

PUBLIC

Code Assessment

of the Limit Order Settlement

Smart Contracts

January 10, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 13

4 Terminology 14

5 Findings 15

6 Resolved Findings 17

7 Informational 19

8 Notes 20

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear 1inch team,

Thank you for trusting us to help 1inch with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Limit Order Settlement
according to Scope to support you in forming an opinion on their security risks.

In Limit Order Settlement resolvers settle orders of users. Major advantages this system offers include
MEV protection and gasless swaps for the creator of the order. Resolvers should be whitelisted, in order
to join this whitelist sufficient stake of 1inch tokens must be allocated to the resolver. The staking and
delegation make use of the new proposed ERC20Pods extension.

The most critical subjects covered in our audit are functional correctness, security of the assets and the
accounting of the balances.

The general subjects covered are design, efficiency and documentation. While the Settlement system
may protect from MEV done by the block producers, orders may be observed/rearranged on another
level. The staking is only used as a barrier of entry and does not ensure that a resolver follows the
protocol rules as stated in the documentation.

Detailed documentation / specification and documentation explaining the interactions between the
components, especially with the limit order protocol was largely missing during the review. This review
was done based on our understanding of the system as in the System Overview of this report for which
we did not receive a confirmation of 1inch.

In summary, we find that the codebase in its current state provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code Corrected 1

• Risk Accepted 1

Low -Severity Findings 2

• Code Corrected 1

• Acknowledged 1

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
This review covers the 1inch Limit Order Settlement Smart Contract, an extension to the 1inch Limit
Order Protocol. The assessment was performed on the source code files inside contracts folder of the
Limit Order Settlement repository based on the documentation files. Following files from the repository
contracts folder were part of the assessment scope:

helpers/VotingPowerCalculator.sol
interfaces/IFeeBank.sol
interfaces/IFeeBankCharger.sol
interfaces/IResolver.sol
interfaces/ISettlement.sol
interfaces/IVotable.sol
interfaces/IWhitelistRegistry.sol
libraries/DynamicSuffix.sol
libraries/OrderSaltParser.sol
BasicDelegationPodWithVotingPower.sol
FeeBank.sol
FeeBankCharger.sol
RewardableDelegationPodWithVotingPower.sol
Settlement.sol
St1inch.sol
WhitelistRegistry.sol

Version 2in the following files were added:

helpers/ResolverMetadata.sol
helpers/St1inchPreview.sol
helpers/WhitelistHelper.sol

Version 3in the following files were added:

libraries/Address.sol

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 22 November 2022 eba5d2c1fff015b3b00ded8f67abf05490dc4c48 Initial Version

2 2 December 2022 a0e73b9cc7545b0cdd85ee6dccf95b1ceeb3c586 Updated Version

3 19 December 2022 515e4b777535b484c785ff5e5acc2875777ef22b Version 3

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope
The bases BasicDelegationPod and RewardableDelegationPod as well as ERC20Pods have been
reviewed separately and are not part of this report.

The limit order protocol itself (which the settlement contract interacts with) is not part of the audit
scope.

Any contracts not mentioned above, mock and testing contracts that might rely on the scoped contracts
are not part of the scope. Imported libraries are assumed to behave according to their specification and
are not part of the assessment scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

1inch offers a new system for limit orders settlement. A major issue with limit orders is front running, Limit
Order Settlement addresses this problem by allowing trusted resolvers to batch orders with the help of
the Settlement contract. The makers also do not have to pay gas for their orders, as the resolvers will
take care of it, however, they still must pay a fee. The resolvers act as takers for every order in the batch,
aggregating all the makers assets in one contract, and then can optimize the matching between the
orders. The incentives for resolvers are gas cost and fees included in each order's rate.

A whitelist is employed to highlight the supposedly trusted resolvers. In order to be included in this
whitelist, resolvers must stake 1inch tokens, from 1 day to 4 years, to get a decreasing-over-time voting
power that will allow them to stay in the top list.

