

PUBLIC

Code Assessment

of the Delegation

Smart Contracts

December 19, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 10

7 Notes 13

1inch - Delegation - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear 1inch team,

Thank you for trusting us to help 1inch with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Delegation according to
Scope to support you in forming an opinion on their security risks.

The project reviewed features two implementations of delegation pods for ERC20Pods.

The most critical subjects covered in our audit are functional correctness, integrability and consistency of
the accounting. General subjects covered include the documentation which is non-existing. Security
regarding all the aforementioned subjects is satisfactory.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

1inch - Delegation - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 4

• Code Corrected 3

• No Response 1

1inch - Delegation - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the contracts folder of the Delegation
repository. No documentation for the smart contracts reviewed was available. Following files from the
repository contracts folder were part of the assessment scope:

interfaces/IDelegatedShare.sol
interfaces/IDelegationPod.sol
interfaces/IRewardableDelegationPod.sol
BasicDelegationPod.sol
DelegatedShare.sol
RewardableDelegationPod.sol

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 22 November 2022 5b4067b3dc270ae9edff57687c1cd68ffbfa25e7 Initial Version

2 05 December 2022 9a243d64422c41b0631617466deeb85dcd92e57c Version 2

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

2.1.1 Excluded from scope
The base ERC20Pods contract has been reviewed separately and is not part of this report.
RewardableDelegationPod requires a separate Pod contract handling the actual reward distribution, such
a contract has not been part of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Delegation features two pod implementations for ERC20 tokens supporting the ERC20Pods extension.

An ERC20 token implementing the pods extensions pushes changes of balances to the registered pods
of the involved accounts. This allows the pod contract to seamlessly keep track of involved accounts
balances.

BasicDelegationPod

This pod allows a user to delegate his balance to another account using function delegate. Balances
delegated to an account are tracked by minting or burning ERC20 tokens accordingly for this delegatee.
These tokens are used for accounting only, transfers and approvals have been disabled.

Users must register for the BasicDelegationPod in the ERC20Pods contract and call delegate() on the
BasicDelegationPod.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

RewardableDelegationPod

Extension of BasicDelegationPod. Allows delegatees to distribute rewards to users having delegated to
them. When delegating the base ERC20Pods token users receive delegation share tokens (which also
supports the ERC20Pods standard). On this token they register for the delegatees Rewards pod (called
farm contract) which is in charge to distribute the actual rewards.

Delegatees must first register within the RewardableDelegationPod to add or deploy a shares token. If an
existing token is added this token must adhere to the ERC20Pods standard and give minting/burning
rights to the RewardableDelegationPod. To deploy a new shares token the DelegatedShare contract, an
ERC20Pods token with transfer/allowance functionality disabled is used. Only after a delegatee has
register user can delegate to this delegatee.

Upon balance updates first the accounting for the delegated amount is updated (see
BasicDelegationPod), in addition the user delegating gets delegation shares minted.

2.2.1 Trust Model & Roles
Owner: Fully trusted.

Users: Untrusted.

Delegatees: Fully trusted to operate the RewardsPod as expected and to pay out rewards accordingly. If
an existing shares contract is added the delegatee is responsible for the correctness.

Interacting contracts such as the Farms or the Shares token used in RewardableDelegationPod: Fully
trusted.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Consistency on Zero Amount Transfers

5.1 Consistency on Zero Amount Transfers
Design Low Version 2

The function BasicDelegationPod._updateBalances does not trigger mint/burn/transfer of
delegation shares (an ERC20Pods token) on 0 amount. The ERC20 standard specifies Note Transfe
rs of 0 values MUST be treated as normal transfers and fire the Transfer even
t..

1inch - Delegation - ChainSecurity - © Decentralized Security AG 9

https://eips.ethereum.org/EIPS/eip-20
https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedPossible Frontrunning on Registration

• Code CorrectedPod.updateBalances() Cannot Transfer ERC20Pods

Medium -Severity Findings 1

• Code CorrectedAllowances Not Completely Disabled

Low -Severity Findings 3

• Code CorrectedBroken C-E-I Pattern

• Code CorrectedInconsistency and Zero Address Check on register()

• Code CorrectedNo Event upon Registering Delegatee

6.1 Possible Frontrunning on Registration
Design High Version 1 Code Corrected

If a delegatee already deployed its DelegatedShare contact on its own and want to register it with
register(IDelegatedShare shareToken, address defaultFarm), another user could front
run the transaction and register the already deployed contract in place of the true delegatee, who won't
be able to register the contract for itself.

This can become problematic if the DelegatedShare contract already has some accounting done.

Code corrected:

The register(IDelegatedShare shareToken, address defaultFarm) function has been
removed.

