PUBLIC

Code Assessment

of the Farming

Smart Contracts

March 29, 2022

Produced for

by

@EHAINSEEURITY




Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ linch - Farming - ChainSecurity - © Decentralized Security AG

© 0 N 01 W

11
15


https://chainsecurity.com

1 Executive Summary

Dear linch team,

Thank you for trusting us to help linch with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Farming according to Scope
to support you in forming an opinion on their security risks.

linch implements two types of farming contracts. While the first one is a traditional farming contract
where tokens need to be deposited for reward eligibility, the second one is as ERC-20 library contract
which has farming capabilities built-in and, thus, allows for participating in multiple farms without requiring
individual deposits in each one.

The most critical subjects covered in our audit are functional correctness, dependency on external
contracts, and precision of arithmetic operations. Security regarding all the aforementioned subjects is
high.

The general subjects covered are usage as a library, code complexity, documentation, specification, and
gas efficiency. In general, these subjects are satisfactory. However, specification and documentation are
non-existing, see Insufficient documentation, while code complexity is high due to complex control flows.
That makes understanding the system and integrating with it difficult.

In summary, we find that the codebase provides an good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ linch - Farming - ChainSecurity - © Decentralized Security AG 3


https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

“ )

¥ Risk Accepted

i Acknowledged

@ linch - Farming - ChainSecurity - © Decentralized Security AG



https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Farming repository based on the
documentation files. All files in cont r act s are in scope.

The table below indicates the code versions relevant to this report and when they were received.

V | Date Commit Hash Note

1 | 17 January 2022 d191ccl4b526e2eab09c266580084116b2630da8 Initial Version

2 | 14 February 2022 879448d1a934f767ee2b0c5a26ee1458db5f9986 Second Version
3 | 28 March 2022 f41b029b8da4819c¢28129d1d06995033cf82b7a7 Final Version

For the solidity smart contracts, the compiler version 0. 8. 9 was chosen. In the second iteration the
compiler version has been changed to 0. 8. 11. In the third iteration the compiler version has been
changedto 0. 8. 12.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

linch offers a set of contracts for farming ERC-20 tokens. First, linch implements a farming pool which
allows users to lock a staking token to accrue a reward token over time. Second, an ERC-20 extension
having farming capabilities built-in is provided.

2.2.1 General

« Farmable token: An ERC-20 token that allows token holders to claim some reward tokens from
farms. A farmable token contract defines the logic of how rewards are split among users.

« Farms: Farms hold the reward token funds and define the functionality on how to distribute the token
to the contract of the farmable token. A farm defines the logic of how to release rewards to farmable
tokens.

2.2.2 Farming Pool

FarmingPool is both a farmable token and a farm.

e The farmable token (FarmingPool) is always one-to-one exchangeable (deposit() and
wi t hdr aw( ) ) with a staking token. Hence, to be eligible for rewards users must lock a pre-defined
staking token in the FarmingPool contract. However, the share of the totally released reward amount
is defined as a function of the amount staked over the staking time. Users can always claim their
rewards with cl ai m{) or when calling exi t () which also withdraws all the staking token funds the
user deposited.

« FarmingPool is a farm itself. Farming must be initialized through st art Far m ng() by the reward
distributor which specifies the parameters of how much additional reward will be released over time

@ linch - Farming - ChainSecurity - © Decentralized Security AG 5


https://chainsecurity.com

to all the token holders. _get Far medSi nceCheckpoi nt Scal ed() defines the distribution to be
linearly increasing over time.

2.2.3 Farmable ERC-20 and Farms

« ERC20Farmable is an extension to the ERC-20 standard introducing native farming capabilities to
tokens and is intended to be used as a library. Instead of having another staking token, the staking
token is the ERC20Farmabile itself. Hence, there is no need to lock tokens into one farming contract
and, thus, ERC20Farmable allows to participate in multiple farms at once. Since anyone could
create a token farm, users must explicitly join a farm through f ar m() to be eligible for its rewards
(farming with all the ERC20Farmable balance). Similarly, users would need to exit a farm with
exi t (). In contrast to FarmingPool, rewards are not claimed automatically but can also be claimed
with cl ai n{) at any point in time. For example, with such an approach LP tokens could inherit from
ERC20Farmable to allow incentives coming from multiple third parties (e.g. AMM LP token pairs)
without locking the token into one contract.