FeeBank

This contract allows resolvers to deposit and withdraw 1inch tokens that will be charged as fees upon
order settlement. Another contract, FeeBankCharger will be responsible for the accounting of the
charged fees. The FeeBank contract holds the funds and the internal accounting tracks the deposited
amounts for each account and updates the available credit on the FeeBankCharger contract upon
deposit/withdrawal. The available functions are:

• deposit: allows the caller to deposit 1inch tokens in the contract. The internal accounting of
deposits and the available credit on the FeeBankCharger contract will be increased by the
deposited amount. The tokens must be approved beforehands.

• depositFor: similar to deposit, but the specified account will be credited in place of the caller.
The tokens must be approved beforehands.

• depositWithPermit: similar to deposit, but does not require prior approval.

• depositForWithPermit: similar to depositFor, but does not require prior approval.

• withdraw: allows the caller to withdraw its available credit. The function will revert if the amount is
greater than the available credit in the FeeBankCharger contract.

• withdrawTo: similar to withdraw, but the funds are sent to the specified account.

• gatherFees: the owner of the contract can call this function collect the fees from a list of accounts.

FeeBankCharger

The FeeBankCharger contract is responsible for tracking and updating the available credit for each
resolver. It will deploy it own FeeBank at deployment. The contract does not hold funds, but the
FeeBank will rely on the internal accounting of the available credit to distribute the fees. The contract is
intended to be inherited from in order to provide all its functionalities. The state changing functions are:

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• increaseAvailableCredit: only the FeeBank can call this function. The function increases the
available credit of the target account by the given amount.

• decreaseAvailableCredit: only the FeeBank can call this function. The function decreases the
available credit of the target account by the given amount.

• _chargeFee: this function is internal. It allows to charge a fee for a given account by decreasing its
available credit. The function will revert if the account does not have enough credit.

Settlement

The Settlement contract inherits from FeeBankCharger and allows resolvers to optimize the
settlement of batched orders by recursively filling each order up to the
IInteractionNotificationReceiver.fillOrderInteraction() callback in
OrderMixin.fillOrderTo(), find matching orders and optimize the swaps, and then finish the
settlement of the batch. In this setting, the resolver aggregates all the making assets and amounts before
optimizing the swaps and transfering the taker assets and amounts to the makers in the batch. The
resolvers will have to pay a fee for using the system, to this end, the Settlement contract is
FeeBankCharger and the resolvers will need to have enough credit in the FeeBank to execute the
orders. For each recursive call, a suffix is appended to the end of the interactive data to track the total
fee, that will be charged at the end. The contract exposes two functions:

• settleOrders: this is the entry point function for resolvers. To resolve orders in batches, they
must build the calldata such that it will recursively trigger the settlement of each order in the batch

• fillOrderInteraction: this function is a callback from the OrderMixin and can only be called
by the limit order protocol. This is where the recursive calls happen, depending on the interactive
data, the control flow either settles the next order or gives the control to a Resolver contract at the
end of the batch processing.

The data for settleOrders must have a specific layout. It must be the calldata that would be sent if
OrderMixin.fillOrderTo was called, but without the function selector. In the case of batched orders,
orders must be included in the interactive data part of the previous order.

First, for each Order, makers can use the salt field to encode some information:

• bits 255-224: starting time for a Dutch auction

• bits 223-192: duration time for a Dutch auction

• bits 191-176: initial rate bump

• bits 175-144: order fee

• bits 0-143: order salt

With this encoded information, makers create a Dutch auction for their order, where the order's rate
decreases (from 100%+initial rate bump to 100%) the incentive for the resolvers grows as time
passes, but from a game theoretical point of view, the Dutch auction makes them compete against each
other to execute the orders with a rate that is still acceptable for the makers.

Then, the makers must include a list of whitelisted resolver addresses they trust for settling their orders.
This list must be at the end of Order.interaction bytes array and have the following format:
address0|address1|...|addressN|length. The length is the number of whitelisted addresses
in the list and must fit on one byte.

