailed walkthrough above and call
_repayFlashLoan to repay the flash loan. After repaying it will sweep any dust or leftover assets from
the contract.

In _repayFlashLoan it will approve the factory to pull the funds to repay the flash loan and call
notifyRepayFlashLoan on the factory. Via the internal function _repayFlashLoan it will transfer the
funds from the contract to the factory and:

1. In case of AAVE, it approves the factory to pull the funds from the instance. The factory will
transfer the funds to msg.sender which is the AAVE Pool from the very beginning which will
now continue the flashLoan function and pull the funds back to the pool. However, in case
the borrower cannot return the funds, the pool will check if there is enough collateral and
eventually open a debt position.

2. In case of Balancer, it transfers the funds to the Balancer Vault and calls settle on the
Balancer Vault.

In the end the position should be changed according to the user's intent and the flash loan repaid.

The final version of the code added the feature to cancel an action by disallowing the factory to deploy a
new instance.

2.3 Trust Model
The CowSwap solvers are untrusted when it comes to hook execution. However, execution of hooks is
part of the CowSwap social consensus rules and intentionally omitting hook execution might result in the
slashing of a solver's bond through a DAO vote.

The owner of the AdapterFactory contracts can rescue tokens from the contract and set the adapter
implementation from which instances are cloned during execution.

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Open Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Missing Interface Definitions
Informational Version 1

CS-AAVECow-003

Some of the implemented functions are not declared in the interface. This might be intentional but it is not
clear. Therefore, we highlight the following functions:

1. IAaveBaseAdapter does not declare the isValidSignature function

2. IAaveBaseAdapter does not declare the rescueTokens function

3. IAaveBaseAdapter does not declare the owner getter

4. IBaseAdapterFactory does not declare the rescueTokens function

5. IBaseAdapterFactory does not declare the isAdapterImplementation mapping getter

6. IBaseAdapterFactory does not declare the openFlashLoans mapping getter

6.2 Missing supplyAmount Upper Bound Check
Informational Version 1

CS-AAVECow-001

In the _supply function of the AaveV3BaseAdapter contract, there is no check that the
supplyAmount is at most the currentBalance. This could lead to a situation where the Aave supply
function reverts when trying to pull more funds from the adapter than the actual balance of the adapter
instance.

In the other functions in the AaveV3BaseAdapter contract, there are require checks for such cases
that will cause a revert with InvalidAmount() or the value is capped at currentBalance.

6.3 Salt Collisions
Informational Version 1

CS-AAVECow-002

The salt to deploy a new adapter instance includes the hook data. Consequently, the same user can only
deploy with the same parameters once. The function deployAndTransferFlashLoan is
unpermissioned. This opens up a trolling DoS vector where a third party can front-run the order by
pre-deploying an instance at the deterministic address.

The cost would be quite high as the attacker needs to fund the factory with the flash loan amount. The
implications would be low as the user might just change the order parameters slightly and try again. The
validTo field might easily be changed and would be enough to deploy a new instance. Additionally, as the
legitimate user must be the owner of the instance, the attacker would lose their funds to the legitimate
user because they could sweep the adapter instance with rescueTokens.

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

In case the attacker would not pre-fund the factory with the loan amount, they must execute a flow to
return the flash-loan funds. The only way to perform this would be to execute the intended functions on
behalf of the user as requested.

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Uncontrollable Execution Paths
Note Version 1

There is no way to guarantee that solvers will actually execute the appData instructions as defined. They
could provide the correct hash but not adhere to the instructions. However, as defined in the system
overview, the solvers are incentivized to act in a non-malicious way according to CowSwap's
social-consensus rules (otherwise their bond might get slashed through a DAO vote).

The interaction hooks could include additional or different calldata than needed to perform the intended
actions. But we could not find a way to exploit this.

But we still advise to carefully monitor the interactions and the appData instructions to ensure that the
intended actions are performed.

AAVE - CowSwap Adapters - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Informational
	6.1 Missing Interface Definitions
	6.2 Missing supplyAmount Upper Bound Check
	6.3 Salt Collisions

	7 Notes
	7.1 Uncontrollable Execution Paths