« Farm implements the same logic for distribution to the farmable token contract. However, farm
serves as a template but could be replaced with different logic in terms of distribution. However, a
Farm must always implement the cl ai nFFor method to allow the farmable token to pull funds from
the farm.

2.2.4 Trust Model & Roles

User: Not trusted.

Farm Owner and active farms: Not trusted. Anyone could deploy farming contracts. We further assume
that farms return values that are in the same base as defined by the FarmAccounting library.

Farmable token deployer: Trusted. User holds this token and interacts with its ecosystem. Hence, the
ecosystem of the farmable token is trusted.

2.2.5 Changes in version 2:

Besides the fixes, functions have been renamed. Most interestingly:
* ERC20Far mabl e. f ar m() has been renamed to ERC20Far mabl e. j oi n()
* ERC20Far mabl e. exi t () has been renamed to ERC20Far mabl e. qui t ()

Additionally, batched operations have been introduced for quitting and claiming in ERC20Farmable.

@ linch - Farming - ChainSecurity - © Decentralized Security AG 6


https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ linch - Farming - ChainSecurity - © Decentralized Security AG 7


https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ linch - Farming - ChainSecurity - © Decentralized Security AG 8


https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C2D-Severity Findings ¢
(Medium)-Severity Findings 0
(Low)-Severity Findings =

« Inefficient Transfer Hook (GELSAE

« Insufficient Documentation (= )

« Lack of Events ( )

5.1 Inefficient Transfer Hook

(Desigi (0| Risk Accepted)

The internal function ERC20Far mabl e. bef or eTokenTr ansf er is called before any transfer logic is
executed. Assuming that user A is farming on n and user B is farming on mfarms without any overlap in
the sets, then,

» mtn addresses are loaded from storage at the very beginning,
* m+n external calls are made,
» Mtn storage writes to corr ecti ons,

» and more reads and writes.

Furthermore, mand n are not limited. A token transfer could end up being very expensive without the
user noticing. Hence, token transfers could easily fail by running out of gas.

Risk accepted:

linch accepts the risk.

5.2 Insufficient Documentation
[Low](Version 1][ ]

@ linch - Farming - ChainSecurity - © Decentralized Security AG 9


https://chainsecurity.com

Documentation helps users, developers and others to understand a system in a shorter amount of time.
Especially if the code is to be used as a library by other developers, it could help these to prevent errors.
Otherwise, no assumptions on the code and its behavior can be made.

Currently, code is undocumented. Furthermore, no behavioral description is provided on what to expect
from a function call. For example, it is undocumented how the libraries handle errors in external
contracts.

Acknowledged:
linch replied:

WIIl be inproved in the future.

5.3 Lack of Events
[Low] (Version 1)( j

Typically, events help track the state of the smart contract. Some functions, such as st art Far m ng,
emit events while others do not emit any event. Some examples lacking event emissions are:

« ERC20Far mabl e. far m()
*« ERC20Far mabl e. cl ai m() and Far m ngPool . cl ai n()
« ERC20Far mabl e. exi t ()

 Public checkpointing functions

e BaseFarm set Di stri but or ()

Code partially corrected:

An event has been added only for set Di stri butor ().

@ linch - Farming - ChainSecurity - © Decentralized Security AG 10


https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(ETTE)-Severity Findings 0

(CL:0)-Severity Findings 1
« Gas Griefing

(Medium)-Severity Findings 0

(Low)-Severity Findings 7

« Commented Code

« Farms Rely on Token to Checkpoint
» Gas Inefficiencies

» Ineffective period Check

« Introduction of Batched Operations

* Usage as a Library (GuReis

« farmingCheckpoint() Has No Functionality

6.1 Gas Griefing
(Seccurity [ High NEZIBY] Code Corrected

ERC20Farmable calls farm contracts in every call to f ar medPer Token() to query information with
| Far m f ar mredSi nceCheckpoi nt Scal ed() on how many rewards have been released so far. Even
though that call is handled with a try/catch block to prevent the target contract from reverting
maliciously, it is still possible that the farm consumes all gas.