Resolvers must also encode the interactive data in a way the control flow can be redirected either to
continue the recursive order settlement after the callback to fillOrderInteraction(), or to give the
control flow to the Resolver contract. To indicate whether there solver wants to finalize the interaction, a
special byte 0x01 must be added after the interactionTarget address, any other value will continue
the interaction (recursion).

Layout of data, example for 2 orders. order1 and order2 refer to the Order struct of the limit order
protocol. Padding is not displayed in this example:

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

order1.offset (32bytes)

sig1.offset (32bytes)

resolverInteractionsOrder1.offset (32bytes)

makingAmount for order1 (32bytes)

takingAmount for order1 (32bytes)

skipPermitAndThresholdAmount for order1 (32bytes)

target for order1 (32bytes)

order1.salt (32bytes, with special encoding described above)

order1.makerAsset (32bytes)

. . . (other order1 members omitted for brevity, 32bytes each)

order1.interactionOffset (32bytes)

order1.interactionLength (32bytes)

order1.standardInteraction (order1.interactionLength bytes)

order1.whitelistedAddresses (20bytes each)

order1.whitelistedAddressesLength (1byte)

length of sig1 (32bytes)

sig1 (length of sig1 bytes)

length of resolverInteractionsOrder1 (32bytes)

resolverInteractionsOrder1 (length of resolverInteractionsOrder1 bytes)

 interactionTargetOrder1 (20bytes, should be the Settlement contract)

 0x00 (1byte, we don't want to finalize the interaction yet)

 order2.offset (32bytes)

 sig2.offset (32bytes)

 resolverInteractionsOrder2.offset (32bytes)

 makingAmount for order2 (32bytes)

 takingAmount for order2 (32bytes)

 skipPermitAndThresholdAmount for order2 (32bytes)

 target for order2 (32bytes)

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

 order2.salt (32bytes with special encoding described above)

 order2.makerAsset (32bytes)

 . . . (other order2 members omitted for brevity, 32bytes each)

 order2.interactionOffset (32bytes)

 order2.interactionLength (32bytes)

 order2.standardInteraction (order2.interactionLength bytes)

 order2.whitelistedAddresses (20bytes each)

 order2.whitelistedAddressesLength (1byte)

 length of sig2 (32bytes)

 sig2 (length of sig2 bytes)

 length of resolverInteractionsOrder2 (32bytes)

 resolverInteractionsOrder2 (length of resolverInteractionsOrder2 bytes)

 interactionTargetOrder2 (20bytes, should be the Settlement contract)

 0x01 (1byte, we want to finalize the interaction)

 resolver contract address (20bytes)

 some data for the resolver

St1inch

Holders of the 1inch token can stake their tokens in this contract. By staking, users lock their stake for a
certain amount of time (between 1 day and 4 years), withdrawal is only possible thereafter. Voting power
per staked 1inch token depends (non-linear, exponentially) on the time the token is locked for. The
calculation of votingPowerAt/balanceAt is an approximation and not exact. The values tracked by
balances, i.e. _balanceAt(X, T) / _VOTING_POWER_DIVIDER represent the amount that should
have been put in at VotingPowerCalculator origin time, to have a voting power of
X * _VOTING_POWER_DIVIDER% at the target deadline T. So every balance has the same origin point
in time and thus balance1 > balance2 <==> VP1(T) > VP2(T) for a given timestamp T.

• deposit/depositWithPermit/depositFor/depositForWithPermit: Allows to deposit
tokens for a certain lock duration. Calling this function with an amount of zero may be used to extend
the duration of the lock and hence increases voting power for this user. If these functions are used to
deposit additional stake, the lock up time is increased for the whole stake

• increaseLockDuration: Wrapper for deposit with an amount of 0, increases the lock duration
and hence voting power

• increaseAmount: Allows to deposit more

• withdraw/withdrawTo: Allows to withdraw the stake, withdrawal is only possible once the lock
period is over or emergency exit has been activated

There is an emergency exit function which can be enabled/disabled by the owner.