6.2 Pod.updateBalances() Cannot Transfer
ERC20Pods
Design High Version 1 Code Corrected

Pod.updateBalances() cannot transfer (including mint or burn) tokens of another ERC20Pods (with
at least one pod involved): Using the default implementation of ERC20Pods the call to
updateBalances() of a pod is executed with _POD_CALL_GAS_LIMIT amount of gas. Currently this
value is hardcoded to 200_000. A transfer of an ERC20Pods within updateBalances() would trigger
_updateBalances() of this ERC20Pods. The current call executing with this amount of gas cannot
forward another 200_000 gas and hence the execution reverts.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

function _updateBalances(address pod, address from, address to, uint256 amount) private {
 bytes4 selector = IPod.updateBalances.selector;
 bytes4 exception = InsufficientGas.selector;

 assembly { // solhint-disable-line no-inline-assembly
 let ptr := mload(0x40)
 mstore(ptr, selector)
 mstore(add(ptr, 0x04), from)
 mstore(add(ptr, 0x24), to)
 mstore(add(ptr, 0x44), amount)

 if lt(div(mul(gas(), 63), 64), _POD_CALL_GAS_LIMIT) {
 mstore(0, exception)
 revert(0, 4)
 }
 pop(call(_POD_CALL_GAS_LIMIT, pod, 0, ptr, 0x64, 0, 0))
 }

The design of RewardableDelegationPod however requires this and hence cannot work.

Within RewardableDelegationPod.updateBalances() the call to the DelegatedShare token
(which is ERC20Pods, and the accounts are connected to at least the farm pod) is wrapped within
try/catch. Despite the function itself being annotated with
best effort of having consistent shares the accounting is totally off. A transfer of the
underlying ERC20Pod which triggers RewardableDelegationPod.updateBalances() will never
successfully execute registration[_delegate].burn(from, amount)/ registration[_del
egate].mint(from, amount). These calls only succeed when updateBalances() is called with
sufficient gas, e.g. using DelegatedShare.addPod().

Code corrected:

The root of the issue has been addressed in ERC20Pods. The amount of gas for each of the calls in
ERC20Pods._updateBalances() is no longer hardcoded in ERC20Pods but passed as constructor
parameter. The ERC20Pods that is DelegatedShare has a fixed 100_000 gas for each of the
callbacks. When two ERC20Pods are stacked like in
ERC20Pods->RewardableDelegationPod->ERC20Pods``, developers must be careful to set the correct
amount of gas in each of them for the system to work.

The function RewardableDelegationPod.updateBalances has been updated to call
mint()/burn() without try/catch blocks so that every call to DelegatedShare.mint()/burn()
must be successful.

6.3 Allowances Not Completely Disabled
Correctness Medium Version 1 Code Corrected

BasicDelegationPod overwrites and inhibits functions transfer, transferFrom and approve. The
increaseAllowance and decreaseAllowance functions inherited from OpenZeppelin's ERC20
implementation are not overridden and hence can be used.

Code corrected:

The functions increaseAllowance and decreaseAllowance have been explicitely disabled.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6.4 Broken C-E-I Pattern
Security Low Version 1 Code Corrected

The check-effects-interaction pattern is in function BasicDelegationPod.delegate. The
delegated mapping is updated after a possible contract interaction upon
_updateAccountingOnDelegate, this could lead to reentrancy or other unexpected behaviors.

Code corrected:

The mapping update and event have been moved before the call to _updateAccountingOnDelegate.

6.5 Inconsistency and Zero Address Check on
register()
Design Low Version 1 Code Corrected

In function register(IDelegatedShare shareToken, address defaultFarm), it is possible to
provide shareToken=address(0), this would allow one user to add a default farm for the zero
address, and to call on of the register() functions once again, which should not be possible.

Code corrected:

The register(IDelegatedShare shareToken, address defaultFarm) function has been
removed.

6.6 No Event upon Registering Delegatee
Design Low Version 1 Code Corrected

Events are used to be informed of or to keep track of transactions changing the state of a contract.
Generally, any important state change should emit an event.

Both functions used to register delegatees do not emit an event, hence for an observer it`s hard to track
new delegatees.

Code corrected:

Two events RegisterDelegatee and DefaultFarmSet have been added, and are emitted resp.
when a new delegatee registers, and when a default farm is added.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Users Must Add Farm if Default Farm Is
Updated
Note Version 1

The deployed DelegatedShare contracts may not have a farm associated with them directly. If a farm is
added later on, the users must either re-delegate or manually add the farm Pod on the DelegatedShare
contract themselves.

It's possible for an user to remove himself from the default farm using
DelegatedShare.remove/removeAll() but still keep delegating to this delegatee. Users must be
careful and understand the consequences of their actions.

1inch - Delegation - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Consistency on Zero Amount Transfers

	6 Resolved Findings
	6.1 Possible Frontrunning on Registration
	6.2 Pod.updateBalances() Cannot Transfer ERC20Pods
	6.3 Allowances Not Completely Disabled
	6.4 Broken C-E-I Pattern
	6.5 Inconsistency and Zero Address Check on register()
	6.6 No Event upon Registering Delegatee

	7 Notes
	7.1 Users Must Add Farm if Default Farm Is Updated