1. A malicious farm honeypots users into joining.
2. The malicious farm contract is upgraded through an upgradeability pattern.

3. Every call to f ar medSi nceCheckpoi nt Scal ed() consumes all gas.

Now, following is not possible:
« any ERC20Farmable transfer from an affected user
« any ERC20Farmable transfer to an affected user
« exiting the malicious farm

« Claiming from the malicious farm

Ultimately, tokens will be locked for affected users.

Code corrected:

@ linch - Farming - ChainSecurity - © Decentralized Security AG 11


https://chainsecurity.com

The call to | Far m f anedSi nceCheckpoi nt Scal ed() now has a gas limit. If the gas limit of 200000 is
exceeded, the failure is handled by behaving equivalently to a revert in the farm contract.

Additionally, the static-call was wrapped inside an assembly block to prevent the return data bomb issue
in the Solidity compiler (documented here: https://github.com/ethereum/solidity/issues/12306).

6.2 Commented Code
(Design [(EDIERITB Code Corrected)

ERC20Far mabl e. _get Far nredSi nceCheckpoi nt scal ed contains commented code. Removing the
code could help keep the code cleaner such that it is easier to understand.

Code corrected:

Commented out code has been replaced by calls to on onError ().

6.3 Farms Rely on Token to Checkpoint
D) (Low) (Version 1) (XL

Far m _updat eFar ni ngSt at e() calls checkpoi nt () of an external ERC20Farmable contract. Then,
the ERC20Farmable contract calls Farm farm ngCheckpoint(). However, a malicious
ERC20Farmable implementation could purposefully leave out the call to
Far m f ar m ngCheckpoi nt () . Hence, the farm checkpoints could remain without updates.

Code corrected:

f ar m ngCheckpoi nt has been removed from the farm contracts. Hence, there is no need to call it.

6.4 Gas Inefficiencies

(D (Cow) (Version 1) ISR

In multiple locations code could be optimized to reduce gas cost. Some examples are:

* Function User Account i ng. checkpoi nt () loads the stored update time and the store farmed per
token value from storage. However, to correctly call that function it is required to first call
f ar medPer Token() which also loads the same variable from storage. Hence, storage reads could
be prevented.

* In function Far m ngPool . exit() bal anceO is called twice. However, the second time it is
called it is evident that it must be zero.

» _beforeTokenTransf er could exit early for self-transfers.

e Casting period to uint40 when the input could have been restricted to be uint40 in
start Farm ng.

Code corrected:

The overall gas consumption has been optimized.

@ linch - Farming - ChainSecurity - © Decentralized Security AG 12


https://github.com/ethereum/solidity/issues/12306
https://chainsecurity.com

6.5 Ineffective peri od Check
(Correctness J(ETIZIEITB) Code Corrected

Far mAccounti ng. st art Farm ng() contains following code:

require(period 2**40, "FA:. Period too large");
requi re(amunt 2**176, "FA: Anpunt too large");
(info.finished, info.duration, info.reward) (ui nt40(bl ock. ti mest anp period), uint40(period), uintl76(anmount));

However, the first check is insufficient for ui nt 40( bl ock. ti mest anp + peri od) not to overflow.

Code corrected:

The precondition was changed to:

require(period bl ock. ti nmest anp 2**40, "FA: Period too large");

6.6 Introduction of Batched Operations

D (Low) (Version 1) SR

Assume a user participates in 10 farms for a farmable token. To claim all rewards the user needs to call
clai m() multiple times. Gas consumption could be reduced by allowing batched operations for
ERC20Farmable.

Code corrected:

Following batched operations have been introduced:
e cl ai mAl | : claims on all farms
e qui t Al I : quits all farms

6.7 Usage as a Library
(7D (Low) (Version 1) CXESIZET)

ERC20Farmable is intended to be used as a library for farmable ERC-20 tokens. As such, some
functions may require to be overridden so their functionality can be enhanced. However, no function in
the supplied codebase has a vi rtual modifier, and so child contracts cannot override any method,
meaning code that inherits from ERC20Farmable cannot extend its core functionality.