• setEmergencyExit: Allows the owner to toggle the boolean flag if emergency exit is active or not

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

Several view functions allow retrieval of account balance or voting power. All transfer / allowance
functionality has been disabled.

This contract implements the ERC20Pods extension. This extension informs (calls
pod.updateBalances() in case of any balance change of accounts registered to a pod). Pods are
used to track delegations (e.g. for the whitelist or governance). These delegations are independent as
they are handled by different pods. Notably an address can delegate its stake for one resolver regarding
the whitelist while at the same time delegate its stake to another account for governance purposes.

In addition to the delegation pods 1inch may add a pod for farming rewards / to incentivize the staking.

BasicDelegationPod and RewardableDelegationPod

These pods allow to track delegations. The WhitelistRegistry will use one to track the voting power of the
accounts. Furthrmore the Governance may use one to track delegation for Governance purpose.

Users wishing to delegate must register the pod in the St1Inch contract and call delegate() on the
Pod.

Basic Delegation Pod:

This pod allows a user to delegate his balance to another account using function delegate. Balances
delegated to an account are tracked by minting or burning ERC20 tokens accordingly for this delegatee.
These tokens are used for accounting only, transfers and approvals have been disabled.

Rewardable Delegation Pod:

Extension of BasicDelegationPod. Allows delegatees to distribute rewards to users having delegated to
them. When delegating the base ERC20Pods token users receive delegation share tokens (which also
supports the ERC20Pods standard). On this token they register for the delegatees Rewards pod (called
farm contract) which is in charge to distribute the actual rewards.

Delegatees must first register within the RewardableDelegationPod. Only after a delegatee has register
user can delegate to this delegatee.

Upon balance updates, first the accounting for the delegated amount is updated (see
BasicDelegationPod), in addition the user delegating gets delegation shares minted.

These contracts extend the base contracts of the Delegating repository, namely they each have an
additional votingPowerOf function.

WhitelistRegistry

Using one of the pods described above the voting power of an account is accessed. This pod is set as
the token for the WhitelistReigstry, the WhitelistRegistry will then query this token for the balance or
voting power.

• register: Allows any account to register for the whitelist. To register successfully one must have
at least a voting power of resolverThreshold. If there is no space left in the whitelist the poorest
account gets removed (if the balance of the account registering exceeds this accounts balance).

• clean: Permissionless function, removes any account with a voting power below the threshold from
the whitelist.

• promote: Allows any msg.sender to register an addresss per chainId (uint256). This allows
whitelisted entities to register the actual executor address on every supported chain.

Owner functionality:

• setResolverThreshold: Allows to set the minimum voting power a resolver must have. Using the
permissionless function clean, addresses in the whitelist below this threshold can be removed.

• setWhitelistLimit: Allows to set the maximum size of the whitelist. If the new size exceeds the
current amount of whitelisted address, the poorest accounts are removed front he whitelist.

• rescueFunds: Allows the Owner to rescue any token or Ether balance at this contract.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Users should only craft and sign orders including whitelisted resolvers. Whether a resolver is part of the
whitelist is not checked within the settlement smart contract. While building the order users should query
the whitelist and choose their trusted resolvers. One may has to make sure the whitelist is up to date e.g.
using clean() or by assessing otherwise whether all resolver still have sufficient delegated stake.

This contract is intended to be deployed only on mainnet, each resolver can set their corresponding
address on other supported chains in this contract, so resolvers need to stake only on mainnet and this
contract can also serve as a whitelist for other chains, which can be queried with
getPromotees(chainId).

Changes in Version 2

The following functional changes were introduced in version 2:

St1inch:

• Stakers can now withdraw early using earlyWithdrawTo. This incurs a penalty fee, the function
features some protections (maxLoss / minReturn) to ensure the user accepts amount paid out.
Furthermore this loss is limited by the maxLossRatio set by the owner. The fee collected (which is in
1inch tokens) is transferred to the FeeReceipient address set by the admin.

• rescueFunds allows the owner to rescue locked Ether or tokens. In case of the 1inch token the
owner can only rescue the surplus, not balance belong to the stake.

Settlement:

• Version 3The suffix of orderInteractions now additionally contains the deadline (starting this is
called public availability timestamp). If the deadline is exceeded checkResolver returns true,
meaning any address can act as resolver.

The following new helper contracts exist:

• ResolverMetadata: Allows resolvers registered in the delegation contract passed in the constructor
to set their resolver Url in this contract.

• St1inchPreview: Implements
previewBalance(address account, uint256 amount, uint256 duration). Returns
the balances of St1inch token a user receives additionally when staking this amount for duration. If
the account has an unlock date already later than duration, this is taken into account.

• WhitelistHelper: Implements a view function getMinAmountForWhitelisted(), returns the
minimum amount needed to join the whitelist.

Changes in Version 3

The following functional changes were introduced in version 3:

St1inch:

• Functions increaseLockDuration and increaseAmount have been dropped.

• The minimum lock period has been increased from 1 day to 30 days.

• A default farm can be set for the St1inch ERC20Pods token.

Settlement:

• A new taking fee has been introduced. The fee is set by the maker and is a percentage of the taking
amount that the resolver can take. The maker must encode the fee receiver and ratio after the
whitelisted addresses and the deadline.

• On top of specifying which resolvers are allowed to fill their order, makers need to add a timestamp
for each allowed resolver to specify until when each of them is allowed to settle the order.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

2.2.1 Trust Model and Roles
Resolvers: fully untrusted. From a game theoretical perspective, thanks to the Dutch auction, users are
protected from getting the worst price as long as there is at least one honest whitelisted resolver.

Owner Role in contracts (e.g. St1inch, WhitelistRegistry) fully trusted

1inch's frontend: all the orders that are meant to be used by the Settlement system are assumed to be
created through 1inch's frontend, that is trusted to make the users sign on private orders, i.e.,
allowedSender==Settlement, and set the whitelisted resolvers.

1inch's backend: trusted for checking the validity of the orders it receives, e.g., order is private, resolvers
are whitelisted, Moreover, everybody can query and see the orders from the backend.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedStaking Does Not Prevent Misbehavior

Low -Severity Findings 1

• AcknowledgedMissing Events

5.1 Staking Does Not Prevent Misbehavior
Design Medium Version 1 Risk Accepted

Resolvers have to join a whitelist which is governed by the staking of 1inch tokens.

The documentation states:

The stake determines a resolver’s ability to get orders and ensures that a resolver
follow the protocol rules (like in proof of stake model).

On the smart contract level the implementation of the staking does not allow to seize stake of bad actors.
Their stake is not at risk and can simply be withdrawn at the end of the lock period hence this staking
does not ensure that a resolver follows the protocol rules.

Risk accepted:

1inch states:

They'll need only follow what is required to be able to settle the order batch.
Staking is only used as a threshold entry requirement.

5.2 Missing Events
Design Low Version 1 Acknowledged

Events are used to be informed of or to keep track of transactions changing the state of a contract.
Generally, any important state change should emit an event.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The functions used for deposits and withdrawals in FeeBank do not emit an event, hence it's hard for an
observer to track deposits and withdrawals

Acknowledged:

1inch acknowledged the issue and decided to leave the code as it is.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedSt1inch Can Be Locked Indefinitely

Low -Severity Findings 1

• Code CorrectedResolver Can Set Arbitrary Callback

6.1 St1inch Can Be Locked Indefinitely
Security Medium Version 1 Code Corrected

It is possible for an attacker to lock the staked amount of 1inch token of any staker by using one of the
St1inch.depositFor functions for the target address. By depositing a small amount of tokens and
specifying the duration, one can force a target staker to see its stake locked for more time, preventing the
staker to withdraw. The only way to break that attack would be to activate the emergency exit to allow the
target staker to withdraw.