On the other hand, for some functions it could make sense to disallow overriding. An example could be
f ar medPer Token() which specifies the distribution among token holders. Allowing developers to
modify its behaviour could lead to subtle issues that may not be caught during testing.

Assuming there is a use-case of changing the semantics of computing the farmed amount, code would
require changes in several functions. First, f ar med() would require changes. Second, cl ai m() would
require changes as it calls User Accounting. farned() instead of farned. Hence, wrapping
functionality from libraries in the abstract ERC20Farmable and using the wrapper functions internally
could ease the overriding process and prevent errors.

@ linch - Farming - ChainSecurity - © Decentralized Security AG 13


https://chainsecurity.com

Furthermore, it could be that some functions should not be callable by any child contracts, and there are
certain state variables that should not be set in child contracts. For example, f ar nifot al Suppl y is a
publ i ¢ variable, querying that value is helpful for users interacting with the contract. However,
developers could unknowingly interleave writes to that variable in between updates to it in the internal
callflow which would lead to inconsistent state. In that case, it could be helpful to have a public getter
while restricting writes in child contracts.

To summarize, linch provides a library for staking. Since documentation is also part of writing an
application library, it would be helpful to explicitly document the overridability and the visibility of functions
and variables, as well as their intended use.

Code corrected:
The code has been adapted and functions have been marked as vi rt ual .

6.8 farm ngCheckpoi nt () Has No Functionality
7D (Low) (Version 1) (XL

Far mAccount i ng. f ar mi ngCheckpoi nt () is empty and has no functionality. The calls to it further
complicate the code. Moreover, replacing farm accounting logic through overriding is not easily possible.

Additionally, Far m _updat eFar ni ngSt at e() lacks checkpointing for a farm's state.

Code corrected:

The function has been removed.

@ linch - Farming - ChainSecurity - © Decentralized Security AG 14


https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Calls to Farms

(D) (Version 1)

Note that the system interacts with untrusted farms and untrusted contracts.

Changes implemented or functionality in contracts inheriting from ERC20Farmable should ensure that
there is no possibility of re-entering the ERC20Farmable contract when interacting with untrusted
contracts since that could lead to possible unwanted modifications of farming state for other farms.

7.2 farmedSi nceCheckpoi nt Scal ed() Decimals
(D (Version 1)

Note that farms may run into issues if a Farm's f ar medSi nceCheckpoi nt Scal ed() does not return a
value that is in the base of 10** (18 + rewardToken. deci mal s()):

» Assume the call to f ar medSi nceCheckpoi nt Scal ed() returns a value in the base of 10* * x.

«Then, the call to farmedPerToken will return something in the base of
10** ( x- ERC20Far mabl e. deci mal s()) which implies that cor r ect i ons is in base of 10* * x.

* In farmed, the subtraction arguments will be both in base 10* * x. However, the result of the division
will be in the base of 10** ( x- 18) .

Using Farm of linch, will ensure that x==18+r ewar dToken. deci mal s() . However, if that is not the
case, errors could occur.

@ linch - Farming - ChainSecurity - © Decentralized Security AG 15


https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.2   System Overview
	2.2.1   General
	2.2.2   Farming Pool
	2.2.3   Farmable ERC-20 and Farms
	2.2.4   Trust Model & Roles
	2.2.5   Changes in version 2:


	3   Limitations and use of report
	4   Terminology
	5   Findings
	5.1   Inefficient Transfer Hook
	5.2   Insufficient Documentation
	5.3   Lack of Events

	6   Resolved Findings
	6.1   Gas Griefing
	6.2   Commented Code
	6.3   Farms Rely on Token to Checkpoint
	6.4   Gas Inefficiencies
	6.5   Ineffective period Check
	6.6   Introduction of Batched Operations
	6.7   Usage as a Library
	6.8   farmingCheckpoint() Has No Functionality

	7   Notes
	7.1   Calls to Farms
	7.2   farmedSinceCheckpointScaled() Decimals