Code corrected:

The functions St1inch.depositFor and St1inch.depositForWithPermit have been updated so
the duration cannot be specified and is hardcoded to be 0. This will only increase the deposited amount
and not the timelock duration.

6.2 Resolver Can Set Arbitrary Callback
Security Low Version 1 Code Corrected

Resolvers can set the callback address (interactionTarget address) called in
Settlement._settleOrder() and execute arbitrary code which may severely interfere with the
process.

Code corrected:

The Settlement contract now ensures that the address is the settlement contract itself:

let target := shr(96, calldataload(add(data.offset, interactionOffset)))
if iszero(eq(target, address())) {
 mstore(0, errorSelector)

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

 revert(0, 4)
}

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Competing Resolvers May Result in Failing
Transactions
Informational Version 1

Since resolvers are competing against each other, it may happen that more than one resolver submits
the same order in their respective batch, in the same block. In such cases, only the first batch including
the order will not revert and all the other resolvers will suffer from pure loss of gas.

7.2 Gas Optimization
Informational Version 1

Some operations can be in an unchecked block to save gas, examples are:

• update of i and addition in FeeBank.gatherFees()

• addition in FeeBank._depositFor()

• addition in FeeBankCharger.increaseAvailableCredit()

• for loop in WhitelistRegistry.register()

• WhitelistRegistry._shrinkPoorest()

Intermediary memory variable can save storage reads. Example is:

• St1inch._deposit() does two SLOAD for deposits[account], storing the updated deposit
amount in memory will save gas.

Code partially corrected:

The function St1inch._deposit() has been updated to do only one SLOAD for the depositor.

Other gas optimizations have been addressed in future commits.

7.3 Preview Functions Accept Invalid Durations
Informational Version 1

The preview functions (previewBalance, previewPowerOf,previewPowerOfAtTime) may
accept a duration parameter that may exceed the maximum locking period and make the transaction
revert if applied in the St1inch contract.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Allowed Sender of Orders
Note Version 1

Makers wishing to benefit from the protections of the limit settlement protocol must ensure the order they
sign has the settlement contract set as allowed sender.

Technically the settlement contract allows resolvers to batch any orders which gives them greater
freedom to aggregate transactions. While execution of orders without the allowed sender restricted
works, such orders can also be executed through the limit order protocol directly and hence lack the
protection limit settlement order offers.

It's vital to understand that this field has to be set correctly or that the protections offered by limit order
settlement don't apply. Although this might be obvious there should be documentation emphasizing this.
Even the tests within the limit-settlement-order repository use public orders (since allowed sender is not
set and hence anyone, not just the settlement contract, can call limitOrderProtocol.fillOrder()
for this order).

This is an easy source of errors, hence it`s important to be explicit and not assume users/integrators will
understand and do this correctly.

8.2 User Responsibility for Setting Trusted
Resolvers
Note Version 1

Nothing enforces the resolvers listed in Order.interaction to be actually part of the
WhitelistRegistry. It is the user's responsibility to ensure that the resolvers addresses they sign
over are trusted.

1inch stated:

That’s also the responsibility of the frontend to provide correct whitelists to the user.
And also responsibility of the backend to filter out maliciously created orders without
the proper whitelist.

1inch - Limit Order Settlement - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model and Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Staking Does Not Prevent Misbehavior
	5.2 Missing Events

	6 Resolved Findings
	6.1 St1inch Can Be Locked Indefinitely
	6.2 Resolver Can Set Arbitrary Callback

	7 Informational
	7.1 Competing Resolvers May Result in Failing Transactions
	7.2 Gas Optimization
	7.3 Preview Functions Accept Invalid Durations

	8 Notes
	8.1 Allowed Sender of Orders
	8.2 User Responsibility for Setting Trusted Resolvers

